Luse MA, Schug WJ, Dunaway LS, Nyshadham S, Loeb SA, Carvalho A, Tessema R, Pavelic C, Keller TCS, Shu X, Ruddiman CA, Kosmach A, Sveeggen TM, Mitchell R, Bagher P, Minshal RD, Leitnger N, Columbus L, Levental KR, Levental I, Cortese-Krott M, Isakson BE. Nitrosation of CD36 Regulates Endothelial Function and Serum Lipids.
Arterioscler Thromb Vasc Biol 2025. [PMID:
40242868 DOI:
10.1161/atvbaha.124.321964]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 03/24/2025] [Indexed: 04/18/2025]
Abstract
BACKGROUND
During obesity, endothelial cells (ECs) become lipid laden, leading to endothelial dysfunction. We tested posttranslational modification on CD36 that may regulate EC lipid accumulation.
METHODS
We used an EC-specific Cav1 (caveolin-1) knockout mouse, nitrosation and palmitoylation assays, and whole animal Nγ-nitro-l-arginine methyl ester administration to examine blood lipids.
RESULTS
EC-specific Cav1 knockout male mice are hyperlipidemic regardless of diet but retain endothelial cell function. We found these mice have significantly increased NO in response to the lack of Cav1, and the presence or absence of NO toggled inversely EC lipid content and plasma lipid in mice. The NO nitrosated the fatty acid translocase CD36 at the same cysteines that are palmitoylated on CD36. The nitrosation of CD36 prevented its trafficking to the plasma membrane and decreased lipid accumulation. The physiological effect of this mechanism was a reliance on NO for endothelial function and not dilation.
CONCLUSIONS
This work suggests that CD36 nitrosation occurs as a protective mechanism to prevent EC lipotoxicity.
Collapse