1
|
Ponnusamy R, Poulos AM, Fanselow MS. Amygdala-dependent and amygdala-independent pathways for contextual fear conditioning. Neuroscience 2007; 147:919-27. [PMID: 17587502 PMCID: PMC2045072 DOI: 10.1016/j.neuroscience.2007.04.026] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 04/17/2007] [Accepted: 04/19/2007] [Indexed: 11/27/2022]
Abstract
The basolateral amygdala (BLA), consisting of the lateral and basal nuclei, is considered to be essential for fear learning. Using a temporary inactivation technique, we found that rats could acquire a context-specific long-term fear memory without the BLA but only if intensive overtraining was used. BLA-inactivated rats' learning curves were characterized by slow learning that eventually achieved the same asymptotic performance as rats with the BLA functional. BLA inactivation abolished expression of overtrained fear when rats were overtrained with a functional BLA. However, BLA-inactivation had no effect on the expression of fear in rats that learned while the BLA was inactivated. These data suggest that there are primary and alternate pathways capable of mediating fear. Normally, learning is dominated by the more efficient primary pathway, which prevents learning in the alternate pathway. However, alternate pathways compensate when the dominant pathway is compromised.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
51 |
2
|
Ponnusamy R, Moll R, Weimar T, Mesters JR, Hilgenfeld R. Variable oligomerization modes in coronavirus non-structural protein 9. J Mol Biol 2008; 383:1081-96. [PMID: 18694760 PMCID: PMC7094590 DOI: 10.1016/j.jmb.2008.07.071] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2008] [Revised: 07/17/2008] [Accepted: 07/24/2008] [Indexed: 12/24/2022]
Abstract
Non-structural protein 9 (Nsp9) of coronaviruses is believed to bind single-stranded RNA in the viral replication complex. The crystal structure of Nsp9 of human coronavirus (HCoV) 229E reveals a novel disulfide-linked homodimer, which is very different from the previously reported Nsp9 dimer of SARS coronavirus. In contrast, the structure of the Cys69Ala mutant of HCoV-229E Nsp9 shows the same dimer organization as the SARS-CoV protein. In the crystal, the wild-type HCoV-229E protein forms a trimer of dimers, whereas the mutant and SARS-CoV Nsp9 are organized in rod-like polymers. Chemical cross-linking suggests similar modes of aggregation in solution. In zone-interference gel electrophoresis assays and surface plasmon resonance experiments, the HCoV-229E wild-type protein is found to bind oligonucleotides with relatively high affinity, whereas binding by the Cys69Ala and Cys69Ser mutants is observed only for the longest oligonucleotides. The corresponding mutations in SARS-CoV Nsp9 do not hamper nucleic acid binding. From the crystal structures, a model for single-stranded RNA binding by Nsp9 is deduced. We propose that both forms of the Nsp9 dimer are biologically relevant; the occurrence of the disulfide-bonded form may be correlated with oxidative stress induced in the host cell by the viral infection.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
42 |
3
|
Asanithi P, Saridakis E, Govada L, Jurewicz I, Brunner EW, Ponnusamy R, Cleaver JAS, Dalton AB, Chayen NE, Sear RP. Carbon-nanotube-based materials for protein crystallization. ACS APPLIED MATERIALS & INTERFACES 2009; 1:1203-10. [PMID: 20355914 DOI: 10.1021/am9000858] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We report on the first use of carbon-nanotube-based films to produce crystals of proteins. The crystals nucleate on the surface of the film. The difficulty of crystallizing proteins is a major bottleneck in the determination of the structure and function of biological molecules. The crystallization of two model proteins and two medically relevant proteins was studied. Quantitative data on the crystallization times of the model protein lysozyme are also presented. Two types of nanotube films, one made with the surfactant Triton X-100 (TX-100) and one with gelatin, were tested. Both induce nucleation of the crystal phase at supersaturations at which the protein solution would otherwise remain clear; however, the gelatin-based film induced nucleation down to much lower supersaturations for the two model proteins with which it was used. It appears that the interactions of gelatin with the protein molecules are particularly favorable to nucleation. Crystals of the C1 domain of the human cardiac myosin-binding protein-C that diffracted to a resolution of 1.6 A were obtained on the TX-100 film. This is far superior to the best crystals obtained using standard techniques, which only diffracted to 3.0 A. Thus, both of our nanotube-based films are very promising candidates for future work on crystallizing difficult-to-crystallize target proteins.
Collapse
|
|
16 |
28 |
4
|
Correia B, Cerqueira SA, Beauchemin C, Pires de Miranda M, Li S, Ponnusamy R, Rodrigues L, Schneider TR, Carrondo MA, Kaye KM, Simas JP, McVey CE. Crystal structure of the gamma-2 herpesvirus LANA DNA binding domain identifies charged surface residues which impact viral latency. PLoS Pathog 2013; 9:e1003673. [PMID: 24146618 PMCID: PMC3798461 DOI: 10.1371/journal.ppat.1003673] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 08/16/2013] [Indexed: 01/12/2023] Open
Abstract
Latency-associated nuclear antigen (LANA) mediates γ2-herpesvirus genome persistence and regulates transcription. We describe the crystal structure of the murine gammaherpesvirus-68 LANA C-terminal domain at 2.2 Å resolution. The structure reveals an alpha-beta fold that assembles as a dimer, reminiscent of Epstein-Barr virus EBNA1. A predicted DNA binding surface is present and opposite this interface is a positive electrostatic patch. Targeted DNA recognition substitutions eliminated DNA binding, while certain charged patch mutations reduced bromodomain protein, BRD4, binding. Virus containing LANA abolished for DNA binding was incapable of viable latent infection in mice. Virus with mutations at the charged patch periphery exhibited substantial deficiency in expansion of latent infection, while central region substitutions had little effect. This deficiency was independent of BRD4. These results elucidate the LANA DNA binding domain structure and reveal a unique charged region that exerts a critical role in viral latent infection, likely acting through a host cell protein(s). Herpesviruses establish life-long latent infections. During latency, gammaherpesviruses, such as Kaposi's sarcoma-associated herpesvirus (KSHV), persist as multicopy, circularized genomes in the cell nucleus and express a small subset of viral genes. KSHV latency-associated nuclear antigen (LANA) is the predominant gene expressed during latent infection. C-terminal LANA binds KSHV terminal repeat (TR) DNA to mediate DNA replication. TR DNA binding also allows tethering of the viral genome to mitotic chromosomes to mediate DNA segregation to daughter nuclei. We describe here the crystal structure of the murine gammaherpesvirus 68 LANA DNA binding domain, which is homologous to that of KSHV LANA. The structure revealed a dimer and we identified residues involved in the interaction with viral DNA. Mutation of these residues abolished DNA binding and viable latency establishment in a mouse model of infection. We also identified a positively charged patch on the dimer surface opposite to the DNA binding region and found this patch exerts an important role in the virus's ability to expand latent infection in vivo. This work elucidates the structure of the LANA DNA binding domain and identifies a novel surface feature that is critical for viral latent infection, likely by acting through a host cell protein.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
12 |
26 |
5
|
Ponnusamy R, Lohkamp B. Insights into the oligomerization of CRMPs: crystal structure of human collapsin response mediator protein 5. J Neurochem 2013; 125:855-68. [PMID: 23373749 DOI: 10.1111/jnc.12188] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 12/19/2012] [Accepted: 01/07/2013] [Indexed: 11/26/2022]
Abstract
Collapsin response mediator protein-5 (CRMP-5) is the latest identified member of the CRMP cytosolic phosphoprotein family, which is crucial for neuronal development and repair. CRMPs exist as homo- and/or hetero-tetramers in vivo and participate in signaling transduction, cytoskeleton rearrangements, and endocytosis. CRMP-5 antagonizes many of the other CRMPs' functions either by directly interacting with them or by competing for their binding partners. We determined the crystal structures of a full length and a truncated version of human CRMP-5, both of which form a homo-tetramer similar to those observed in CRMP-1 and CRMP-2. However, solution studies indicate that CRMP-5 and CRMP-1 form weaker homo-tetramers compared with CRMP-2, and that divalent cations, Ca(2+) and Mg(2+), destabilize oligomers of CRMP-5 and CRMP-1, but promote CRMP-2 oligomerization. On the basis of comparative analysis of the CRMP-5 crystal structure, we identified residues that are crucial for determining the preference for hetero-oligomer or homo-oligomer formation. We also show that in spite of being the CRMP family member most closely related to dihydropyrimidinase, CRMP-5 does not have any detectable amidohydrolase activity. The presented findings provide new detailed insights into the structure, oligomerization, and regulation of CRMPs.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
21 |
6
|
Ponnusamy R, Lebedev AA, Pahlow S, Lohkamp B. Crystal structure of human CRMP-4: correction of intensities for lattice-translocation disorder. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:1680-94. [PMID: 24914979 PMCID: PMC4051505 DOI: 10.1107/s1399004714006634] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 03/25/2014] [Indexed: 12/13/2022]
Abstract
Collapsin response mediator proteins (CRMPs) are cytosolic phosphoproteins that are mainly involved in neuronal cell development. In humans, the CRMP family comprises five members. Here, crystal structures of human CRMP-4 in a truncated and a full-length version are presented. The latter was determined from two types of crystals, which were either twinned or partially disordered. The crystal disorder was coupled with translational NCS in ordered domains and manifested itself with a rather sophisticated modulation of intensities. The data were demodulated using either the two-lattice treatment of lattice-translocation effects or a novel method in which demodulation was achieved by independent scaling of several groups of intensities. This iterative protocol does not rely on any particular parameterization of the modulation coefficients, but uses the current refined structure as a reference. The best results in terms of R factors and map correlation coefficients were obtained using this new method. The determined structures of CRMP-4 are similar to those of other CRMPs. Structural comparison allowed the confirmation of known residues, as well as the identification of new residues, that are important for the homo- and hetero-oligomerization of these proteins, which are critical to nerve-cell development. The structures provide further insight into the effects of medically relevant mutations of the DPYSL-3 gene encoding CRMP-4 and the putative enzymatic activities of CRMPs.
Collapse
|
research-article |
11 |
17 |
7
|
Habison AC, de Miranda MP, Beauchemin C, Tan M, Cerqueira SA, Correia B, Ponnusamy R, Usherwood EJ, McVey CE, Simas JP, Kaye KM. Cross-species conservation of episome maintenance provides a basis for in vivo investigation of Kaposi's sarcoma herpesvirus LANA. PLoS Pathog 2017; 13:e1006555. [PMID: 28910389 PMCID: PMC5599060 DOI: 10.1371/journal.ppat.1006555] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/27/2017] [Indexed: 12/26/2022] Open
Abstract
Many pathogens, including Kaposi's sarcoma herpesvirus (KSHV), lack tractable small animal models. KSHV persists as a multi-copy, nuclear episome in latently infected cells. KSHV latency-associated nuclear antigen (kLANA) binds viral terminal repeat (kTR) DNA to mediate episome persistence. Model pathogen murine gammaherpesvirus 68 (MHV68) mLANA acts analogously on mTR DNA. kLANA and mLANA differ substantially in size and kTR and mTR show little sequence conservation. Here, we find kLANA and mLANA act reciprocally to mediate episome persistence of TR DNA. Further, kLANA rescued mLANA deficient MHV68, enabling a chimeric virus to establish latent infection in vivo in germinal center B cells. The level of chimeric virus in vivo latency was moderately reduced compared to WT infection, but WT or chimeric MHV68 infected cells had similar viral genome copy numbers as assessed by immunofluorescence of LANA intranuclear dots or qPCR. Thus, despite more than 60 Ma of evolutionary divergence, mLANA and kLANA act reciprocally on TR DNA, and kLANA functionally substitutes for mLANA, allowing kLANA investigation in vivo. Analogous chimeras may allow in vivo investigation of genes of other human pathogens.
Collapse
|
Journal Article |
8 |
16 |
8
|
Ponnusamy R, Khatri R, Correia PB, Wood CD, Mancini EJ, Farrell PJ, West MJ. Increased association between Epstein-Barr virus EBNA2 from type 2 strains and the transcriptional repressor BS69 restricts EBNA2 activity. PLoS Pathog 2019; 15:e1007458. [PMID: 31283782 PMCID: PMC6638984 DOI: 10.1371/journal.ppat.1007458] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 07/18/2019] [Accepted: 06/09/2019] [Indexed: 12/20/2022] Open
Abstract
Natural variation separates Epstein-Barr virus (EBV) into type 1 and type 2 strains. Type 2 EBV is less transforming in vitro due to sequence differences in the EBV transcription factor EBNA2. This correlates with reduced activation of the EBV oncogene LMP1 and some cell genes. Transcriptional activation by type 1 EBNA2 can be suppressed through the binding of two PXLXP motifs in its transactivation domain (TAD) to the dimeric coiled-coil MYND domain (CC-MYND) of the BS69 repressor protein (ZMYND11). We identified a third conserved PXLXP motif in type 2 EBNA2. We found that type 2 EBNA2 peptides containing this motif bound BS69CC-MYND efficiently and that the type 2 EBNA2TAD bound an additional BS69CC-MYND molecule. Full-length type 2 EBNA2 also bound BS69 more efficiently in pull-down assays. Molecular weight analysis and low-resolution structures obtained using small-angle X-ray scattering showed that three BS69CC-MYND dimers bound two molecules of type 2 EBNA2TAD, in line with the dimeric state of full-length EBNA2 in vivo. Importantly, mutation of the third BS69 binding motif in type 2 EBNA2 improved B-cell growth maintenance and the transcriptional activation of the LMP1 and CXCR7 genes. Our data indicate that increased association with BS69 restricts the function of type 2 EBNA2 as a transcriptional activator and driver of B cell growth and may contribute to reduced B-cell transformation by type 2 EBV. Epstein-Barr virus (EBV) drives the development of many human cancers worldwide including specific types of lymphoma and carcinoma. EBV infects B lymphocytes and immortalises them, thus contributing to lymphoma development. The virus promotes B lymphocyte growth and survival by altering the level at which hundreds of genes are expressed. The EBV protein EBNA2 is known to activate many growth-promoting genes. Natural variation in the sequence of EBNA2 defines the two main EBV strains: type 1 and type 2. Type 2 strains immortalise B lymphocytes less efficiency and activate some growth genes poorly, although the mechanism of this difference is unclear. We now show that sequence variation in type 2 EBNA2 creates a third site of interaction for the repressor protein (BS69, ZMYND11). We have characterised the complex formed between type 2 EBNA2 and BS69 and show that three dimers of BS69 form a bridged complex with two molecules of type 2 EBNA2. We demonstrate that mutation of the additional BS69 interaction site in type 2 EBNA2 improves its growth-promoting and gene induction function. Our results therefore highlight a molecular mechanism that may contribute to the different B lymphocyte growth promoting activities of EBV strains. This aids our understanding of immortalisation by EBV.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
16 |
9
|
Ponnusamy R, Petoukhov MV, Correia B, Custodio TF, Juillard F, Tan M, Pires de Miranda M, Carrondo MA, Simas JP, Kaye KM, Svergun DI, McVey CE. KSHV but not MHV-68 LANA induces a strong bend upon binding to terminal repeat viral DNA. Nucleic Acids Res 2015; 43:10039-54. [PMID: 26424851 PMCID: PMC4787769 DOI: 10.1093/nar/gkv987] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/16/2015] [Indexed: 12/20/2022] Open
Abstract
Latency-associated nuclear antigen (LANA) is central to episomal tethering, replication and transcriptional regulation of γ2-herpesviruses. LANA binds cooperatively to the terminal repeat (TR) region of the viral episome via adjacent LANA binding sites (LBS), but the molecular mechanism by which LANA assembles on the TR remains elusive. We show that KSHV LANA and MHV-68 LANA proteins bind LBS DNA using strikingly different modes. Solution structure of LANA complexes revealed that while kLANA tetramer is intrinsically bent both in the free and bound state to LBS1-2 DNA, mLANA oligomers instead adopt a rigid linear conformation. In addition, we report a novel non-ring kLANA structure that displays more flexibility at its assembly interface than previously demonstrated. We identified a hydrophobic pivot point located at the dimer-dimer assembly interface, which gives rotational freedom for kLANA to adopt variable conformations to accommodate both LBS1-2 and LBS2-1-3 DNA. Alterations in the arrangement of LBS within TR or at the tetramer assembly interface have a drastic effect on the ability of kLANA binding. We also show kLANA and mLANA DNA binding functions can be reciprocated. Although KSHV and MHV-68 are closely related, the findings provide new insights into how the structure, oligomerization, and DNA binding of LANA have evolved differently to assemble on the TR DNA.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
15 |
10
|
Ponnusamy R, Sabari V, Sivakumar G, Bakthadoss M, Aravindhan S. (6bS*,14R*,14aR*)-Methyl 14-(4-methyl-phen-yl)-7-oxo-6b,6c,7,12b,14,14a-hexa-hydro-1H-pyrano[3,2-c:5,4-c']dichromene-14a-carboxyl-ate. Acta Crystallogr Sect E Struct Rep Online 2013; 69:o267-8. [PMID: 23424543 PMCID: PMC3569797 DOI: 10.1107/s1600536813001244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 01/12/2013] [Indexed: 11/13/2022]
Abstract
In the title compound, C(28)H(22)O(6), the chromeno ring system is almost planar, with a dihedral angle between the mean planes of the pyran and benzene rings of 1.87 (8)°. The pyran ring bearing the methyl-phenyl substituent has a half-chair conformation while the other pyran ring has an envelope conformation with the tetra-substituted C atom as the flap. The benzene ring of the chromeno ring system is inclined to the benzene ring fused to the latter pyran ring by 74.66 (9)°. These aromatic rings are inclined to the 4-methyl-phenyl ring by 52.67 (9) and 66.63 (10)°, respectively. In the crystal, mol-ecules are linked via C-H⋯O hydrogen bonds, forming a two-dimensional network parallel to the bc plane.
Collapse
|
research-article |
12 |
4 |
11
|
Li S, Tan M, Juillard F, Ponnusamy R, Correia B, Simas JP, Carrondo MA, McVey CE, Kaye KM. The Kaposi Sarcoma Herpesvirus Latency-associated Nuclear Antigen DNA Binding Domain Dorsal Positive Electrostatic Patch Facilitates DNA Replication and Episome Persistence. J Biol Chem 2015; 290:28084-28096. [PMID: 26420481 DOI: 10.1074/jbc.m115.674622] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Indexed: 12/15/2022] Open
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV) has a causative role in several human malignancies. KSHV latency-associated nuclear antigen (LANA) mediates persistence of viral episomes in latently infected cells. LANA mediates KSHV DNA replication and segregates episomes to progeny nuclei. The structure of the LANA DNA binding domain was recently solved, revealing a positive electrostatic patch opposite the DNA binding surface, which is the site of BET protein binding. Here we investigate the functional role of the positive patch in LANA-mediated episome persistence. As expected, LANA mutants with alanine or glutamate substitutions in the central, peripheral, or lateral portions of the positive patch maintained the ability to bind DNA by EMSA. However, all of the substitution mutants were deficient for LANA DNA replication and episome maintenance. Mutation of the peripheral region generated the largest deficiencies. Despite these deficiencies, all positive patch mutants concentrated to dots along mitotic chromosomes in cells containing episomes, similar to LANA. The central and peripheral mutants, but not the lateral mutants, were reduced for BET protein interaction as assessed by co-immunoprecipitation. However, defects in BET protein binding were independent of episome maintenance function. Overall, the reductions in episome maintenance closely correlated with DNA replication deficiencies, suggesting that the replication defects account for the reduced episome persistence. Therefore, the electrostatic patch exerts a key role in LANA-mediated DNA replication and episome persistence and may act through a host cell partner(s) other than a BET protein or by inducing specific structures or complexes.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
4 |
12
|
Sussman A, Saltz J, Das R, Gupta S, Mavriplis D, Ponnusamy R, Crowley K. PARTI primitives for unstructured and block structured problems. ACTA ACUST UNITED AC 1992. [DOI: 10.1016/0956-0521(92)90096-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
|
33 |
2 |
13
|
Cavanagh D, Ponnusamy R, Glaser S, Daabach A, Moll R, Hilgenfeld R. Production of coronavirus nonstructural proteins in soluble form for crystallization. Methods Mol Biol 2007; 454:139-59. [PMID: 19057878 PMCID: PMC7121525 DOI: 10.1007/978-1-59745-181-9_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
For biophysical investigations on viral proteins, in particular for structure determination by X-ray crystallography, relatively large quantities of purified protein are necessary. However, expression of cDNAs coding for viral proteins in prokaryotic or eukaryotic systems is often not straightforward, and frequently the amount and/or the solubility of the protein obtained are not sufficient. Here, we describe a number of protocols for production of nonstructural proteins of coronaviruses that have proven to be efficient in increasing expression yields or solubilities.
Collapse
|
chapter-article |
18 |
1 |
14
|
Sathiamoorthy S, Saravanan A, Ponnusamy R. Chordiogram image descriptor based on visual attention model for image retrieval. ARRAY 2020. [DOI: 10.1016/j.array.2020.100027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
|
5 |
|
15
|
Ponnusamy R, Mesters JR, Moll R, Hilgenfeld R. Structure of non-structural protein 9 of human coronavirus 229E. Acta Crystallogr A 2006. [DOI: 10.1107/s0108767306096462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
|
19 |
|
16
|
Sabari V, Ponnusamy R, Prasanna R, Raghunathan R, Aravindhan S. (1'S,12'R,13'S,17'S)-15',15'-Dimethyl-1,2-dihydro-11',14',16',18'-tetra-oxa-7'-aza-spiro-[indole-3,8'-penta-cyclo-[10.6.0.0(2,9).0(3,7).0(13,17)]octa-deca-ne]-2,10'-dione. Acta Crystallogr Sect E Struct Rep Online 2013; 69:o466. [PMID: 23634025 PMCID: PMC3629507 DOI: 10.1107/s1600536813005436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 02/25/2013] [Indexed: 11/10/2022]
Abstract
In the title compound, C22H24N2O6, the indole ring has a twist conformation and the tetrahydro-2H-pyran-2-one ring a half-chair conformation. One of the pyrrolidine rings adopts an envelope conformation on the N atom, while the other has a twist conformation; the ‘butterfly’ angle between their mean planes is 62.98 (11)°. The dioxolane ring adopts a twist conformation and the tetrahydrofuran ring has an envelope conformation on the C atom in the fused tetrahydro-2H-pyran-2-one ring adjacent to the O atom of the tetrahydrofuran ring. The ‘butterfly’ angle between the mean planes of these two five-membered rings is 69.14 (10)°. In the crystal, molecules are linked by N—H⋯O hydrogen bonds, forming chains along the a axis.
Collapse
|
|
12 |
|
17
|
Venkatesan M, Ponnusamy R. Wave propagation in a solid cylinder of arbitrary cross-section immersed in fluid. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2002; 112:936-942. [PMID: 12243181 DOI: 10.1121/1.1499130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The problem of wave propagation in a solid cylinder of arbitrary cross-section immersed in fluid is studied using the Fourier expansion collocation method. The frequency equations are obtained for longitudinal and flexural vibrations and are studied numerically for elliptic and cardioidal cylinders and are presented in the tabular form and also in the graphical form. The general theory can be used to study any kind of cylinder with proper geometric relations.
Collapse
|
|
23 |
|
18
|
Chen S, Xiao Y, Ponnusamy R, Tan J, Lei J, Hilgenfeld R. X-ray structure of the SH3 domain of the phosphoinositide 3-kinase p85β subunit. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:1328-33. [PMID: 22102226 PMCID: PMC3212445 DOI: 10.1107/s1744309111031691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Accepted: 08/05/2011] [Indexed: 11/10/2022]
Abstract
Src-homology 3 (SH3) domains are involved in extensive protein-protein interactions and constitute key elements of intracellular signal transduction. Three-dimensional structures have been reported for SH3 domains of various proteins, including the 85 kDa regulatory subunit (p85) of phosphoinositide 3-kinase. However, all of the latter structures are of p85 isoform α and no crystal structure of the SH3 domain of the equally important isoform β has been reported to date. In this structural communication, the recombinant production, crystallization and X-ray structure determination at 2.0 Å resolution of the SH3 domain of human p85β is described. The structure reveals a compact β-barrel fold very similar to that of p85α. However, binding studies with two classes of proline-rich ligand peptides demonstrate that the ligand-binding specificity differs slightly between the SH3 domains of human p85β and p85α, despite their high structural similarity.
Collapse
|
research-article |
14 |
|
19
|
Chayen NE, Govada L, Asanithi P, Saridakis E, Jurewicz I, Brunner EW, Ponnusamy R, Cleaver JAS, Dalton AB, Sear RP. Electronic carbon-nanotube-based materials for protein crystallization. Acta Crystallogr A 2010. [DOI: 10.1107/s0108767310093256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
|
15 |
|