1
|
Norwood N, Moore TM, Dean DA, Bhattacharjee R, Li M, Stevens T. Store-operated calcium entry and increased endothelial cell permeability. Am J Physiol Lung Cell Mol Physiol 2000; 279:L815-24. [PMID: 11053015 DOI: 10.1152/ajplung.2000.279.5.l815] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We hypothesized that myosin light chain kinase (MLCK) links calcium release to activation of store-operated calcium entry, which is important for control of the endothelial cell barrier. Acute inhibition of MLCK caused calcium release from inositol trisphosphate-sensitive calcium stores and prevented subsequent activation of store-operated calcium entry by thapsigargin, suggesting that MLCK serves as an important mechanism linking store depletion to activation of membrane calcium channels. Moreover, in voltage-clamped single rat pulmonary artery endothelial cells, thapsigargin activated an inward calcium current that was abolished by MLCK inhibition. F-actin disruption activated a calcium current, and F-actin stabilization eliminated the thapsigargin-induced current. Thapsigargin increased endothelial cell permeability in the presence, but not in the absence, of extracellular calcium, indicating the importance of calcium entry in decreasing barrier function. Although MLCK inhibition prevented thapsigargin from stimulating calcium entry, it did not prevent thapsigargin from increasing permeability. Rather, inhibition of MLCK activity increased permeability that was especially prominent in low extracellular calcium. In conclusion, MLCK links store depletion to activation of a store-operated calcium entry channel. However, inhibition of calcium entry by MLCK is not sufficient to prevent thapsigargin from increasing endothelial cell permeability.
Collapse
|
|
25 |
57 |
2
|
Bhattacharjee R, Goswami S, Dudiki T, Popkie AP, Phiel CJ, Kline D, Vijayaraghavan S. Targeted disruption of glycogen synthase kinase 3A (GSK3A) in mice affects sperm motility resulting in male infertility. Biol Reprod 2015; 92:65. [PMID: 25568307 DOI: 10.1095/biolreprod.114.124495] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The signaling enzyme glycogen synthase kinase 3 (GSK3) exists as two isoforms-GSK3A and GSK3B. Protein phosphorylation by GSK3 has important signaling roles in several cells. In our past work, we found that both isoforms of GSK3 are present in mouse sperm and that catalytic GSK3 activity correlates with motility of sperm from several species. Here, we examined the role of Gsk3a in male fertility using a targeted gene knockout (KO) approach. The mutant mice are viable, but have a male infertility phenotype, while female fertility is unaffected. Testis weights of Gsk3a(-/-) mice are normal and sperm are produced in normal numbers. Although spermatogenesis is apparently unimpaired, sperm motility parameters in vitro are impaired. In addition, the flagellar waveform appears abnormal, characterized by low amplitude of flagellar beat. Sperm ATP levels were lower in Gsk3a(-/-) mice compared to wild-type animals. Protein phosphatase PP1 gamma2 protein levels were unaltered, but its catalytic activity was elevated in KO sperm. Remarkably, tyrosine phosphorylation of hexokinase and capacitation-associated changes in tyrosine phosphorylation of proteins are absent or significantly lower in Gsk3a(-/-) sperm. The GSK3B isoform was present and unaltered in testis and sperm of Gsk3a(-/-) mice, showing the inability of GSK3B to substitute for GSK3A in this context. Our studies show that sperm GSK3A is essential for male fertility. In addition, the GSK3A isoform, with its highly conserved glycine-rich N terminus in mammals, may have an isoform-specific role in its requirement for normal sperm motility and fertility.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
54 |
3
|
Kim J, Bhattacharjee R, Snow AB, Capdevila OS, Kheirandish-Gozal L, Gozal D. Myeloid-related protein 8/14 levels in children with obstructive sleep apnoea. Eur Respir J 2009; 35:843-50. [DOI: 10.1183/09031936.00075409] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
|
16 |
54 |
4
|
Kheirandish-Gozal L, Serpero LD, Dayyat E, Kim J, Goldman JL, Snow A, Bhattacharjee R, Gozal D. Corticosteroids suppress in vitro tonsillar proliferation in children with obstructive sleep apnoea. Eur Respir J 2008; 33:1077-84. [PMID: 19047310 DOI: 10.1183/09031936.00130608] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Intranasal corticosteroids (CS) are potentially useful interventions for children with obstructive sleep apnoea (OSA), and may reduce lymphadenoid tissue size in the upper airway. The present authors hypothesised that CS would reduce cellular proliferation and the production of pro-inflammatory cytokines in a tonsil/adenoid mixed-cell culture system. Dissociated tonsils or adenoids harvested intra-operatively from children with polysomnographically diagnosed OSA were cultured in control medium (CO) or after stimulation with lipopolysaccharide and concanavalin A (STIM), and incubated with dexamethasone (DEX; 10(-5)-10(-7) M), fluticasone (FLU; 10(-5)-10(-14) M) and budesonide (BUD; 10(-4)-10(-14) M). Proliferation and apoptosis were assessed, and supernatants were assayed for the cytokines tumour necrosis factor (TNF)-alpha, interleukin (IL)-6 and IL-8. STIM increased tonsillar and adenoidal proliferation compared with CO (1,976+/-133 versus 404+/-69 counts min(-1); n = 54). DEX, FLU and BUD reduced cellular proliferation rates, and exhibited dose-dependent effects, with the potency being FLU>BUD>DEX (n = 25 per group). Conversely, CS increased cellular apoptosis (n = 20 per group). Furthermore, TNF-alpha, IL-8 and IL-6 concentrations in the supernatant were increased by STIM, and markedly reduced by all CS (n = 48 per group). Whole tissue cell cultures of adenoids and tonsils provide a useful approach for in vitro assessment of therapeutic efficacy of corticosteroids in the management of lymphadenoid hypertrophy that underlies obstructive sleep apnoea in children.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
51 |
5
|
Bhattacharjee R, Dey T, Kumar L, Kar S, Sarkar R, Ghorai M, Malik S, Jha NK, Vellingiri B, Kesari KK, Pérez de la Lastra JM, Dey A. Cellular landscaping of cisplatin resistance in cervical cancer. Biomed Pharmacother 2022; 153:113345. [PMID: 35810692 DOI: 10.1016/j.biopha.2022.113345] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 12/11/2022] Open
Abstract
Cervical cancer (CC) caused by human papillomavirus (HPV) is one of the largest causes of malignancies in women worldwide. Cisplatin is one of the widely used drugs for the treatment of CC is rendered ineffective owing to drug resistance. This review highlights the cause of resistance and the mechanism of cisplatin resistance cells in CC to develop therapeutic ventures and strategies that could be utilized to overcome the aforementioned issue. These strategies would include the application of nanocarries, miRNA, CRIPSR/Cas system, and chemotherapeutics in synergy with cisplatin to not only overcome the issues of drug resistance but also enhance its anti-cancer efficiency. Moreover, we have also discussed the signaling network of cisplatin resistance cells in CC that would provide insights to develop therapeutic target sites and inhibitors. Furthermore, we have discussed the role of CC metabolism on cisplatin resistance cells and the physical and biological factors affecting the tumor microenvironments.
Collapse
|
Review |
3 |
45 |
6
|
Bhattacharjee R, Kumar L, Mukerjee N, Anand U, Dhasmana A, Preetam S, Bhaumik S, Sihi S, Pal S, Khare T, Chattopadhyay S, El-Zahaby SA, Alexiou A, Koshy EP, Kumar V, Malik S, Dey A, Proćków J. The emergence of metal oxide nanoparticles (NPs) as a phytomedicine: A two-facet role in plant growth, nano-toxicity and anti-phyto-microbial activity. Biomed Pharmacother 2022; 155:113658. [PMID: 36162370 DOI: 10.1016/j.biopha.2022.113658] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/02/2022] Open
Abstract
Anti-microbial resistance (AMR) has recently emerged as an area of high interest owing to the rapid surge of AMR phenotypes. Metal oxide NPs (MeONPs) have been identified as novel phytomedicine and have recently peaked a lot of interest due to their potential applications in combating phytopathogens, besides enhancing plant growth and yields. Numerous MeONPs (Ti2O, MgO, CuO, Ag2O, SiO2, ZnO, and CaO) have been synthesized and tested to validate their antimicrobial roles without causing toxicity to the cells. This review discusses the application of the MeONPs with special emphasis on anti-microbial activities in agriculture and enlists how cellular toxicity caused through reactive oxygen species (ROS) production affects plant growth, morphology, and viability. This review further highlights the two-facet role of silver and copper oxide NPs including their anti-microbial applications and toxicities. Furthermore, the factor modulating nanotoxicity and immunomodulation for cytokine production has also been discussed. Thus, this article will not only provide the researchers with the potential bottlenecks but also emphasizes a comprehensive outline of breakthroughs in the applicability of MeONPs in agriculture.
Collapse
|
Review |
3 |
33 |
7
|
Bhattacharjee R, Goswami S, Dey S, Gangoda M, Brothag C, Eisa A, Woodgett J, Phiel C, Kline D, Vijayaraghavan S. Isoform-specific requirement for GSK3α in sperm for male fertility. Biol Reprod 2019; 99:384-394. [PMID: 29385396 DOI: 10.1093/biolre/ioy020] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/22/2018] [Indexed: 12/28/2022] Open
Abstract
Glycogen synthase kinase 3 (GSK3) is a highly conserved protein kinase regulating key cellular functions. Its two isoforms, GSK3α and GSK3β, are encoded by distinct genes. In most tissues the two isoforms are functionally interchangeable, except in the developing embryo where GSK3β is essential. One functional allele of either of the two isoforms is sufficient to maintain normal tissue functions. Both GSK3 isoforms, present in sperm from several species including human, are suggested to play a role in epididymal initiation of sperm motility. Using genetic approaches, we have tested requirement for each of the two GSK3 isoforms in testis and sperm. Both GSK3 isoforms are expressed at high levels during the onset of spermatogenesis. Conditional knockout of GSK3α, but not GSK3β, in developing testicular germ cells in mice results in male infertility. Mice lacking one allele each of GSK3α and GSK3β are fertile. Despite overlapping expression and localization in differentiating spermatids, GSK3β does not substitute for GSK3α. Loss of GSK3α impairs sperm hexokinase activity resulting in low ATP levels. Net adenine nucleotide levels in caudal sperm lacking GSK3α resemble immature caput epididymal sperm. Changes in the association of the protein phosphatase PP1γ2 with its protein interactors occurring during epididymal sperm maturation is impaired in sperm lacking GSK3α. The isoform-specific requirement for GSK3α is likely due to its specific binding partners in the sperm principal piece. Testis and sperm are unique in their specific requirement of GSK3α for normal function and male fertility.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
29 |
8
|
Bhattacharjee R, Prabhakar N, Kumar L, Bhattacharjee A, Kar S, Malik S, Kumar D, Ruokolainen J, Negi A, Jha NK, Kesari KK. Crosstalk between long noncoding RNA and microRNA in Cancer. Cell Oncol (Dordr) 2023; 46:885-908. [PMID: 37245177 PMCID: PMC10356678 DOI: 10.1007/s13402-023-00806-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2023] [Indexed: 05/29/2023] Open
Abstract
miRNAs and lncRNAs play a central role in cancer-associated gene regulations. The dysregulated expression of lncRNAs has been reported as a hallmark of cancer progression, acting as an independent prediction marker for an individual cancer patient. The interplay of miRNA and lncRNA decides the variation of tumorigenesis that could be mediated by acting as sponges for endogenous RNAs, regulating miRNA decay, mediating intra-chromosomal interactions, and modulating epigenetic components. This paper focuses on the influence of crosstalk between lncRNA and miRNA on cancer hallmarks such as epithelial-mesenchymal transition, hijacking cell death, metastasis, and invasion. Other cellular roles of crosstalks, such as neovascularization, vascular mimicry, and angiogenesis were also discussed. Additionally, we reviewed crosstalk mechanism with specific host immune responses and targeting interplay (between lncRNA and miRNA) in cancer diagnosis and management.
Collapse
|
Review |
2 |
24 |
9
|
Theadom A, Barker-Collo S, Jones KM, Parmar P, Bhattacharjee R, Feigin VL. MLC901 (NeuroAiD II™) for cognition after traumatic brain injury: a pilot randomized clinical trial. Eur J Neurol 2018; 25:1055-e82. [PMID: 29611892 PMCID: PMC6055867 DOI: 10.1111/ene.13653] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 03/19/2018] [Indexed: 11/28/2022]
Abstract
Background and purpose Treatments to facilitate recovery after traumatic brain injury (TBI) are urgently needed. We conducted a 9‐month pilot, randomized placebo‐controlled clinical trial to examine the safety and potential effects of the herbal supplement MLC901 (NeuroAiD II™) on cognitive functioning following TBI. Methods Adults aged 18–65 years at 1–12 months after mild or moderate TBI were randomized to receive MLC901 (0.8 g capsules 3 times daily) or placebo for 6 months. The primary outcome was cognitive functioning as assessed by the CNS Vital Signs online neuropsychological test. Secondary outcomes included the Cognitive Failures Questionnaire, the Rivermead Post‐concussion Symptom Questionnaire (neurobehavioral sequelae), Quality of Life after Brain Injury, Hospital Anxiety and Depression Scale, Modified Fatigue Impact Scale and extended Glasgow Outcome Scale (physical disability). Assessments were completed at baseline and at 3‐, 6‐ and 9‐month follow‐up. Linear mixed‐effects models were conducted, with the primary outcome time‐point of 6 months. Results A total of 78 participants [mean age 37.5 ± 14.8 years, 39 (50%) female] were included in the analysis. Baseline variables were similar between groups (treatment group, n = 36; control group, n = 42). Linear mixed‐effects models controlling for time, group allocation, repeated measurements, adherence and baseline assessment scores revealed significant improvements in complex attention (P = 0.04, d = 0.6) and executive functioning (P = 0.04, d = 0.4) at 6 months in the MLC901 group compared with controls. There were no significant differences between the groups for neurobehavioral sequelae, mood, fatigue, physical disability or overall quality of life at 6 months. No serious adverse events were reported. Conclusions MLC901 was safe and well tolerated post‐TBI. This study provided Class I/II evidence that, for patients with mild to moderate TBI, 6 months of MLC901 improved cognitive functioning.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
23 |
10
|
Nath A, Bhattacharjee R, Nandi A, Sinha A, Kar S, Manoharan N, Mitra S, Mojumdar A, Panda PK, Patro S, Dutt A, Ahuja R, Verma SK, Suar M. Phage delivered CRISPR-Cas system to combat multidrug-resistant pathogens in gut microbiome. Biomed Pharmacother 2022; 151:113122. [PMID: 35594718 DOI: 10.1016/j.biopha.2022.113122] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 11/02/2022] Open
Abstract
The Host-microbiome interactions that exist inside the gut microbiota operate in a synergistic and abnormal manner. Additionally, the normal homeostasis and functioning of gut microbiota are frequently disrupted by the intervention of Multi-Drug Resistant (MDR) pathogens. CRISPR-Cas (CRISPR-associated protein with clustered regularly interspersed short palindromic repeats) recognized as a prokaryotic immune system has emerged as an effective genome-editing tool to edit and delete specific microbial genes for the expulsion of bacteria through bactericidal action. In this review, we demonstrate many functioning CRISPR-Cas systems against the anti-microbial resistance of multiple pathogens, which infiltrate the gastrointestinal tract. Moreover, we discuss the advancement in the development of a phage-delivered CRISPR-Cas system for killing a gut MDR pathogen. We also discuss a combinatorial approach to use bacteriophage as a delivery system for the CRISPR-Cas gene for targeting a pathogenic community in the gut microbiome to resensitize the drug sensitivity. Finally, we discuss engineered phage as a plausible potential option for the CRISPR-Cas system for pathogenic killing and improvement of the efficacy of the system.
Collapse
|
Review |
3 |
19 |
11
|
Bhattacharjee R, Mangione MC, Wos M, Chen JS, Snider CE, Roberts-Galbraith RH, McDonald NA, Presti LL, Martin SG, Gould KL. DYRK kinase Pom1 drives F-BAR protein Cdc15 from the membrane to promote medial division. Mol Biol Cell 2020; 31:917-929. [PMID: 32101481 PMCID: PMC7185970 DOI: 10.1091/mbc.e20-01-0026] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/13/2020] [Accepted: 02/21/2020] [Indexed: 12/19/2022] Open
Abstract
In many organisms, positive and negative signals cooperate to position the division site for cytokinesis. In the rod-shaped fission yeast Schizosaccharomyces pombe, symmetric division is achieved through anillin/Mid1-dependent positive cues released from the central nucleus and negative signals from the DYRK-family polarity kinase Pom1 at cell tips. Here we establish that Pom1's kinase activity prevents septation at cell tips even if Mid1 is absent or mislocalized. We also find that Pom1 phosphorylation of F-BAR protein Cdc15, a major scaffold of the division apparatus, disrupts Cdc15's ability to bind membranes and paxillin, Pxl1, thereby inhibiting Cdc15's function in cytokinesis. A Cdc15 mutant carrying phosphomimetic versions of Pom1 sites or deletion of Cdc15 binding partners suppresses division at cell tips in cells lacking both Mid1 and Pom1 signals. Thus, inhibition of Cdc15-scaffolded septum formation at cell poles is a key Pom1 mechanism that ensures medial division.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
19 |
12
|
Jana A, Bhattacharjee A, Das SS, Srivastava A, Choudhury A, Bhattacharjee R, De S, Perveen A, Iqbal D, Gupta PK, Jha SK, Ojha S, Singh SK, Ruokolainen J, Jha NK, Kesari KK, Ashraf GM. Molecular Insights into Therapeutic Potentials of Hybrid Compounds Targeting Alzheimer's Disease. Mol Neurobiol 2022; 59:3512-3528. [PMID: 35347587 PMCID: PMC9148293 DOI: 10.1007/s12035-022-02779-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/21/2022] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is one of the most complex progressive neurological disorders involving degeneration of neuronal connections in brain cells leading to cell death. AD is predominantly detected among elder people (> 65 years), mostly diagnosed with the symptoms of memory loss and cognitive dysfunctions. The multifarious pathogenesis of AD comprises the accumulation of pathogenic proteins, decreased neurotransmission, oxidative stress, and neuroinflammation. The conventional therapeutic approaches are limited to symptomatic benefits and are ineffective against disease progression. In recent years, researchers have shown immense interest in the designing and fabrication of various novel therapeutics comprised of naturally isolated hybrid molecules. Hybrid therapeutic compounds are developed from the combination of pharmacophores isolated from bioactive moieties which specifically target and block various AD-associated pathogenic pathways. The method of designing hybrid molecules has numerous advantages over conventional multitarget drug development methods. In comparison to in silico high throughput screening, hybrid molecules generate quicker results and are also less expensive than fragment-based drug development. Designing hybrid-multitargeted therapeutic compounds is thus a prospective approach in developing an effective treatment for AD. Nevertheless, several issues must be addressed, and additional researches should be conducted to develop hybrid therapeutic compounds for clinical usage while keeping other off-target adverse effects in mind. In this review, we have summarized the recent progress on synthesis of hybrid compounds, their molecular mechanism, and therapeutic potential in AD. Using synoptic tables, figures, and schemes, the review presents therapeutic promise and potential for the development of many disease-modifying hybrids into next-generation medicines for AD.
Collapse
|
Review |
3 |
18 |
13
|
Jain YS, Bajpai PK, Bhattacharjee R, Chowdhury D. Phase transition and temperature dependence of the molecular distortion of ions in ammonium sulphate. ACTA ACUST UNITED AC 2000. [DOI: 10.1088/0022-3719/19/20/014] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
|
25 |
17 |
14
|
Dey S, Goswami S, Eisa A, Bhattacharjee R, Brothag C, Kline D, Vijayaraghavan S. Cyclic AMP and glycogen synthase kinase 3 form a regulatory loop in spermatozoa. J Cell Physiol 2018; 233:7239-7252. [PMID: 29574946 DOI: 10.1002/jcp.26557] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/20/2018] [Indexed: 12/17/2022]
Abstract
The multifaceted glycogen synthase kinase (GSK3) has an essential role in sperm and male fertility. Since cyclic AMP (cAMP) plays an important role in sperm function, we investigated whether GSK3 and cAMP pathways may be interrelated. We used GSK3 and soluble adenylyl cyclase (sAC) knockout mice and pharmacological modulators to examine this relationship. Intracellular cAMP levels were found to be significantly lower in sperm lacking GSK3α or GSK3β. A similar outcome was observed when sperm cells were treated with SB216763, a GSK3 inhibitor. This reduction of cAMP levels was not due to an effect on sperm adenylyl cyclase but was caused by elevated phosphodiesterase (PDE) activity. The PDE4 inhibitor RS25344 or the general PDE inhibitor IBMX could restore cAMP levels in sperm lacking GSK3α or β-isoform. PDE activity assay also showed that hyperactivated PDE4 contributes in lowering of cAMP levels in GSK3α null sperm suggesting that in wild-type sperm PDE4 activity is kept in check by GSK3. Conversely, PKA being triggered by cAMP, affected GSK3 activity through increasing its phosphorylation. Increased GSK3 phosphorylation also occurred by inhibition of sperm specific protein phosphatase type 1, PP1γ2. The relationship between cAMP, GSK3, and PP1γ2 activities was also confirmed in sperm from sAC null mice. Pull-down assay using recombinant PP1γ2 indicated that PKA, GSK3, and PP1γ2 could exist as a complex. Pharmacological inhibition of GSK3 in mature spermatozoa resulted in significantly reduced fertilization of eggs in vitro. Our results show that cAMP, PKA, and GSK3 are interrelated in regulation of sperm function.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
15 |
15
|
Jain YS, Bhattacharjee R. Theory of distortion-induced IR and Raman intensities of forbidden modes of molecular units in crystals. I. Polar site symmetry case. ACTA ACUST UNITED AC 2000. [DOI: 10.1088/0022-3719/18/27/016] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
|
25 |
15 |
16
|
Goswami S, Korrodi-Gregório L, Sinha N, Bhutada S, Bhattacharjee R, Kline D, Vijayaraghavan S. Regulators of the protein phosphatase PP1γ2, PPP1R2, PPP1R7, and PPP1R11 are involved in epididymal sperm maturation. J Cell Physiol 2018; 234:3105-3118. [PMID: 30144392 DOI: 10.1002/jcp.27130] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/05/2018] [Indexed: 02/06/2023]
Abstract
The serine/threonine protein phosphatase 1 (PP1) inhibitors PPP1R2, PPP1R7, and PPP1R11 are evolutionarily ancient and highly conserved proteins. Four PP1 isoforms, PP1α, PP1β, PP1γ1, and PP1γ2, exist; three of them except PP1γ2 are ubiquitous. The fact that PP1γ2 isoform is present only in mammalian testis and sperm led to the notion that isoform-specific regulators for PP1γ2 in sperm may be responsible for its function. In this report, we studied these inhibitors, PPP1R2, R7, and R11, to determine their spatial and temporal expression in testis and their regulatory functions in sperm. We show that, similar to PP1γ2, the three inhibitors are expressed at high levels in developing spermatogenic cells. However, the transcripts for the regulators are expressed as unique sizes in testis compared with somatic tissues. The three regulators share localization with PP1γ2 in the head and the principal piece of sperm. We show that the association of inhibitors to PP1γ2 changes during epididymal sperm maturation. In immotile caput epididymal sperm, PPP1R2 and PPP1R7 are not bound to PP1γ2, whereas in motile caudal sperm, all three inhibitors are bound as heterodimers or heterotrimers. In caudal sperm from male mice lacking sAC and glycogen synthase kinase 3, where motility and fertility are impaired, the association of PP1γ2 to the inhibitors resembles immature caput sperm. Changes in the association of the regulators with PP1γ2, due to their phosphorylation, are part of biochemical mechanisms responsible for the development of motility and fertilizing ability of sperm during their passage through the epididymis.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
12 |
17
|
Bhattacharjee R, Nandi A, Mitra P, Saha K, Patel P, Jha E, Panda PK, Singh SK, Dutt A, Mishra YK, Verma SK, Suar M. Theragnostic application of nanoparticle and CRISPR against food-borne multi-drug resistant pathogens. Mater Today Bio 2022; 15:100291. [PMID: 35711292 PMCID: PMC9194658 DOI: 10.1016/j.mtbio.2022.100291] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/25/2022] Open
Abstract
Foodborne infection is one of the leading sources of infections spreading across the world. Foodborne pathogens are recognized as multidrug-resistant (MDR) pathogens posing a significant problem in the food industry and healthy consumers resulting in enhanced economic burden, and nosocomial infections. The continued search for enhanced microbial detection tools has piqued the interest of the CRISPR-Cas system and Nanoparticles. CRISPR-Cas system is present in the bacterial genome of some prokaryotes and is repurposed as a theragnostic tool against MDR pathogens. Nanoparticles and composites have also emerged as an efficient tool in theragnostic applications against MDR pathogens. The diagnostic limitations of the CRISPR-Cas system are believed to be overcome by a synergistic combination of the nanoparticles system and CRISPR-Cas using nanoparticles as vehicles. In this review, we have discussed the diagnostic application of CRISPR-Cas technologies along with their potential usage in applications like phage resistance, phage vaccination, strain typing, genome editing, and antimicrobial. we have also elucidated the antimicrobial and detection role of nanoparticles against foodborne MDR pathogens. Moreover, the novel combinatorial approach of CRISPR-Cas and nanoparticles for their synergistic effects in pathogen clearance and drug delivery vehicles has also been discussed.
Collapse
|
Review |
3 |
11 |
18
|
Sharma S, Parsad D, Bhattacharjee R, Muthu SK. A prospective right-left comparative study to evaluate the efficacy and tolerability of combination of NB-UVB and topical bimatoprost 0.03% eye drops versus NB-UVB given alone in patients of vitiligo vulgaris. J Eur Acad Dermatol Venereol 2018; 32:e330-e331. [PMID: 29444382 DOI: 10.1111/jdv.14882] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
Letter |
7 |
11 |
19
|
Krori KD, Chaudhury T, Bhattacharjee R. Some exact solutions of Einstein-Dirac-Maxwell fields and massive neutrino. Int J Clin Exp Med 1982. [DOI: 10.1103/physrevd.25.1492] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
|
43 |
11 |
20
|
Mandal S, Ghorai M, Anand U, Roy D, Kant N, Mishra T, Mane AB, Jha NK, Lal MK, Tiwari RK, Kumar M, Radha, Ghosh A, Bhattacharjee R, Proćków J, Dey A. Cytokinins: A Genetic Target for Increasing Yield Potential in the CRISPR Era. Front Genet 2022; 13:883930. [PMID: 35559022 PMCID: PMC9086551 DOI: 10.3389/fgene.2022.883930] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022] Open
Abstract
Over the last decade, remarkable progress has been made in our understanding the phytohormones, cytokinin's (CKs) biosynthesis, perception, and signalling pathways. Additionally, it became apparent that interfering with any of these steps has a significant effect on all stages of plant growth and development. As a result of their complex regulatory and cross-talk interactions with other hormones and signalling networks, they influence and control a wide range of biological activities, from cellular to organismal levels. In agriculture, CKs are extensively used for yield improvement and management because of their wide-ranging effects on plant growth, development and physiology. One of the primary targets in this regard is cytokinin oxidase/dehydrogenase (CKO/CKX), which is encoded by CKX gene, which catalyses the irreversible degradation of cytokinin. The previous studies on various agronomically important crops indicated that plant breeders have targeted CKX directly. In recent years, prokaryotic clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system has been increasingly used in editing the CKO/CKX gene and phenomenal results have been achieved. This review provides an updated information on the applications of CRISPR-based gene-editing tools in manipulating cytokinin metabolism at the genetic level for yield improvement. Furthermore, we summarized the current developments of RNP-mediated DNA/transgene-free genomic editing of plants which would broaden the application of this technology. The current review will advance our understanding of cytokinins and their role in sustainably increase crop production through CRISPR/Cas genome editing tool.
Collapse
|
Review |
3 |
10 |
21
|
Bhattacharjee R, Dubey AK, Ganguly A, Bhattacharya B, Mishra YK, Mostafavi E, Kaushik A. State-of-art high-performance Nano-systems for mutated coronavirus infection management: From Lab to Clinic. OPENNANO 2022. [PMCID: PMC9463543 DOI: 10.1016/j.onano.2022.100078] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants made emerging novel coronavirus diseases (COVID-19) pandemic/endemic/or both more severe and difficult to manage due to increased worry about the efficacy and efficiency of present preventative, therapeutic, and sensing measures. To deal with these unexpected circumstances, the development of novel nano-systems with tuneable optical, electrical, magnetic, and morphological properties can lead to novel research needed for (1) COVID-19 infection (anti-microbial systems against SARS-CoV-2), (2) early detection of mutated SARS-CoV-2, and (3) targeted delivery of therapeutics using nano-systems, i.e., nanomedicine. However, there is a knowledge gap in understanding all these nano-biotechnology potentials for managing mutated SARS-CoV-2 on a single platform. To bring up the aspects of nanotechnology to tackle SARS-CoV-2 variants related COVID-19 pandemic, this article emphasizes improvements in the high-performance of nano-systems to combat SARS-CoV-2 strains/variants with a goal of managing COVID-19 infection via trapping, eradication, detection/sensing, and treatment of virus. The potential of state-of-the-art nano-assisted approaches has been demonstrated as an efficient drug delivery systems, viral disinfectants, vaccine productive cargos, anti-viral activity, and biosensors suitable for point-of-care (POC) diagnostics. Furthermore, the process linked with the efficacy of nanosystems to neutralize and eliminate SARS-CoV-2 is extensively highligthed in this report. The challenges and opportunities associated with managing COVID-19 using nanotechnology as part of regulations are also well-covered. The outcomes of this review will help researchers to design, investigate, and develop an appropriate nano system to manage COVID-19 infection, with a focus on the detection and eradication of SARS-CoV-2 and its variants. This article is unique in that it discusses every aspect of high-performance nanotechnology for ideal COVID pandemic management.
Collapse
|
|
3 |
9 |
22
|
Ray S, Beatrice AM, Ghosh A, Pramanik S, Bhattacharjee R, Ghosh S, Raychaudhury A, Mukhopadhyay S, Chowdhury S. Profile of chronic kidney disease related-mineral bone disorders in newly diagnosed advanced predialysis diabetic kidney disease patients: A hospital based cross-sectional study. Diabetes Metab Syndr 2017; 11 Suppl 2:S931-S937. [PMID: 28728874 DOI: 10.1016/j.dsx.2017.07.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 07/01/2017] [Indexed: 11/29/2022]
Abstract
AIM Chronic kidney disease related-mineral bone disorder (CKD-MBD) has been poorly studied in pre-dialysis Indian CKD population. There are limited data on the pattern of these disturbances in diabetic CKD patients. Therefore, a study was conducted to find out the profile of mineral bone disorders in T2DM patients with pre-dialysis CKD. METHODS In this cross-sectional design, diabetic patients with newly-diagnosed stage 4 and 5 CKD were evaluated. Serum levels of calcium, phosphorus, intact parathyroid hormone (iPTH), 25 hydroxy vitamin D and total alkaline phosphatase (ALP) were measured in all patients. Bone mineral density (BMD) was measured using dual-energy X-ray absorptiometry (DXA). RESULTS A total of 72 eligible patients participated (44 males, 28 females; age 54.2±11.7). Patients with CKD Stage 5 had a lower level of corrected serum calcium and significantly higher level of inorganic phosphorus, total ALP and iPTH as compared to stage 4 patients. Overall, 38.5% were hypocalcemic, 31.43% were hyperphosphatemic. 24.2% of CKD subjects were vitamin D deficient (<10ng/ml) and 41.4% having vitamin D insufficiency (10-20ng/ml). In stage 4, hyperparathyroidism (iPTH>110pg/ml) was detected in nearly 43% of patients. In stage 5, only 32% patients was found to have hyperparathyroidism (iPTH>300pg/ml). There was a good correlation between iPTH and total ALP (r=0.5, p=0.0001) in this cohort. 25 (OH) vitamin D was inversely correlated with ALP (r=-0.39, P=0.001) and showed negative correlation with urine ACR (r=-0.37, P=0.002). As a group, the osteoporotic CKD subjects exhibited higher iPTH (220.1±153.8 vs. 119±108pg/ml, p<0.05) as compared to those who were osteopenic or had normal bone density. There was significant correlation between BMD and iPTH (adjusted r=-0.436; P=0.001). In the multivariate regression model, we found intact PTH to predict BMD even after adjustment of all the confounders. CONCLUSION The current study showed that adynamic bone disease is prevalent even in pre-dialysis CKD population. High bone turnover disease may not be the most prevalent type in diabetic CKD. However, it could contribute to the development of osteoporosis in CKD subjects. Serum total ALP can serve as a biochemical marker to identify pattern of bone turnover where intact PTH is not available.
Collapse
|
|
8 |
9 |
23
|
Jain Y, Bhattacharjee R. Theory of distortion-induced I.R. and Raman intensity of forbidden modes of molecular units in crystals. Mol Phys 2006. [DOI: 10.1080/00268978600100301] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
|
19 |
9 |
24
|
Muenter JS, Bhattacharjee R. The Electric Dipole Moment of the CO2-CO van der Waals Complex. JOURNAL OF MOLECULAR SPECTROSCOPY 1998; 190:290-293. [PMID: 9668022 DOI: 10.1006/jmsp.1998.7601] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Radiofrequency transitions within K = 2 asymmetry doublets have been observed for the CO2-CO van der Waals complex. A Stark effect measurement on the J = 2, K = 2 transition provides an electric dipole moment of µ = 0.2493(1) D. Combining this result with the permanent moment of CO, µCO = 0.1098 D, gives a change of moment on complex formation of Deltaµ = 0.140 D. The sign of Deltaµ is such that the CO end of the complex is more positive than CO2. The origin of Deltaµ should not be attributed to any single mechanism, and several different contributions to Deltaµ are discussed. Copyright 1998 Academic Press.
Collapse
|
|
27 |
8 |
25
|
Vinay K, Bhattacharjee R, Bishnoi A, Chatterjee D, Rudramurthy S, Dogra S. Dermatoscopic features of cutaneous sporotrichosis. J Eur Acad Dermatol Venereol 2020; 34:e718-e720. [PMID: 32343442 DOI: 10.1111/jdv.16539] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 01/19/2023]
|
Letter |
5 |
8 |