1
|
Tetali SR, Kunapaeddi E, Mailavaram RP, Singh V, Borah P, Deb PK, Venugopala KN, Hourani W, Tekade RK. Current advances in the clinical development of anti-tubercular agents. Tuberculosis (Edinb) 2020; 125:101989. [PMID: 32957054 DOI: 10.1016/j.tube.2020.101989] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 12/20/2022]
Abstract
Tuberculosis (TB) is a communicable airborne infectious disease caused by the Mycobacterium tuberculosis (MTB) that primarily affects the lungs, and can disseminate to other parts of the body. MTB is one of the most dangerous pathogens, killing about 1.4 million people annually worldwide. Although the standard treatment of TB is comprised of four anti-TB drugs, the emergence of multidrug-resistant (MDR) and extensive drug-resistant (XDR) strains in the recent past and associated side effects have affected the tailor-made regimens. Notably, existing therapies approved by the World Health Organisation (WHO) can only treat less than 50% of drug-resistant TB. Therefore, an expeditious pace in the TB research is highly needed in search of effective, affordable, least toxic novel drugs with shorter regimens to reach the goals viz. 2020 milestones End TB strategy set by the WHO. Currently, twenty-three drug-like molecules are under investigation in different stages of clinical trials. These newer agents are expected to be effective against the resistant strains. This article summarizes the properties, merits, demerits, and the probability of their success as novel potential therapeutic agents.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
23 |
2
|
Borah P, Deb PK, Deka S, Venugopala KN, Singh V, Mailavaram RP, Kalia K, Tekade RK. Current Scenario and Future Prospect in the Management of COVID-19. Curr Med Chem 2021; 28:284-307. [PMID: 32900341 DOI: 10.2174/0929867327666200908113642] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 01/08/2023]
Abstract
The COVID-19 pandemic continues to wreak havoc worldwide due to the lack of risk assessment, rapid spreading ability, and propensity to precipitate severe disease in comorbid conditions. In an attempt to fulfill the demand for prophylactic and treatment measures to intercept the ongoing outbreak, the drug development process is facing several obstacles and renaissance in clinical trials, including vaccines, antivirals, immunomodulators, plasma therapy, and traditional medicines. This review outlines the overview of SARS-CoV-2 infection, significant recent findings, and ongoing clinical trials concerning current and future therapeutic interventions for the management of advancing pandemic of the century.
Collapse
|
Review |
4 |
17 |
3
|
Shaik K, Deb PK, Mailavaram RP, Chandrasekaran B, Kachler S, Klotz K, Jaber AMY. 7‐Amino‐2‐aryl/hetero‐aryl‐5‐oxo‐5,8‐dihydro[1,2,4]triazolo[1,5‐a]pyridine‐6‐carbonitriles: Synthesis and adenosine receptor binding studies. Chem Biol Drug Des 2019; 94:1568-1573. [DOI: 10.1111/cbdd.13528] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/26/2019] [Accepted: 03/17/2019] [Indexed: 12/11/2022]
|
|
6 |
16 |
4
|
Borah P, Deka S, Mailavaram RP, Deb PK. P1 Receptor Agonists/Antagonists in Clinical Trials - Potential Drug Candidates of the Future. Curr Pharm Des 2020; 25:2792-2807. [PMID: 31333097 DOI: 10.2174/1381612825666190716111245] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/03/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Adenosine mediates various physiological and pathological conditions by acting on its four P1 receptors (A1, A2A, A2B and A3 receptors). Omnipresence of P1 receptors and their activation, exert a wide range of biological activities. Thus, its modulation is implicated in various disorders like Parkinson's disease, asthma, cardiovascular disorders, cancer etc. Hence these receptors have become an interesting target for the researchers to develop potential therapeutic agents. Number of molecules were designed and developed in the past few years and evaluated for their efficacy in various disease conditions. OBJECTIVE The main objective is to provide an overview of new chemical entities which have crossed preclinical studies and reached clinical trials stage following their current status and future prospective. METHODS In this review we discuss current status of the drug candidates which have undergone clinical trials and their prospects. RESULTS Many chemical entities targeting various subtypes of P1 receptors are patented; twenty of them have crossed preclinical studies and reached clinical trials stage. Two of them viz adenosine and regadenoson are approved by the Food and Drug Administration. CONCLUSION This review is an attempt to highlight the current status, progress and probable future of P1 receptor ligands which are under clinical trials as promising novel therapeutic agents and the direction in which research should proceed with a view to come out with novel therapeutic agents.
Collapse
|
Review |
5 |
12 |
5
|
Venugopala KN, Chandrashekharappa S, Tratrat C, Deb PK, Nagdeve RD, Nayak SK, Morsy MA, Borah P, Mahomoodally FM, Mailavaram RP, Attimarad M, Aldhubiab BE, Sreeharsha N, Nair AB, Alwassil OI, Haroun M, Mohanlall V, Shinu P, Venugopala R, Kandeel M, Nandeshwarappa BP, Ibrahim YF. Crystallography, Molecular Modeling, and COX-2 Inhibition Studies on Indolizine Derivatives. Molecules 2021; 26:molecules26123550. [PMID: 34200764 PMCID: PMC8230391 DOI: 10.3390/molecules26123550] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 11/16/2022] Open
Abstract
The cyclooxygenase-2 (COX-2) enzyme is an important target for drug discovery and development of novel anti-inflammatory agents. Selective COX-2 inhibitors have the advantage of reduced side-effects, which result from COX-1 inhibition that is usually observed with nonselective COX inhibitors. In this study, the design and synthesis of a new series of 7-methoxy indolizines as bioisostere indomethacin analogues (5a-e) were carried out and evaluated for COX-2 enzyme inhibition. All the compounds showed activity in micromolar ranges, and the compound diethyl 3-(4-cyanobenzoyl)-7-methoxyindolizine-1,2-dicarboxylate (5a) emerged as a promising COX-2 inhibitor with an IC50 of 5.84 µM, as compared to indomethacin (IC50 = 6.84 µM). The molecular modeling study of indolizines indicated that hydrophobic interactions were the major contribution to COX-2 inhibition. The title compound diethyl 3-(4-bromobenzoyl)-7-methoxyindolizine-1,2-dicarboxylate (5c) was subjected for single-crystal X-ray studies, Hirshfeld surface analysis, and energy framework calculations. The X-ray diffraction analysis showed that the molecule (5c) crystallizes in the monoclinic crystal system with space group P 21/n with a = 12.0497(6)Å, b = 17.8324(10)Å, c = 19.6052(11)Å, α = 90.000°, β = 100.372(1)°, γ = 90.000°, and V = 4143.8(4)Å3. In addition, with the help of Crystal Explorer software program using the B3LYP/6-31G(d, p) basis set, the theoretical calculation of the interaction and graphical representation of energy value was measured in the form of the energy framework in terms of coulombic, dispersion, and total energy.
Collapse
|
Journal Article |
4 |
7 |
6
|
Kombu RS, Mailavaram RP, Devalapally H, Chinnappa PM, Devarakonda RK, Akkinepally RRR. Synthesis and Bronchodilator Studies of Some Novel 6-Alkyl/Aryl-1,2,4-Triazino[4,3-c]Quinazolines. THE OPEN MEDICINAL CHEMISTRY JOURNAL 2008; 2:101-11. [PMID: 19662150 PMCID: PMC2705134 DOI: 10.2174/1874104500802010101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Revised: 10/31/2008] [Accepted: 11/01/2008] [Indexed: 01/27/2023]
Abstract
A series of alkyl- and aryl-1,2,4-triazino[4,3-c]quinazolines (5a-h and 8a-h) were synthesized and characterized. The title compounds were evaluated for their in vivo bronchodilator activity on guinea pigs. All the test compounds exhibited good protection against histamine-induced bronchospasm. The structure-activity relationships based on the results obtained for these series were studied. Incorporation of an aryl ring with halo substitution to the theophylline bioisostere increases its potency. Among the compounds tested, 5b was found to be the most potent with 88.7% protection against histamine-induced bronchospasm compared to the standard compound aminophylline (87.8%).
Collapse
|
Journal Article |
17 |
2 |
7
|
Deverakonda M, Mailavaram RP, Deb PK, Banda N, Vedula GS. Rapid and Efficient, Microwave-Assisted, Base-Catalyzed Synthesis of Some Novel 2,7-Disubstituted Pyrrolopyrimidinones. SYNTHETIC COMMUN 2012. [DOI: 10.1080/00397911.2011.576324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
|
13 |
1 |
8
|
Chitikina SS, Buddiga P, Deb PK, Mailavaram RP, Venugopala KN, Nair AB, Al-Jaidi B, Kar S. Synthesis and anthelmintic activity of some novel (E)-2-methyl/propyl-4-(2-(substitutedbenzylidene)hydrazinyl)-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidines. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02586-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
|
5 |
1 |
9
|
Venugopala KN, Chandrashekharappa S, Deb PK, Al-Shar'i NA, Pillay M, Tiwari P, Chopra D, Borah P, Tamhaev R, Mourey L, Lherbet C, Aldhubiab BE, Tratrat C, Attimarad M, Nair AB, Sreeharsha N, Mailavaram RP, Venugopala R, Mohanlall V, Morsy MA. Identification of potent indolizine derivatives against Mycobacterial tuberculosis: In vitro anti-TB properties, in silico target validation, molecular docking and dynamics studies. Int J Biol Macromol 2024; 274:133285. [PMID: 38925196 DOI: 10.1016/j.ijbiomac.2024.133285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
In the current study, two sets of compounds: (E)-1-(2-(4-substitutedphenyl)-2-oxoethyl)-4-((hydroxyimino)methyl)pyridinium derivatives (3a-3e); and (E)-3-(substitutedbenzoyl)-7-((hydroxyimino)methyl)-2-substitutedindolizine-1-carboxylate derivatives (5a-5j), were synthesized and biologically evaluated against two strains of Mycobacterial tuberculosis (ATCC 25177) and multi-drug resistant (MDR) strains. Further, they were also tested in vitro against the mycobacterial InhA enzyme. The in vitro results showed excellent inhibitory activities against both MTB strains and compounds 5a-5j were found to be more potent, and their MIC values ranged from 5 to 16 μg/mL and 16-64 μg/mL against the M. tuberculosis (ATCC 25177) and MDR-TB strains, respectively. Compound 5h with phenyl and 4-fluorobenzoyl groups attached to the 2- and 3-position of the indolizine core was found to be the most active against both strains with MIC values of 5 μg/mL and 16 μg/mL, respectively. On the other hand, the two sets of compounds showed weak to moderate inhibition of InhA enzyme activity that ranged from 5 to 17 % and 10-52 %, respectively, with compound 5f containing 4-fluoro benzoyl group attached to the 3-position of the indolizine core being the most active (52 % inhibition of InhA). Unfortunately, there was no clear correlation between the InhA inhibitory activity and MIC values of the tested compounds, indicating the probability that they might have different modes of action other than InhA inhibition. Therefore, a computational investigation was conducted by employing molecular docking to identify their putative drug target(s) and, consequently, understand their mechanism of action. A panel of 20 essential mycobacterial enzymes was investigated, of which β-ketoacyl acyl carrier protein synthase I (KasA) and pyridoxal-5'-phosphate (PLP)-dependent aminotransferase (BioA) enzymes were revealed as putative targets for compounds 3a-3e and 5a-5j, respectively. Moreover, in silico ADMET predictions showed adequate properties for these compounds, making them promising leads worthy of further optimization.
Collapse
|
|
1 |
|