1
|
Thami GP, Jaswal R, Kanwar AJ, Radotra BD, Singh IP. Overlap of reticulate acropigmentation of Kitamura, acropigmentation of Dohi and Dowling-Degos disease in four generations. Dermatology 2000; 196:350-1. [PMID: 9621148 DOI: 10.1159/000017913] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A large kindred is being reported in which reticulate acropigmentation of Kitamura (RAPK) and acropigmentation of Dohi (APD) were associated with features of Dowling-Degos disease (DDD). The pedigree was traced through four generations and 50% of the members were found to be affected. RAPK, APD and DDD are inherited as an autosomal dominant trait with variable penetrance. The differentiation and overlap/association of RAPK, APD and DDD is discussed.
Collapse
|
Case Reports |
25 |
38 |
2
|
Kiran K, Rawal HC, Dubey H, Jaswal R, Bhardwaj SC, Prasad P, Pal D, Devanna BN, Sharma TR. Dissection of genomic features and variations of three pathotypes of Puccinia striiformis through whole genome sequencing. Sci Rep 2017; 7:42419. [PMID: 28211474 PMCID: PMC5314344 DOI: 10.1038/srep42419] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 01/10/2017] [Indexed: 01/28/2023] Open
Abstract
Stripe rust of wheat, caused by Puccinia striiformis f. sp. tritici, is one of the important diseases of wheat. We used NGS technologies to generate a draft genome sequence of two highly virulent (46S 119 and 31) and a least virulent (K) pathotypes of P. striiformis from the Indian subcontinent. We generated ~24,000-32,000 sequence contigs (N50;7.4-9.2 kb), which accounted for ~86X-105X sequence depth coverage with an estimated genome size of these pathotypes ranging from 66.2-70.2 Mb. A genome-wide analysis revealed that pathotype 46S 119 might be highly evolved among the three pathotypes in terms of year of detection and prevalence. SNP analysis revealed that ~47% of the gene sets are affected by nonsynonymous mutations. The extracellular secreted (ES) proteins presumably are well conserved among the three pathotypes, and perhaps purifying selection has an important role in differentiating pathotype 46S 119 from pathotypes K and 31. In the present study, we decoded the genomes of three pathotypes, with 81% of the total annotated genes being successfully assigned functional roles. Besides the identification of secretory genes, genes essential for pathogen-host interactions shall prove this study as a huge genomic resource for the management of this disease using host resistance.
Collapse
|
|
8 |
35 |
3
|
Agarwal M, Pathak A, Rathore RS, Prakash O, Singh R, Jaswal R, Seaman J, Chauhan A. Proteogenomic Analysis of Burkholderia Species Strains 25 and 46 Isolated from Uraniferous Soils Reveals Multiple Mechanisms to Cope with Uranium Stress. Cells 2018; 7:cells7120269. [PMID: 30545132 PMCID: PMC6315756 DOI: 10.3390/cells7120269] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/05/2018] [Accepted: 12/10/2018] [Indexed: 01/15/2023] Open
Abstract
Two Burkholderia spp. (strains SRS-25 and SRS-46) were isolated from high concentrations of uranium (U) from the U.S. Department of Energy (DOE)-managed Savannah River Site (SRS). SRS contains soil gradients that remain co-contaminated by heavy metals from previous nuclear weapons production activities. Uranium (U) is one of the dominant contaminants within the SRS impacted soils, which can be microbially transformed into less toxic forms. We established microcosms containing strains SRS-25 and SRS-46 spiked with U and evaluated the microbially-mediated depletion with concomitant genomic and proteomic analysis. Both strains showed a rapid depletion of U; draft genome sequences revealed SRS-25 genome to be of approximately 8,152,324 bp, a G + C content of 66.5, containing a total 7604 coding sequences with 77 total RNA genes. Similarly, strain SRS-46 contained a genome size of 8,587,429 bp with a G + C content of 67.1, 7895 coding sequences, with 73 total RNA genes, respectively. An in-depth, genome-wide comparisons between strains 25, 46 and a previously isolated strain from our research (Burkholderia sp. strain SRS-W-2-2016), revealed a common pool of 3128 genes; many were found to be homologues to previously characterized metal resistance genes (e.g., for cadmium, cobalt, and zinc), as well as for transporter, stress/detoxification, cytochromes, and drug resistance functions. Furthermore, proteomic analysis of strains with or without U stress, revealed the increased expression of 34 proteins from strain SRS-25 and 52 proteins from strain SRS-46; similar to the genomic analyses, many of these proteins have previously been shown to function in stress response, DNA repair, protein biosynthesis and metabolism. Overall, this comparative proteogenomics study confirms the repertoire of metabolic and stress response functions likely rendering the ecological competitiveness to the isolated strains for colonization and survival in the heavy metals contaminated SRS soil habitat.
Collapse
|
Journal Article |
7 |
14 |
4
|
Pathak A, Jaswal R, Chauhan A. Genomic Characterization of a Mercury Resistant Arthrobacter sp. H-02-3 Reveals the Presence of Heavy Metal and Antibiotic Resistance Determinants. Front Microbiol 2020; 10:3039. [PMID: 32010097 PMCID: PMC6978705 DOI: 10.3389/fmicb.2019.03039] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/17/2019] [Indexed: 11/18/2022] Open
Abstract
Nuclear production and industrial activities led to widespread contamination of the Department of Energy (DOE) managed Savannah River Site (SRS), located in South Carolina, United States. The H-02 wetland system was constructed in 2007 for the treatment of industrial and storm water runoff from the SRS Tritium Facility. Albeit at low levels, mercury (Hg) has been detected in the soils of the H-02 wetland ecosystem. In anoxic sediments, Hg is typically methylated by anaerobic microbiota, forming the highly neurotoxic methylmercury (MeHg), which biomagnifies across food webs. However, in surficial oxic wetland soils, microbially mediated demethylation and/or volatilization processes can transform Hg2+ into the less toxic Hg0 form which is released into the atmosphere, thus circumventing MeHg formation. To obtain a deeper understanding on bacterial Hg volatilization, a robust Hg-resistant (HgR) bacteria, called as strain H-02-3 was isolated from the H-02 soils. A draft genome sequence of this strain was obtained at a coverage of 700×, which assembled in 44 contigs with an N50 of 171,569 bp. The genomic size of the strain H-02-3 was 4,708,612 bp with a total number of 4,240 genes; phylogenomic analysis revealed the strain as an Arthrobacter species. Comparative genomics revealed the presence of 1100 unique genes in strain H-02-3, representing 26.7% of the total genome; many identified previously as metal resistance genes (MRGs). Specific to Hg-cycling, the presence of mercuric ion reductase (merA), the organomercurial lyase (merB), and the mercuric resistance operon regulatory protein, were identified. By inference, it can be proposed that the organomercurial lyase facilitates the demethylation of MeHg into Hg2+ which is then reduced to Hg0 by MerA in strain H-02-3. Furthermore, gene prediction using resistome analysis of strain H-02-3 revealed the presence of several antibiotic resistance genes (ARGs), that statistically correlated with the presence of metal resistant genes (MRGs), suggesting co-occurrence patterns of MRGs and ARGs in the strain. Overall, this study delineates environmentally beneficial traits that likely facilitates survival of Arthrobacter sp. H-02-3 within the H-02 wetland soil. Finally, this study also highlights the largely ignored public health risk associated with the co-development of ARGs and MRGs in bacteria native to historically contaminated soils.
Collapse
|
Journal Article |
5 |
12 |
5
|
Kanwar AJ, Jaswal R, Thami GP, Bedi GK. Acquired acromelanosis due to phenytoin. Dermatology 1997; 194:373-4. [PMID: 9252765 DOI: 10.1159/000246149] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
Case Reports |
28 |
11 |
6
|
Pathak A, Chauhan A, Stothard P, Green S, Maienschein-Cline M, Jaswal R, Seaman J. Genome-centric evaluation of Burkholderia sp. strain SRS-W-2-2016 resistant to high concentrations of uranium and nickel isolated from the Savannah River Site (SRS), USA. GENOMICS DATA 2017; 12:62-68. [PMID: 28373958 PMCID: PMC5367793 DOI: 10.1016/j.gdata.2017.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 02/15/2017] [Accepted: 02/24/2017] [Indexed: 01/21/2023]
Abstract
Savannah River Site (SRS), an approximately 800-km2 former nuclear weapons production facility located near Aiken, SC remains co-contaminated by heavy metals and radionuclides. To gain a better understanding on microbially-mediated bioremediation mechanisms, several bacterial strains resistant to high concentrations of Uranium (U) and Nickel (Ni) were isolated from the Steeds Pond soils located within the SRS site. One of the isolated strains, designated as strain SRS-W-2-2016, grew robustly on both U and Ni. To fully understand the arsenal of metabolic functions possessed by this strain, a draft whole genome sequence (WGS) was obtained, assembled, annotated and analyzed. Genome-centric evaluation revealed the isolate to belong to the Burkholderia genus with close affiliation to B. xenovorans LB400, an aggressive polychlorinated biphenyl-degrader. At a coverage of 90 ×, the genome of strain SRS-W-2-2016 consisted of 8,035,584 bases with a total number of 7071 putative genes assembling into 191 contigs with an N50 contig length of 134,675 bases. Several gene homologues coding for resistance to heavy metals/radionuclides were identified in strain SRS-W-2-2016, such as a suite of outer membrane efflux pump proteins similar to nickel/cobalt transporter regulators, peptide/nickel transport substrate and ATP-binding proteins, permease proteins, and a high-affinity nickel-transport protein. Also noteworthy were two separate gene fragments in strain SRS-W-2-2016 homologous to the spoT gene; recently correlated with bacterial tolerance to U. Additionally, a plethora of oxygenase genes were also identified in the isolate, potentially involved in the breakdown of organic compounds facilitating the strain's successful colonization and survival in the SRS co-contaminated soils. The WGS project of Burkholderia sp. strain SRS-W-2-2016 is available at DDBJ/ENA/GenBank under the accession #MSDV00000000.
Collapse
|
Journal Article |
8 |
10 |
7
|
Pathak A, Jaswal R, Xu X, White JR, Edwards B, Hunt J, Brooks S, Rathore RS, Agarwal M, Chauhan A. Characterization of Bacterial and Fungal Assemblages From Historically Contaminated Metalliferous Soils Using Metagenomics Coupled With Diffusion Chambers and Microbial Traps. Front Microbiol 2020; 11:1024. [PMID: 32655505 PMCID: PMC7325934 DOI: 10.3389/fmicb.2020.01024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/27/2020] [Indexed: 01/05/2023] Open
Abstract
The majority of environmental microbiomes are not amenable to cultivation under standard laboratory growth conditions and hence remain uncharacterized. For environmental applications, such as bioremediation, it is necessary to isolate microbes performing the desired function, which may not necessarily be the fast growing or the copiotroph microbiota. Toward this end, cultivation and isolation of microbial strains using diffusion chambers (DC) and/or microbial traps (MT) have both been recently demonstrated to be effective strategies because microbial enrichment is facilitated by soil nutrients and not by synthetically defined media, thus simulating their native habitat. In this study, DC/MT chambers were established using soils collected from two US Department of Energy (DOE) sites with long-term history of heavy metal contamination, including mercury (Hg). To characterize the contamination levels and nutrient status, soils were first analyzed for total mercury (THg), methylmercury (MeHg), total carbon (TC), total nitrogen (TN), and total phosphorus (TP). Multivariate statistical analysis on these measurements facilitated binning of soils under high, medium and low levels of contamination. Bacterial and fungal microbiomes that developed within the DC and MT chambers were evaluated using comparative metagenomics, revealing Chthoniobacter, Burkholderia and Bradyrhizobium spp., as the predominant bacteria while Penicillium, Thielavia, and Trichoderma predominated among fungi. Many of these core microbiomes were also retrieved as axenic isolates. Furthermore, canonical correspondence analysis (CCA) of biogeochemical measurements, metal concentrations and bacterial communities revealed a positive correlation of Chthoniobacter/Bradyrhizobium spp., to THg whereas Burkholderia spp., correlated with MeHg. Penicillium spp., correlated with THg whereas Trichoderma spp., and Aspergillus spp., correlated with MeHg, from the MT approach. This is the first metagenomics-based assessment, isolation and characterization of soil-borne bacterial and fungal communities colonizing the diffusion chambers (DC) and microbial traps (MT) established with long-term metal contaminated soils. Overall, this study provides proof-of-concept for the successful application of DC/MT based assessment of mercury resistant (HgR) microbiomes in legacy metal-contaminated soils, having complex contamination issues. Overall, this study brings out the significance of microbial communities and their relevance in context to heavy metal cycling for better stewardship and restoration of such historically contaminated systems.
Collapse
|
|
5 |
8 |
8
|
Aboodarda SJ, Mira J, Floreani M, Jaswal R, Moon SJ, Amery K, Rupp T, Millet GY. Effects of endurance cycling training on neuromuscular fatigue in healthy active men. Part II: Corticospinal excitability and voluntary activation. Eur J Appl Physiol 2018; 118:2295-2305. [DOI: 10.1007/s00421-018-3951-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/23/2018] [Indexed: 10/28/2022]
|
|
7 |
6 |
9
|
Gendy S, Chauhan A, Agarwal M, Pathak A, Rathore RS, Jaswal R. Is Long-Term Heavy Metal Exposure Driving Carriage of Antibiotic Resistance in Environmental Opportunistic Pathogens: A Comprehensive Phenomic and Genomic Assessment Using Serratia sp. SRS-8-S-2018. Front Microbiol 2020; 11:1923. [PMID: 32973703 PMCID: PMC7468404 DOI: 10.3389/fmicb.2020.01923] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/21/2020] [Indexed: 12/04/2022] Open
Abstract
The carriage of both, heavy metal and antibiotic resistance appears to be a common trait in bacterial communities native to long-term contaminated habitats, including the Savannah River Site (SRS). There is widespread soil contamination at the SRS; a United States Department of Energy (DOE) facility with long-term contamination from past industrial and nuclear weapons production activities. To further evaluate the genomic and metabolic traits that underpin metal and antibiotic resistance, a robust mercury (Hg) and uranium (U)-resistant strain- SRS-8-S-2018, was isolated. Minimum inhibitory concentration of this strain revealed resistance to Hg (10 μg/ml) and U (5 mM), the two main heavy metal contaminants at the SRS. Metabolic assessment of strain SRS-8-S-2018 using Biolog metabolic fingerprinting analysis revealed preference for carbohydrate utilization followed by polymers, amino acids, carboxy acids, and esters; this physiological activity diminished when Hg stress was provided at 1 and 3 μg/ml and completely ceased at 5 μg/ml Hg, indicating that continued release of Hg will have negative metabolic impacts to even those microorganisms that possess high resistance ability. Development of antibiotic resistance in strain SRS-8-S-2018 was evaluated at a functional level using phenomics, which confirmed broad resistance against 70.8% of the 48 antibiotics tested. Evolutionary and adaptive traits of strain SRS-8-S-2018 were further assessed using genomics, which revealed the strain to taxonomically affiliate with Serratia marcescens species, possessing a genome size of 5,323,630 bp, 5,261 proteins (CDS), 55 genes for transfer RNA (tRNA), and an average G + C content of 59.48. Comparative genomics with closest taxonomic relatives revealed 360 distinct genes in SRS-8-S-2018, with multiple functions related to both, antibiotic and heavy metal resistance, which likely facilitates the strain’s survival in a metalliferous soil habitat. Comparisons drawn between the environmentally isolated Serratia SRS-8-S-2018 with 31 other strains revealed a closer functional association with medically relevant isolates suggesting that propensity of environmental Serratia isolates in acquiring virulence traits, as a function of long-term exposure to heavy metals, which is facilitating development, recruitment and proliferation of not only metal resistant genes (MRGs) but antibiotic resistant genes (ARGs), which can potentially trigger future bacterial pathogen outbreaks emanating from contaminated environmental habitats.
Collapse
|
|
5 |
4 |
10
|
Jaswal R, Thami GP, Kanwar AJ. Fluconazole and itraconazole in pityriasis versicolor. Indian J Dermatol Venereol Leprol 1999; 65:216-218. [PMID: 20921662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Pityriasis versicolor is a common superficial fungal infection caused by Malassezia species. It has a high incidence and prevalence in tropical climates. Although it responds well to treatment, relapses and recurrences are frequent. In the present study the therapeutic response of single dose fluconazole (400 mg) with itraconazole (100mg twice daily ? 7 days) was compared in sixty patients of pityriasis versicolor. No significant statistical difference (p>0.05%) was observed between efficacy of two drugs. Therapy with fluconazole is preferable in view of single dose administration and lesser cost as compared to itraconazole.
Collapse
|
|
26 |
|
11
|
Thami GP, Jaswal R, Kanwar AJ. Fibrous hamartoma of infancy in the scrotum. Pediatr Dermatol 1998; 15:326. [PMID: 9720706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
Case Reports |
27 |
|
12
|
Pathak A, Jaswal R, Chauhan A. Corrigendum: Genomic Characterization of a Mercury Resistant Arthrobacter sp. H-02-3 Reveals the Presence of Heavy Metal and Antibiotic Resistance Determinants. Front Microbiol 2020; 11:1047. [PMID: 32523579 PMCID: PMC7262381 DOI: 10.3389/fmicb.2020.01047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 04/28/2020] [Indexed: 11/13/2022] Open
Abstract
[This corrects the article DOI: 10.3389/fmicb.2019.03039.].
Collapse
|
Published Erratum |
5 |
|
13
|
Thami GP, Bedi GK, Jaswal R, Kanwar AJ. Sarcoidosis. Indian J Dermatol Venereol Leprol 2000; 66:97-98. [PMID: 20877041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Two cases of cutaneous sarcoidosis with itchy lesions are reported. Both patients had systemic involvement and were successfully treated with glucocorticoids.
Collapse
|
|
25 |
|
14
|
Jaswal R, Mehta SD, Bedi GK, Kanwar AJ. Conicidence of vitiligo and lichen planus. Indian J Dermatol Venereol Leprol 1997; 63:248-249. [PMID: 20944344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
|
|
28 |
|
15
|
Jaswal R, Bedi GK, Thami GP, Kanwar AJ. Arciform purpura annularis telangiectoides. Indian J Dermatol Venereol Leprol 1998; 64:85-86. [PMID: 20921724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
|
|
27 |
|
16
|
Sharma A, Kumar P, Singh M, Vasishta N, Jaswal R. Rare fetal monster in Holstein crossbred cow. Open Vet J 2013; 3:8-10. [PMID: 26623305 PMCID: PMC4629577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 01/04/2013] [Indexed: 11/16/2022] Open
Abstract
This report describes a rare case of conjoined female twin monster (Monocephalus Thoracopagus Tetrabrachius Tetrapus Dicaudatus) in a Holstein Friesian pluriparous crossbred cow.
Collapse
|
case-report |
12 |
|
17
|
Jaswal R, Thami GP, Kanwar AJ. Dapsone syndrome: an incomplete form. INDIAN JOURNAL OF LEPROSY 1998; 70:229-30. [PMID: 9724867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
Case Reports |
27 |
|
18
|
Thami GP, Kanwar AJ, Jaswal R. Photosensitve lichenoid papular sarcoidosis. Indian J Dermatol Venereol Leprol 1998; 64:105-106. [PMID: 20921733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
|
Letter |
27 |
|