1
|
Bayat P, Nosrati R, Alibolandi M, Rafatpanah H, Abnous K, Khedri M, Ramezani M. SELEX methods on the road to protein targeting with nucleic acid aptamers. Biochimie 2018; 154:132-155. [PMID: 30193856 DOI: 10.1016/j.biochi.2018.09.001] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/02/2018] [Indexed: 12/14/2022]
Abstract
Systematic evolution of ligand by exponential enrichment (SELEX) is an efficient method used to isolate high-affinity single stranded oligonucleotides from a large random sequence pool. These SELEX-derived oligonucleotides named aptamer, can be selected against a broad spectrum of target molecules including proteins, cells, microorganisms and chemical compounds. Like antibodies, aptamers have a great potential in interacting with and binding to their targets through structural recognition and are therefore called "chemical antibodies". However, aptamers offer advantages over antibodies including smaller size, better tissue penetration, higher thermal stability, lower immunogenicity, easier production, lower cost of synthesis and facilitated conjugation or modification with different functional moieties. Thus, aptamers represent an attractive substitution for protein antibodies in the fields of biomarker discovery, diagnosis, imaging and targeted therapy. Enormous interest in aptamer technology triggered the development of SELEX that has underwent numerous modifications since its introduction in 1990. This review will discuss the recent advances in SELEX methods and their advantages and limitations. Aptamer applications are also briefly outlined in this review.
Collapse
|
Review |
7 |
144 |
2
|
Dehghani S, Nosrati R, Yousefi M, Nezami A, Soltani F, Taghdisi SM, Abnous K, Alibolandi M, Ramezani M. Aptamer-based biosensors and nanosensors for the detection of vascular endothelial growth factor (VEGF): A review. Biosens Bioelectron 2018; 110:23-37. [PMID: 29579646 DOI: 10.1016/j.bios.2018.03.037] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 03/06/2018] [Accepted: 03/16/2018] [Indexed: 02/06/2023]
Abstract
Vascular endothelial growth factor (VEGF) is a key regulator of vascular formation and a predominant protein biomarker in cancer angiogenesis. Owing to its crucial roles in the cancer metastasis, VEGF detection and quantification is of great importance in clinical diagnostics. Today, there exist a wide variety of detection strategies for identifying many types of disease biomarkers, especially for VEGF. As artificial single-stranded DNA or RNA oligonucleotides with catalytic and receptor properties, aptamers have drawn lots of attention to be applied in biosensing platforms due to their target-induced conformational changes as well as high stability and target versatility. So far, various sensitivity-enhancement techniques in combination with a broad range of smart nanomaterials have integrated into the design of novel aptasensors to improve detection limit and sensitivity of analyte detection. This review article provides a brief classification and description of the research progresses of aptamer-based biosensors and nanobiosensors for the detection and quantitative determination of VEGF based on optical and electrochemical platforms.
Collapse
|
Review |
7 |
128 |
3
|
Yousefi M, Nosrati R, Salmaninejad A, Dehghani S, Shahryari A, Saberi A. Organ-specific metastasis of breast cancer: molecular and cellular mechanisms underlying lung metastasis. Cell Oncol (Dordr) 2018; 41:123-140. [PMID: 29568985 DOI: 10.1007/s13402-018-0376-6] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Breast cancer (BC) is the most common type of cancer in women and the second cause of cancer-related mortality world-wide. The majority of BC-related deaths is due to metastasis. Bone, lung, brain and liver are the primary target sites of BC metastasis. The clinical implications and mechanisms underlying bone metastasis have been reviewed before. Given the fact that BC lung metastasis (BCLM) usually produces symptoms only after the lungs have been vastly occupied with metastatic tumor masses, it is of paramount importance for diagnostic and prognostic, as well as therapeutic purposes to comprehend the molecular and cellular mechanisms underlying BCLM. Here, we review current insights into the organ-specificity of BC metastasis, including the role of cancer stem cells in triggering BC spread, the traveling of tumor cells in the blood stream and their migration across endothelial barriers, their adaptation to the lung microenvironment and the initiation of metastatic colonization within the lung. CONCLUSIONS Detailed understanding of the mechanisms underlying BCLM will shed a new light on the identification of novel molecular targets to impede daunting pulmonary metastases in patients with breast cancer.
Collapse
|
Review |
7 |
103 |
4
|
Yousefi M, Dehghani S, Nosrati R, Ghanei M, Salmaninejad A, Rajaie S, Hasanzadeh M, Pasdar A. Current insights into the metastasis of epithelial ovarian cancer - hopes and hurdles. Cell Oncol (Dordr) 2020; 43:515-538. [PMID: 32418122 DOI: 10.1007/s13402-020-00513-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Ovarian cancer is the most lethal gynecologic cancer and the fifth leading cause of cancer-related mortality in women worldwide. Despite various attempts to improve the diagnosis and therapy of ovarian cancer patients, the survival rate for these patients is still dismal, mainly because most of them are diagnosed at a late stage. Up to 90% of ovarian cancers arise from neoplastic transformation of ovarian surface epithelial cells, and are usually referred to as epithelial ovarian cancer (EOC). Unlike most human cancers, which are disseminated through blood-borne metastatic routes, EOC has traditionally been thought to be disseminated through direct migration of ovarian tumor cells to the peritoneal cavity and omentum via peritoneal fluid. It has recently been shown, however, that EOC can also be disseminated through blood-borne metastatic routes, challenging previous thoughts about ovarian cancer metastasis. CONCLUSIONS Here, we review our current understanding of the most updated cellular and molecular mechanisms underlying EOC metastasis and discuss in more detail two main metastatic routes of EOC, i.e., transcoelomic metastasis and hematogenous metastasis. The emerging concept of blood-borne EOC metastasis has led to exploration of the significance of circulating tumor cells (CTCs) as novel and non-invasive prognostic markers in this daunting cancer. We also evaluate the role of tumor stroma, including cancer associated fibroblasts (CAFs), tumor associated macrophages (TAMs), endothelial cells, adipocytes, dendritic cells and extracellular matrix (ECM) components in EOC growth and metastasis. Lastly, we discuss therapeutic approaches for targeting EOC. Unraveling the mechanisms underlying EOC metastasis will open up avenues to the design of new therapeutic options. For instance, understanding the molecular mechanisms involved in the hematogenous metastasis of EOC, the biology of CTCs, and the detailed mechanisms through which EOC cells take advantage of stromal cells may help to find new opportunities for targeting EOC metastasis.
Collapse
|
Review |
5 |
82 |
5
|
Yousefi M, Dehghani S, Nosrati R, Zare H, Evazalipour M, Mosafer J, Tehrani BS, Pasdar A, Mokhtarzadeh A, Ramezani M. Aptasensors as a new sensing technology developed for the detection of MUC1 mucin: A review. Biosens Bioelectron 2019; 130:1-19. [PMID: 30716589 DOI: 10.1016/j.bios.2019.01.015] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 12/31/2018] [Accepted: 01/04/2019] [Indexed: 02/07/2023]
Abstract
Mucin 1 protein (MUC1) is a membrane-associated glycoprotein overexpressed in the majority of human malignancies and considered as a predominant protein biomarker in cancers. Owing to the crucial role of MUC1 in cancer dissemination and metastasis, detection and quantification of this biomarker is of great importance in clinical diagnostics. Today, there exist a wide variety of strategies for the determination of various types of disease biomarkers, especially MUC1. In this regard, aptamers, as artificial single-stranded DNA or RNA oligonucleotides with catalytic and receptor properties, have drawn lots of attention for the development of biosensing platforms. So far, various sensitivity-enhancement techniques in combination with a broad range of smart nanomaterials have integrated into the design of novel aptamer-based biosensors (aptasensors) to improve detection limit and sensitivity of analyte determination. This review article provides a brief classification and description of the research progresses of aptamer-based biosensors and nanobiosensors for the detection and quantitative determination of MUC1 based on optical and electrochemical platforms.
Collapse
|
Review |
6 |
78 |
6
|
Safarpour H, Dehghani S, Nosrati R, Zebardast N, Alibolandi M, Mokhtarzadeh A, Ramezani M. Optical and electrochemical-based nano-aptasensing approaches for the detection of circulating tumor cells (CTCs). Biosens Bioelectron 2019; 148:111833. [PMID: 31733465 DOI: 10.1016/j.bios.2019.111833] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 02/07/2023]
Abstract
More recently, detection of circulating tumor cells (CTCs) has been considered as an appealing prognostic and diagnostic approach for cancer patients. CTCs as a type of tumor-derived cells are secreted by the tumor and released into the blood circulation. Since the migration of CTCs is an early event in cancer progression, patients who still have tumor-free lymph nodes have to be well examined for the CTCs presence in their blood circulation. Nowadays, there is a broad range of detection methods available to identify CTCs. As artificial RNA oligonucleotides or single-stranded DNA with receptor and catalytic characteristics, aptamers have been standing out, owing to their target-induced conformational modifications, elevated stability, and target specificity to be implemented in biosensing techniques. To date, several sensitivity-enhancement methods alongside smart nanomaterials have been used for the creation of new aptasensors to address the limit of detection (LOD), and improve the sensitivity of numerous analyte identification methods. The present review article supports a focused overview of the recent studies in the identification and quantitative determination of CTCs by aptamer-based biosensors and nanobiosensors.
Collapse
|
Review |
6 |
55 |
7
|
Yousefi M, Ghaffari P, Nosrati R, Dehghani S, Salmaninejad A, Abarghan YJ, Ghaffari SH. Prognostic and therapeutic significance of circulating tumor cells in patients with lung cancer. Cell Oncol (Dordr) 2019; 43:31-49. [PMID: 31828552 DOI: 10.1007/s13402-019-00470-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Lung cancer is the second most common cancer and the main cause of cancer-related mortality worldwide. In spite of various efforts that have been made to facilitate the early diagnosis of lung cancer, most patients are diagnosed when the disease is already in stage IV, which is generally associated with the occurrence of distant metastases and a poor survival. Moreover, a large proportion of these patients will relapse after treatment, heralding the need for the stratification of lung cancer patients in addition to identifying those who are at a higher risk of relapse and, thus, require alternative and/or additional therapies. Recently, circulating tumor cells (CTCs) have been considered as valuable markers for the early diagnosis, prognosis and risk stratification of cancer patients, and they have been found to be able to predict the survival of patients with various types of cancer, including lung cancer. Additionally, the characterization of CTCs has recently provided fascinating insights into the heterogeneity of tumors, which may be instrumental for the development of novel targeted therapies. CONCLUSIONS Here we review our current understanding of the significance of CTCs in lung cancer metastasis. We also discuss prominent studies reporting the utility of enumeration and characterization of CTCs in lung cancer patients as prognostic and pharmacodynamic biomarkers for those who are at a higher risk of metastasis and drug resistance.
Collapse
|
Review |
6 |
37 |
8
|
Kordasht HK, Hassanpour S, Baradaran B, Nosrati R, Hashemzaei M, Mokhtarzadeh A, la Guardia MD. Biosensing of microcystins in water samples; recent advances. Biosens Bioelectron 2020; 165:112403. [PMID: 32729523 DOI: 10.1016/j.bios.2020.112403] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023]
Abstract
Safety and quality of water are significant matters for agriculture, animals and human health. Microcystins, as secondary metabolite of cyanobacteria (blue-green algae) and cyclic heptapeptide cyanotoxin, are one of the main marine toxins in continental aquatic ecosystems. More than 100 microcystins have been identified, of which MC-LR is the most important type due to its high toxicity and common detection in the environment. Climate change is an impressive factor with effects on cyanobacterial blooms as source of microcystins. The presence of this cyanotoxin in freshwater, drinking water, water reservoir supplies and food (vegetable, fish and shellfish) has created a common phenomenon in eutrophic freshwater ecosystems worldwide. International public health organizations have categorized microcystins as a kind of neurotoxin and carcinogen. There are several conventional methods for detection of microcystins. The limitations of traditional methods have encouraged the development of innovative methods for detection of microcystins. In recent years, the developed sensor techniques, with advantages, such as accuracy, reproducibility, portability and low cost, have attracted considerable attention. This review compares the well-known of biosensor types for detection of microcystins with a summary of their analytical performance.
Collapse
|
Review |
5 |
33 |
9
|
Nosrati R, Dehghani S, Karimi B, Yousefi M, Taghdisi SM, Abnous K, Alibolandi M, Ramezani M. Siderophore-based biosensors and nanosensors; new approach on the development of diagnostic systems. Biosens Bioelectron 2018; 117:1-14. [DOI: 10.1016/j.bios.2018.05.057] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/19/2018] [Accepted: 05/29/2018] [Indexed: 02/06/2023]
|
|
7 |
27 |
10
|
Nosrati R, Abnous K, Alibolandi M, Mosafer J, Dehghani S, Taghdisi SM, Ramezani M. Targeted SPION siderophore conjugate loaded with doxorubicin as a theranostic agent for imaging and treatment of colon carcinoma. Sci Rep 2021; 11:13065. [PMID: 34158526 PMCID: PMC8219724 DOI: 10.1038/s41598-021-92391-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/10/2021] [Indexed: 02/06/2023] Open
Abstract
Recently, the siderophores have opened new horizons in nanomedicine. The current study aimed to design a theranostic platform based on superparamagnetic iron oxide nanoparticles-pyoverdine (SPION/PVD) conjugates bound to MUC1 aptamer (MUC1Apt) and loaded with doxorubicin (DOX) as an anti-cancer agent. The SPION/PVD complex was covalently conjugated to MUC1Apt and loaded with DOX to prepare a targeted drug delivery system (SPION/PVD/MUC1Apt/DOX). The investigation of cellular cytotoxicity and uptake of formulations by MTT and flow cytometry in both MUC1 positive (C26) and MUC1 negative (CHO) cell lines revealed that MUC1Apt could improve both cellular uptake and toxicity in the C26 cell line. The evaluation of tumor-targeting activity by in vivo bio-distribution showed that the targeted formulation could enhance tumor inhibitory growth effect and survival rate in C26 tumor-bearing mice. Furthermore, the potential of synthesized SPION/PVD/MUC1Apt/DOX complex as diagnostic agents was investigated by magnetic resonance imaging (MRI) which improved the contrast of tumor site in MRI. Our findings confirm that aptamer-targeted PVD chelated the SPION as a diagnostic agent and loaded with DOX as a chemotherapeutic drug, would be beneficial as a novel theranostic platform.
Collapse
|
Journal Article |
4 |
24 |
11
|
Golichenari B, Nosrati R, Farokhi-Fard A, Abnous K, Vaziri F, Behravan J. Nano-biosensing approaches on tuberculosis: Defy of aptamers. Biosens Bioelectron 2018; 117:319-331. [PMID: 29933223 DOI: 10.1016/j.bios.2018.06.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/04/2018] [Accepted: 06/10/2018] [Indexed: 12/12/2022]
Abstract
Tuberculosis is a major global health problem caused by the bacterium Mycobacterium tuberculosis (Mtb) complex. According to WHO reports, 53 million TB patients died from 2000 to 2016. Therefore, early diagnosis of the disease is of great importance for global health care programs. The restrictions of traditional methods have encouraged the development of innovative methods for rapid, reliable, and cost-effective diagnosis of tuberculosis. In recent years, aptamer-based biosensors or aptasensors have drawn great attention to sensitive and accessible detection of tuberculosis. Aptamers are small short single-stranded molecules of DNA or RNA that fold to a unique form and bind to targets. Once combined with nanomaterials, nano-scale aptasensors provide powerful analytical platforms for diagnosing of tuberculosis. Various groups designed and studied aptamers specific for the whole cells of M. tuberculosis, mycobacterial proteins and IFN-γ for early diagnosis of TB. Advantages such as high specificity and strong affinity, potential for binding to a larger variety of targets, increased stability, lower costs of synthesis and storage requirements, and lower probability of contamination make aptasensors pivotal alternatives for future TB diagnostics. In recent years, the concept of SOMAmer has opened new horizons in high precision detection of tuberculosis biomarkers. This review article provides a description of the research progresses of aptamer-based and SOMAmer-based biosensors and nanobiosensors for the detection of tuberculosis.
Collapse
|
Review |
7 |
23 |
12
|
Owlia P, Nosrati R, Alaghehbandan R, Lari AR. Antimicrobial susceptibility differences among mucoid and non-mucoid Pseudomonas aeruginosa isolates. GMS HYGIENE AND INFECTION CONTROL 2014; 9:Doc13. [PMID: 25152858 PMCID: PMC4141634 DOI: 10.3205/dgkh000233] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pseudomonas aeruginosa is one of the most important opportunistic bacteria, causing a wide variety of infections particularly in immunocompromised patients. The extracellular glycocalyx is produced in copious amounts by mucoid strains of P. aeruginosa. Mucoid and non-mucoid P. aeruginosa strains show some differences in their antimicrobial susceptibility pattern. The aim of this study was to investigate the frequency of mucoid and non-mucoid types and their antimicrobial susceptibility patterns isolated from Milad and Mostafa Khomeini Hospital in Tehran, Iran. One hundred P. aeruginosa isolates were collected which all were confirmed by conventional biochemical tests and PCR assay using specific primers for oprI and oprL lipoproteins. Mucoid and non-mucoid types of isolates were determined by culturing isolates on BHI agar containing Congo red and Muir mordant staining method. The susceptibility pattern of isolates against 23 different antibiotics was assessed using MIC sensititre susceptibility plates. Fifty of 100 of isolates were mucoid type, of which 14 isolates were from Mostafa Khomeini Hospital. Frequency of mucoid type of P. aeruginosa in Mostafa Khomeini hospital (70%) was higher than that seen in Milad hospital (45%). The statistical analysis of MICs results showed significant differences in antimicrobial resistance among mucoid and non-mucoid types (non mucoid strains showed more resistance against tested antibiotics). This may be due to the tendency of some antibiotics to attach to extracellular glycocalyx of mucoid strains.
Collapse
|
Journal Article |
11 |
22 |
13
|
Golichenari B, Nosrati R, Farokhi-Fard A, Faal Maleki M, Gheibi Hayat SM, Ghazvini K, Vaziri F, Behravan J. Electrochemical-based biosensors for detection of Mycobacterium tuberculosis and tuberculosis biomarkers. Crit Rev Biotechnol 2019; 39:1056-1077. [DOI: 10.1080/07388551.2019.1668348] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
|
6 |
19 |
14
|
Dehghani S, Alibolandi M, Tehranizadeh ZA, Oskuee RK, Nosrati R, Soltani F, Ramezani M. Self-assembly of an aptamer-decorated chimeric peptide nanocarrier for targeted cancer gene delivery. Colloids Surf B Biointerfaces 2021; 208:112047. [PMID: 34418722 DOI: 10.1016/j.colsurfb.2021.112047] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 07/17/2021] [Accepted: 08/14/2021] [Indexed: 12/20/2022]
Abstract
In this study, we developed a peptide-based non-viral carrier decorated with aptamer to overcome the specific gene delivery barriers. The carrier (KLN/Apt) was designed to contain multiple functional segments, including 1) two tandem repeating units of low molecular weight protamine (LMWP) to condense DNA into stable nanosize particles and protect it from enzymatic digestion, 2) AS1411 aptamer as targeting moiety to target nucleolin and promote carrier internalization, 3) a synthetic pH-sensitive fusogenic peptide (KALA) for disrupting endosomal membranes and enhancing cytosol escape of the nanoparticles, and 4) a nuclear localization signal (NLS) for active cytoplasmic trafficking and nuclear delivery of DNA. The obtained results revealed the developed carrier capacity in terms of specific cell targeting, overcoming cellular gene delivery barriers, and mediating efficient gene transfection. The KLN/pDNA/aptamer nanoparticles offer remarkable potential for the conceptual design and formation of promising multi-functionalized carriers towards the most demanding therapeutic applications.
Collapse
|
|
4 |
16 |
15
|
Kazemi Y, Dehghani S, Nosrati R, Taghdisi SM, Abnous K, Alibolandi M, Ramezani M. Recent progress in the early detection of cancer based on CD44 biomarker; nano-biosensing approaches. Life Sci 2022; 300:120593. [PMID: 35500679 DOI: 10.1016/j.lfs.2022.120593] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 01/06/2023]
Abstract
CD44 is a cell matrix adhesion molecule overexpressed on the cell surfaces of the major cancers. CD44 as a cancer-related biomarker has an essential role in the invasion and metastasis of cancer. The detection and quantification of CD44 can provide essential information useful for clinical cancer diagnosis. In this regard, biosensors with sensitive and specific properties, give prominence to the development of CD44 detection platforms. To date, various aptamer-based sensitive-enhancers together with nanoparticles (NPs) have been combined into the biosensors systems to provide an innovative biosensing method (aptasensors/nano-aptasensors) with substantially improved detection limit. This review article discusses the recent advances in the field of biosensors, nanobiosensors, and aptasensors for the quantitative determination of CD44 and the detection of CD44-expressing cancer cells.
Collapse
|
Review |
3 |
16 |
16
|
Golichenari B, Velonia K, Nosrati R, Nezami A, Farokhi-Fard A, Abnous K, Behravan J, Tsatsakis AM. Label-free nano-biosensing on the road to tuberculosis detection. Biosens Bioelectron 2018; 113:124-135. [DOI: 10.1016/j.bios.2018.04.059] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/14/2018] [Accepted: 04/28/2018] [Indexed: 12/16/2022]
|
|
7 |
15 |
17
|
Nezami A, Dehghani S, Nosrati R, Eskandari N, Taghdisi SM, Karimi G. Nanomaterial-based biosensors and immunosensors for quantitative determination of cardiac troponins. J Pharm Biomed Anal 2018; 159:425-436. [DOI: 10.1016/j.jpba.2018.07.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 01/14/2023]
|
|
7 |
15 |
18
|
Nosrati R, Golichenari B, Nezami A, Taghdisi SM, Karimi B, Ramezani M, Abnous K, Shaegh SAM. Helicobacter pylori point-of-care diagnosis: Nano-scale biosensors and microfluidic systems. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.10.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
|
8 |
13 |
19
|
Cheraghi S, Pourgholi L, Shafaati M, Fesharaki SH, Jalali A, Nosrati R, Boroumand MA. Analysis of virulence genes and accessory gene regulator (agr) types among methicillin-resistant Staphylococcus aureus strains in Iran. J Glob Antimicrob Resist 2017; 10:315-320. [PMID: 28735055 DOI: 10.1016/j.jgar.2017.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 05/28/2017] [Accepted: 06/06/2017] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Methicillin-resistant Staphylococcus aureus (MRSA) strains are a major cause of hospital-acquired infections and are considered a serious public health concern. MRSA isolates have abundant virulence factors that are the basis for their pathogenicity. The accessory gene regulator (agr) locus co-ordinates the expression of these genes. The aim of this study was to determine the presence and frequency of various virulence genes encoding enterotoxins and adhesins as well as to identify agr specificity groups in MRSA isolates. METHODS This descriptive study included a total of 296 MRSA strains isolated from clinical samples collected in Tehran Heart Center (Tehran, Iran) between October 2004 and March 2013. Following DNA extraction, PCR-based assays were used to evaluate the presence of various virulence genes. IBM SPSS Statistics for Windows v.21.0 was used for statistical analysis. RESULTS The results indicated that the most frequent toxin genes were see (120/296; 40.5%), followed by sea (79/296; 26.7%); the other genes were encoded less frequently. The presence of seb and seh was not found in any of the isolates. Furthermore, the most frequent adhesin genes were clfA, spa, cna, map/eap and bbp, found in 281 (94.9%), 275 (92.9%), 267 (90.2%), 265 (89.5%) and 264 (89.2%) isolates, respectively. The majority of isolates belonged to agr group I (53.0%), followed by agr group III (1.4%). None of the isolates belonged to agr group II. CONCLUSIONS The relatively high frequency of various virulence genes suggests the emergence and pathogenic potential of MRSA isolates containing these genes in the study area.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
12 |
20
|
Kamali H, Golmohammadzadeh S, Zare H, Nosrati R, Fereidouni M, Safarpour H. The recent advancements in the early detection of cancer biomarkers by DNAzyme-assisted aptasensors. J Nanobiotechnology 2022; 20:438. [PMID: 36195928 PMCID: PMC9531510 DOI: 10.1186/s12951-022-01640-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 09/20/2022] [Indexed: 11/10/2022] Open
Abstract
Clinical diagnostics rely heavily on the detection and quantification of cancer biomarkers. The rapid detection of cancer-specific biomarkers is of great importance in the early diagnosis of cancers and plays a crucial role in the subsequent treatments. There are several different detection techniques available today for detecting cancer biomarkers. Because of target-related conformational alterations, high stability, and target variety, aptamers have received considerable interest as a biosensing system component. To date, several sensitivity-enhancement strategies have been used with a broad spectrum of nanomaterials and nanoparticles (NPs) to improve the limit and sensitivity of analyte detection in the construction of innovative aptasensors. The present article aims to outline the research developments on the potential of DNAzymes-based aptasensors for cancer biomarker detection.
Collapse
|
Review |
3 |
8 |
21
|
Eshaghi E, Nosrati R, Owlia P, Malboobi MA, Ghaseminejad P, Ganjali MR. Zinc solubilization characteristics of efficient siderophore-producing soil bacteria. IRANIAN JOURNAL OF MICROBIOLOGY 2019. [DOI: 10.18502/ijm.v11i5.1961] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background and Objectives: Iron and zinc are two essential micro-nutrients for plant growth and development. Therefore, isolation of siderophores-producing and zinc-solubilizing rhizobacteria involved in bio-availability of these elements is of great interest. Materials and Methods: In this study, soil samples collected from slightly alkaline soil types were screened for high levels of siderophore secretion and zinc solubilization. Results: Among positive colonies, three isolates, named F21A, F37 and F38, were able to secrete siderophore at high levels, ranged between 200 and 300 µM/liter. A close association was observed between siderophore production capability and growth rate as an indicator of active metabolism. Siderophore production was closely correlated with the level of zinc ion released into the medium as well. All three siderophore producing isolates were able to withstand temperature as high as 37°C, high concentration of NaCl (up to 2.5%) and a wide range of initial pH from 6 to 9 while hydrolyzing Zn compounds actively. One of the isolates, F21A, tolerated the presence of 200 mgl-1 of zinc. Biochemical and molecular characteristics are indicative that these isolates are Pseudomonas japonica. As experienced in a greenhouse experiment, inoculation with the F21A and F37 isolates significantly increase the plants height, fresh and dry weight of corn with compared to control. Conclusion: These findings demonstrated that the potential of P . japonica strains as plants growth promoting rhizobacteria (PGPR) in iron and zinc deficient soils.
Collapse
|
|
6 |
6 |
22
|
Rahmani F, Naderpour S, Nejad BG, Rahimzadegan M, Ebrahimi ZN, Kamali H, Nosrati R. The recent insight in the release of anticancer drug loaded into PLGA microspheres. Med Oncol 2023; 40:229. [PMID: 37410278 DOI: 10.1007/s12032-023-02103-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/21/2023] [Indexed: 07/07/2023]
Abstract
Cancer is a series of diseases leading to a high rate of death worldwide. Microspheres display specific characteristics that make them appropriate for a variety of biomedical purposes such as cancer therapy. Newly, microspheres have the potentials to be used as controlled drug release carriers. Recently, PLGA-based microspheres have attracted exceptional attention relating to effective drug delivery systems (DDS) because of their distinctive properties for a simple preparation, biodegradability, and high capability of drug loading which might be increased drug delivery. In this line, the mechanisms of controlled drug release and parameters that influence the release features of loaded agents from PLGA-based microspheres should be mentioned. The current review is focused on the new development of the release features of anticancer drugs, which are loaded into PLGA-based microspheres. Consequently, future perspective and challenges of anticancer drug release from PLGA-based microspheres are mentioned concisely.
Collapse
|
Review |
2 |
2 |
23
|
Nosrati R, Lam WW, Paudel M, Pejović-Milić A, Morton G, Stanisz GJ. Feasibility of using a single MRI acquisition for fiducial marker localization and synthetic CT generation towards MRI-only prostate radiation therapy treatment planning. Biomed Phys Eng Express 2021; 7. [PMID: 34034242 DOI: 10.1088/2057-1976/ac0501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/25/2021] [Indexed: 11/12/2022]
Abstract
Purpose.To investigate the feasibility of using a single MRI acquisition for fiducial marker identification and synthetic CT (sCT) generation towards MRI-only treatment planning for prostate external beam radiation therapy (EBRT).Methods.Seven prostate cancer patients undergoing EBRT, each with three implanted gold fiducial markers, participated in this study. In addition to the planning CT scan, all patients were scanned on a 3 T MR scanner with a 3D double-echo gradient echo (GRE) sequence. Quantitative susceptibility mapping (QSM) was performed for marker localization. QSM-derived marker positions were compared to those from CT. The bulk density assignment technique for sCT generation was adopted. The magnitude GRE images were segmented into muscle, bone, fat, and air using a combination of unsupervised intensity-based classification of soft tissue and convolutional neural networks (CNN) for bone segmentation.Results.All implanted markers were visualized and accurately identified (average error: 0.7 ± 0.5 mm). QSM generated distinctive contrast for hemorrhage, calcifications, and gold fiducial markers. The estimated susceptibility/HU values on QSM/CT for gold and calcifications were 31.5 ± 2.9 ppm/1220 ± 100 HU and 14.6 ± 0.9 ppm/440 ± 100 HU, respectively. The intensity-based soft tissue classification resulted in an average Dice score of 0.97 ± 0.02; bone segmentation using CNN resulted in an average Dice score of 0.93 ± 0.03.Conclusion.This work indicates the feasibility of simultaneous fiducial marker identification and sCT generation using a single MRI acquisition. Future works includes evaluation of the proposed method in a large cohort of patients with optimized acquisition parameters as well as dosimetric evaluations.
Collapse
|
Journal Article |
4 |
1 |
24
|
Vasilescu S, Lorimer J, Horta F, Warkiani M, Nosrati R. P-084 Novel Single-Step Microfluidic Chamber Outperforms Density Gradient Centrifugation in Post-Selection Motility And DNA Integrity. Hum Reprod 2022. [DOI: 10.1093/humrep/deac107.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Study question
Does sperm selection by a novel single-step microfluidic chamber offer effective selection of motile sperm without DNA damage compared with Density Gradient Centrifugation (DGC)?
Summary answer
The novel single-step microfluidic chamber is a good alternative to conventional DGC, increasing DNA integrity and progressive sperm motility in recovered sperm populations.
What is known already
High levels of sperm DNA fragmentation (SDF) can have negative impacts on reproductive outcomes such as clinical pregnancy and miscarriage rates. Microfluidic sperm selection technologies have been developed to select sperm with lower level of SDF and higher levels of motility to improve Assisted Reproductive technology (ART) outcomes. While these methods have achieved variable success, very few have proven clinically relevant and fail to perform selection in a robust and simple methodology that can be adopted in clinics.
Study design, size, duration
A prospective cohort study including 21 donated semen samples processed in 2021. Each sample was split to perform DGC and microfluidic sperm selections side-by-side. Laboratory outcomes were evaluated using semen parameters pre and post processing and included concentration, motility, and DNA fragmentation index (DFI).
Participants/materials, setting, methods
The study was performed using samples donated at the Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia. DGC (10 minutes at 300g and 5 minutes wash at 300g) and microfluidic sperm selection (one-step sperm selection;15-minute incubation for selection) were performed with Sydney IVF 80/40 gradients and gamete buffers, respectively. DFI was assessed by chromatin sperm dispersion assay (SCD). Results were analysed by Friedman’s test and differences were considered significant when p-value < 0.05.
Main results and the role of chance
For the unprocessed raw semen, the starting DFI values varied from 3.0 to 23.3% with an average of 11.38% ± 5.51 and motility varied between 25.3% and 86.7% with an average of 56.42% ± 18.57. The device consistently outperformed DGC in all 21 samples for DFI (0.94% ± 1.12 vs 4.87% ±3.69, P = 0.0012) and in 20 of the 21 samples for motility post-processing DGC (90.88% ± 6.8 vs 73.58% ± 14.97, P = 0.0061). The average concentrations of the raw, DGC, and microfluidic sperm samples were 94.5, 74.12, and 3.55 million sperm/mL, respectively. Thus, both DGC and the microfluidic device showed improvements in SDF, motility, and concentration over the raw sample. However, the microfluidic device significantly outperformed DGC in terms of percentage SDF and motility, indicating its potential for clinical implementation.
Limitations, reasons for caution
This cohort study did not include samples from infertile patients. Furthermore, the effect of each sperm selection methods on reproductive outcomes was not a part of the study. A larger number of samples across a range of clinically infertile samples is required to fully characterise the microfluidic devices efficacy.
Wider implications of the findings
The microfluidic device we report here has the potential to become a new tool to improve the efficacy and consistency of sperm selections. When compared to DGC it offers improved sperm motility and DNA integrity from a platform that is simple to use and less skill-based than conventional methods.
Trial registration number
not applicable
Collapse
|
|
3 |
|
25
|
Horta F, Newman H, Vargas-ordaz E, Cadarso V, Nosrati R, Neild A, Vollenhoven B, Mercer S, Catt S. P-237 Non-invasive metabolic live cell imaging of early embryo development using adapted confocal microscopy; a safety study. Hum Reprod 2022. [DOI: 10.1093/humrep/deac107.227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Study question
Is it safe to use metabolic imaging to measure nicotinamide adenine dinucleotide (NADH) associated auto-fluorescence during embryo development using adapted confocal microscopy?
Summary answer
Non-invasive metabolic imaging is safe as no differences were observed between controls and illuminated embryos in terms of embryo development, blastocyst formation and implantation potential.
What is known already
Developing non-invasive methods that are reliable to assess oocyte and embryo quality has been a significant aim for assisted reproductive technologies. Changes in metabolic activity could lead to cell death or abnormal embryo development and low implantation potential. This could potentially be predicted by incorporating non-invasive measurements of metabolism. Metabolic imaging in embryos has been investigated through complex methodologies, however, scientific evidence for its utility during embryo development using simple technology remains unexplored. Measurements of metabolic activity could be a useful tool as the auto-fluorescence of molecules such as NADH is a straightforward representation of mitochondrial function.
Study design, size, duration
Super-ovulated female mice (n = 30) were subjected to mating with 10 males. In-vivo produced embryos collected at the 2-cell stage were divided in control group (n = 151), sham control group (n = 151) and illuminated group (n = 152). Illuminated embryos were assessed for NADH levels during embryo development every 3 hours using arbitrary units of autofluorescence (AU). Produced blastocysts were assessed for total cell and inner-cell-mass (ICM) number (Oct4 immuno-staining) and implantation potential through outgrowth assays in separate experiments.
Participants/materials, setting, methods
F1 (CBA/C57Bl6) mouse strain was used. NADH auto-fluorescence levels were measured during embryo development using adapted confocal microcopy (Olympus FV1200). A confocal Z-stacking function was used to record 15 focal planes using a 20x/0.95NA air objective of entire embryos, opening the confocal pinhole system completely. Then, images were collected and analysed using FIJI software (version: 2.0.0-rc-69/1.52n;ImageJ). Blastocyst cell number, formation rates and outgrowth rates for 4 days post blastocyst formation were compared between study groups.
Main results and the role of chance
Embryo culture experiments showed no significant differences in blastocyst formation rates between study groups (Control: 71.7%; Sham: 64.9%; Illuminated 71.7%; p > 0.05). Similarly, the total number of cells (Control: 82.9±5.6; Sham: 76.5±3.3; Illuminated: 77.1±4.2; ± Standard error of mean [SEM]) and ICM cells (Control: 10.8±1.3; Sham: 9.4±0.7; Illuminated: 11.9±0.8; ± SEM) did not differ between groups (p > 0.05). Outgrowth assays presented similar outgrowth areas during day5 to day8 post-blastocyst development between study groups (p > 0.05). Illuminated embryos presented significantly different NADH activity levels during embryo development, particularly between the 2-cell stage (987.1±36.2AU), morulae stage (1226±31.5AU) and blastocyst stage (649±42.9AU; ± SEM; p < 0.05). Embryos that did not reach the blastocyst stage presented a significantly different NADH activity profile during embryo development compared to those that did(p < 0.05). Additionally, abnormal embryos also presented significantly decreased NADH activity levels at the 2-cell stage (Normal: 987.1±36.2; abnormal: 726.9±121.7AU; p < 0.05) to the morulae stage (Normal: 1226±31.5; Abnormal:893.3±189AU; p < 0.05). Our study indicates that measuring NADH activity levels during early embryo development present no negative effects in embryo developmental rates, blastocyst formation and implantation potential. Thus, non-invasive measurements of NADH could be applied to determine embryo metabolic activity during embryo development using simple technology and imaging techniques.
Limitations, reasons for caution
The study was conducted using a mouse model focused in early embryo development and implantation potential. Thus, studies on live birth are required to fully assess safety to further validate potential wider applications. Validation in ageing models is also required to assess potential applications for embryo selection.
Wider implications of the findings
Non-invasive measurements of metabolic activity could be applied to determine embryo metabolic activity using simple and safe technology. Further applications could link the use of simple non-invasive metabolic imaging with the latest time-lapse technology and artificial intelligence applications.
Trial registration number
N/A
Collapse
|
|
3 |
|