1
|
|
research-article |
15 |
126 |
2
|
Al-Horani RA, Ponnusamy P, Mehta AY, Gailani D, Desai UR. Sulfated pentagalloylglucoside is a potent, allosteric, and selective inhibitor of factor XIa. J Med Chem 2013; 56:867-78. [PMID: 23316863 DOI: 10.1021/jm301338q] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Inhibition of factor XIa (FXIa) is a novel paradigm for developing anticoagulants without major bleeding consequences. We present the discovery of sulfated pentagalloylglucoside (6) as a highly selective inhibitor of human FXIa. Biochemical screening of a focused library led to the identification of 6, a sulfated aromatic mimetic of heparin. Inhibitor 6 displayed a potency of 551 nM against FXIa, which was at least 200-fold more selective than other relevant enzymes. It also prevented activation of factor IX and prolonged human plasma and whole blood clotting. Inhibitor 6 reduced V(MAX) of FXIa hydrolysis of chromogenic substrate without affecting the K(M), suggesting an allosteric mechanism. Competitive studies showed that 6 bound in the heparin-binding site of FXIa. No allosteric small molecule has been discovered to date that exhibits equivalent potency against FXIa. Inhibitor 6 is expected to open up a major route to allosteric FXIa anticoagulants with clinical relevance.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
76 |
3
|
Al-Horani RA, Desai UR. Recent advances on plasmin inhibitors for the treatment of fibrinolysis-related disorders. Med Res Rev 2014; 34:1168-1216. [PMID: 24659483 PMCID: PMC8788159 DOI: 10.1002/med.21315] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Growing evidence suggests that plasmin is involved in a number of physiological processes in addition to its key role in fibrin cleavage. Plasmin inhibition is critical in preventing adverse consequences arising from plasmin overactivity, e.g., blood loss that may follow cardiac surgery. Aprotinin was widely used as an antifibrinolytic drug before its discontinuation in 2008. Tranexamic acid and ε-aminocaproic acid, two small molecule plasmin inhibitors, are currently used in the clinic. Several molecules have been designed utilizing covalent, but reversible, chemistry relying on reactive cyclohexanones, nitrile warheads, and reactive aldehyde peptidomimetics. Other major classes of plasmin inhibitors include the cyclic peptidomimetics and polypeptides of the Kunitz and Kazal-type. Allosteric inhibitors of plasmin have also been designed including small molecule lysine analogs that bind to plasmin's kringle domain(s) and sulfated glycosaminoglycan mimetics that bind to plasmin's catalytic domain. Plasmin inhibitors have also been explored for resolving other disease states including cell metastasis, cell proliferation, angiogenesis, and embryo implantation. This review highlights functional and structural aspects of plasmin inhibitors with the goal of advancing their design.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
69 |
4
|
Abstract
INTRODUCTION Anticoagulants are the mainstay for prevention and/or treatment of thrombotic disorders. Each clinically used anticoagulant is associated with significant adverse consequences, especially bleeding. Factor XIa (FXIa), a key factor involved in the amplification of procoagulation signal, has been suggested as a major target for anticoagulant drug discovery because of reduced risk of bleeding. AREAS COVERED Our literature search uncovered dozens of industrial and academic patents on the discovery of novel FXIa/FXI inhibitors. Small peptidomimetics, sulfated glycosaminoglycan mimetics, polypeptides, antisense oligonucleotides, and monoclonal antibodies have been developed as inhibitors of FXIa. Although many agents are in early discovery/development phases, the activity and safety of a few have been evaluated in various animal models and in humans. EXPERT OPINION FXIa is a promising drug target for development of effective anticoagulants with limited bleeding complications. Literature reveals a major trend in the number of patent applications over the last three years. These inhibitors exploit different approaches for target inhibition. Allosteric modulation of FXIa and biosynthetic inhibition of FXI are mechanistically unique. Despite initial results in patients undergoing knee anthroplasty as with antisense oligonucleotides, major advances should be realized, particularly with respect to pharmacokinetics, for FXI/FXIa inhibitors to enter the clinic.
Collapse
|
Review |
9 |
56 |
5
|
Al-Horani RA, Afosah DK. Recent advances in the discovery and development of factor XI/XIa inhibitors. Med Res Rev 2018; 38:1974-2023. [PMID: 29727017 PMCID: PMC6173998 DOI: 10.1002/med.21503] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 03/09/2018] [Accepted: 04/04/2018] [Indexed: 12/12/2022]
Abstract
Factor XIa (FXIa) is a serine protease homodimer that belongs to the intrinsic coagulation pathway. FXIa primarily catalyzes factor IX activation to factor IXa, which subsequently activates factor X to factor Xa in the common coagulation pathway. Growing evidence suggests that FXIa plays an important role in thrombosis with a relatively limited contribution to hemostasis. Therefore, inhibitors targeting factor XI (FXI)/FXIa system have emerged as a paradigm-shifting strategy so as to develop a new generation of anticoagulants to effectively prevent and/or treat thromboembolic diseases without the life-threatening risk of internal bleeding. Several inhibitors of FXI/FXIa proteins have been discovered or designed over the last decade including polypeptides, active site peptidomimetic inhibitors, allosteric inhibitors, antibodies, and aptamers. Antisense oligonucleotides (ASOs), which ultimately reduce the hepatic biosynthesis of FXI, have also been introduced. A phase II study, which included patients undergoing elective primary unilateral total knee arthroplasty, revealed that a specific FXI ASO effectively protects patients against venous thrombosis with a relatively limited risk of bleeding. Initial findings have also demonstrated the potential of FXI/FXIa inhibitors in sepsis, listeriosis, and arterial hypertension. This review highlights various chemical, biochemical, and pharmacological aspects of FXI/FXIa inhibitors with the goal of advancing their development toward clinical use.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
56 |
6
|
Al-Horani RA, Desai UR. Designing allosteric inhibitors of factor XIa. Lessons from the interactions of sulfated pentagalloylglucopyranosides. J Med Chem 2014; 57:4805-18. [PMID: 24844380 PMCID: PMC4216218 DOI: 10.1021/jm500311e] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
We recently introduced sulfated pentagalloylglucopyranoside
(SPGG)
as an allosteric inhibitor of factor XIa (FXIa) (Al-Horani et al., J. Med Chem.2013, 56, 867–87823316863). To better understand the SPGG–FXIa interaction,
we utilized eight SPGG variants and a range of biochemical techniques.
The results reveal that SPGG’s sulfation level moderately affected
FXIa inhibition potency and selectivity over thrombin and factor Xa.
Variation in the anomeric configuration did not affect potency. Interestingly,
zymogen factor XI bound SPGG with high affinity, suggesting its possible
use as an antidote. Acrylamide quenching experiments suggested that
SPGG induced significant conformational changes in the active site
of FXIa. Inhibition studies in the presence of heparin showed marginal
competition with highly sulfated SPGG variants but robust competition
with less sulfated variants. Resolution of energetic contributions
revealed that nonionic forces contribute nearly 87% of binding energy
suggesting a strong possibility of specific interaction. Overall,
the results indicate that SPGG may recognize more than one anion-binding,
allosteric site on FXIa. An SPGG molecule containing approximately
10 sulfate groups on positions 2 through 6 of the pentagalloylglucopyranosyl
scaffold may be the optimal FXIa inhibitor for further preclinical
studies.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
48 |
7
|
Karuturi R, Al-Horani RA, Mehta SC, Gailani D, Desai UR. Discovery of allosteric modulators of factor XIa by targeting hydrophobic domains adjacent to its heparin-binding site. J Med Chem 2013; 56:2415-28. [PMID: 23451707 DOI: 10.1021/jm301757v] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
To discover promising sulfated allosteric modulators (SAMs) of glycosaminoglycan-binding proteins (GBPs), such as human factor XIa (FXIa), we screened a library of 26 synthetic, sulfated quinazolin-4(3H)-ones (QAOs) resulting in the identification of six molecules that reduced the Vmax of substrate hydrolysis without influencing the KM. Mutagenesis of residues of the heparin-binding site (HBS) of FXIa introduced a nearly 5-fold loss in inhibition potency supporting recognition of an allosteric site. Fluorescence studies showed a sigmoidal binding profile indicating highly cooperative binding. Competition with a positively charged, heparin-binding polymer did not fully nullify inhibition suggesting importance of hydrophobic forces to binding. This discovery suggests the operation of a dual-element recognition process, which relies on an initial Coulombic attraction of anionic SAMs to the cationic HBS of FXIa that forms a locked complex through tight interaction with an adjacent hydrophobic patch. The dual-element strategy may be widely applicable for discovering SAMs of other GBPs.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
34 |
8
|
Al-Horani RA. Factor XI(a) inhibitors for thrombosis: an updated patent review (2016-present). Expert Opin Ther Pat 2019; 30:39-55. [PMID: 31847619 DOI: 10.1080/13543776.2020.1705783] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: Anticoagulation without bleeding is an ideal goal in treating thrombosis, however, this goal has not been achieved. All current anticoagulants are associated with significant bleeding which limits their safe use. Genetic and pharmacological findings indicate that factor XIa is a key player in thrombosis, yet it is a relatively marginal one in hemostasis. Thus, factor XIa and its zymogen offer a unique opportunity to develop anticoagulants with low bleeding risk.Areas covered: A survey of patent literature has retrieved more than 50 patents on the discovery of novel therapeutics targeting factor XI(a) since 2016. Small molecules, monoclonal antibodies, oligonucleotides, and polypeptides have been developed to inhibit factor XI(a). Many inhibitors are in early development and few have been evaluated in clinical trials.Expert opinion: Factor XI(a) is being actively pursued as a drug target for the development of effective and safer anticoagulants. Although many patents claiming factor XI(a) inhibitors were filed prior to 2016, recent literature reveals a moderately declining trend. Nevertheless, more agents have entered different levels of clinical trials. These agents exploit diverse mechanistic strategies for inhibition. Although further development is warranted, reaching one or more of these agents to the clinic will transform the anticoagulation therapy.
Collapse
|
Review |
6 |
33 |
9
|
Patel NJ, Karuturi R, Al-Horani RA, Baranwal S, Patel J, Desai UR, Patel BB. Synthetic, non-saccharide, glycosaminoglycan mimetics selectively target colon cancer stem cells. ACS Chem Biol 2014; 9:1826-33. [PMID: 24968014 PMCID: PMC4136679 DOI: 10.1021/cb500402f] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Selective targeting of cancer stem-like cells (CSCs) is a paradigm-shifting approach. We hypothesized that CSCs can be targeted by interfering with functions of sulfated glycosaminoglycans, which play key roles in cancer cell growth, invasion and metastasis. We developed a tandem, dual screen strategy involving (1) assessing inhibition of monolayer versus spheroid growth and (2) assessing inhibition of primary versus secondary spheroid growth to identify G2.2, a unique sulfated nonsaccharide GAG mimetic (NSGM) from a focused library of 53 molecules, as a selective inhibitor of colon CSCs. The NSGM down-regulated several CSC markers through regulation of gene transcription, while closely related, inactive NSGMs G1.4 and G4.1 demonstrated no such changes. G2.2's effects on CSCs were mediated, in part, through induction of apoptosis and inhibition of self-renewal factors. Overall, this work presents the proof-of-principle that CSCs can be selectively targeted through novel NSGMs, which are likely to advance fundamental understanding on CSCs while also aiding development of novel therapeutic agents.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
33 |
10
|
Aliter KF, Al-Horani RA. Thrombin Inhibition by Argatroban: Potential Therapeutic Benefits in COVID-19. Cardiovasc Drugs Ther 2020; 35:195-203. [PMID: 32870433 PMCID: PMC7459262 DOI: 10.1007/s10557-020-07066-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/27/2020] [Indexed: 12/15/2022]
Abstract
Thrombin is a trypsin-like serine protease with multiple physiological functions. Its role in coagulation and thrombosis is well-established. Nevertheless, thrombin also plays a major role in inflammation by activating protease-activated receptors. In addition, thrombin is also involved in angiogenesis, fibrosis, and viral infections. Considering the pathogenesis of COVID-19 pandemic, thrombin inhibitors may exert multiple potential therapeutic benefits including antithrombotic, anti-inflammatory, and antiviral activities. In this review, we describe the clinical features of COVID-19, the thrombin’s roles in various pathologies, and the potential of argatroban in COVID-19 patients. Argatroban is a synthetic, small molecule, direct, competitive, and selective inhibitor of thrombin. It is approved to parenterally prevent and/or treat heparin-induced thrombocytopenia in addition to other thrombotic conditions. Argatroban also possesses anti-inflammatory and antiviral activities and has a well-established pharmacokinetics profile. It also appears to lack a significant risk of drug–drug interactions with therapeutics currently being evaluated for COVID-19. Thus, argatroban presents a substantial promise in treating severe cases of COVID-19; however, this promise is yet to be established in randomized, controlled clinical trials.
Collapse
|
Review |
5 |
33 |
11
|
Al-Horani RA, Kar S, Aliter KF. Potential Anti-COVID-19 Therapeutics that Block the Early Stage of the Viral Life Cycle: Structures, Mechanisms, and Clinical Trials. Int J Mol Sci 2020; 21:E5224. [PMID: 32718020 PMCID: PMC7432953 DOI: 10.3390/ijms21155224] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/19/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023] Open
Abstract
The ongoing pandemic of coronavirus disease-2019 (COVID-19) is being caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The disease continues to present significant challenges to the health care systems around the world. This is primarily because of the lack of vaccines to protect against the infection and the lack of highly effective therapeutics to prevent and/or treat the illness. Nevertheless, researchers have swiftly responded to the pandemic by advancing old and new potential therapeutics into clinical trials. In this review, we summarize potential anti-COVID-19 therapeutics that block the early stage of the viral life cycle. The review presents the structures, mechanisms, and reported results of clinical trials of potential therapeutics that have been listed in clinicaltrials.gov. Given the fact that some of these therapeutics are multi-acting molecules, other relevant mechanisms will also be described. The reviewed therapeutics include small molecules and macromolecules of sulfated polysaccharides, polypeptides, and monoclonal antibodies. The potential therapeutics target viral and/or host proteins or processes that facilitate the early stage of the viral infection. Frequent targets are the viral spike protein, the host angiotensin converting enzyme 2, the host transmembrane protease serine 2, and clathrin-mediated endocytosis process. Overall, the review aims at presenting update-to-date details, so as to enhance awareness of potential therapeutics, and thus, to catalyze their appropriate use in combating the pandemic.
Collapse
|
Review |
5 |
32 |
12
|
Al-Horani RA, Gailani D, Desai UR. Allosteric inhibition of factor XIa. Sulfated non-saccharide glycosaminoglycan mimetics as promising anticoagulants. Thromb Res 2015; 136:379-87. [PMID: 25935648 DOI: 10.1016/j.thromres.2015.04.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/25/2015] [Accepted: 04/15/2015] [Indexed: 12/30/2022]
Abstract
Recent development of sulfated non-saccharide glycosaminoglycan mimetics, especially sulfated pentagalloyl glucopyranoside (SPGG), as potent inhibitors of factor XIa (FXIa) (J. Med. Chem. 2013; 56:867-878 and J. Med. Chem. 2014; 57:4805-4818) has led to a strong possibility of developing a new line of factor XIa-based anticoagulants. In fact, SPGG represents the first synthetic, small molecule inhibitor that appears to bind in site remote from the active site. Considering that allosteric inhibition of FXIa is a new mechanism for developing a distinct line of anticoagulants, we have studied SPGG's interaction with FXIa with a goal of evaluating its pre-clinical relevance. Comparative inhibition studies with several glycosaminoglycans revealed the importance of SPGG's non-saccharide backbone. SPGG did not affect the activity of plasma kallikrein, activated protein C and factor XIIIa suggesting that SPGG-based anticoagulation is unlikely to affect other pathways connected with coagulation factors. SPGG's effect on APTT of citrated human plasma was also not dependent on antithrombin or heparin cofactor II. Interestingly, SPGG's anticoagulant potential was diminished by serum albumin as well as factor XI, while it could be reversed by protamine or polybrene, which implies possible avenues for developing antidote strategy. Studies with FXIa mutants indicated that SPGG engages Lys529, Arg530 and Arg532, but not Arg250, Lys252, Lys253 and Lys255. Finally, SPGG competes with unfractionated heparin, but not with polyphosphates and/or glycoprotein Ibα, for binding to FXIa. These studies enhance understanding on the first allosteric inhibitor of FXIa and highlight its value as a promising anticoagulant.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
31 |
13
|
Al-Horani RA, Liang A, Desai UR. Designing nonsaccharide, allosteric activators of antithrombin for accelerated inhibition of factor Xa. J Med Chem 2011; 54:6125-38. [PMID: 21800826 PMCID: PMC3165067 DOI: 10.1021/jm2008387] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Antithrombin is a key regulator of coagulation and prime target of heparins, clinically used anticoagulants. Heparins induce a two-step conformational activation of antithrombin, a process that has remained challenging to target with molecules devoid of the antithrombin-binding pentasaccharide DEFGH. Computational screening of a focused library led to the design of two tetra-sulfated N-arylacyl tetrahydroisoquinoline variants as potential nonsaccharide activators of antithrombin. A high yielding synthetic scheme based on Horner-Wadsworth-Emmons or Pictet-Spengler reactions was developed to facilitate the functionalization of the tetrahydoisoquinoline ring, which upon further amidation, deprotection, and sulfation gave the targeted nonsaccharide activators. Spectrofluorometric measurement of affinity displayed antithrombin binding affinities in the low to high micromolar range at pH 6.0, I 0.05, 25 °C. Measurement of second-order rate constants of antithrombin inhibition of factor Xa in the presence and absence of the designed activators showed antithrombin activation in the range of 8-80-fold in the pH 6.0 buffer. This work puts forward 20c, a novel tetra-sulfated N-arylacyl tetrahydroisoquinoline-based molecule, that activates AT only 3.8-fold less than that achieved with DEFGH, suggesting a strong possibility of rationally designing sulfated organic molecules as clinically relevant AT activators.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
29 |
14
|
Al-Horani RA, Kar S. Potential Anti-SARS-CoV-2 Therapeutics That Target the Post-Entry Stages of the Viral Life Cycle: A Comprehensive Review. Viruses 2020; 12:E1092. [PMID: 32993173 PMCID: PMC7600245 DOI: 10.3390/v12101092] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/08/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
The coronavirus disease-2019 (COVID-19) pandemic continues to challenge health care systems around the world. Scientists and pharmaceutical companies have promptly responded by advancing potential therapeutics into clinical trials at an exponential rate. Initial encouraging results have been realized using remdesivir and dexamethasone. Yet, the research continues so as to identify better clinically relevant therapeutics that act either as prophylactics to prevent the infection or as treatments to limit the severity of COVID-19 and substantially decrease the mortality rate. Previously, we reviewed the potential therapeutics in clinical trials that block the early stage of the viral life cycle. In this review, we summarize potential anti-COVID-19 therapeutics that block/inhibit the post-entry stages of the viral life cycle. The review presents not only the chemical structures and mechanisms of the potential therapeutics under clinical investigation, i.e., listed in clinicaltrials.gov, but it also describes the relevant results of clinical trials. Their anti-inflammatory/immune-modulatory effects are also described. The reviewed therapeutics include small molecules, polypeptides, and monoclonal antibodies. At the molecular level, the therapeutics target viral proteins or processes that facilitate the post-entry stages of the viral infection. Frequent targets are the viral RNA-dependent RNA polymerase (RdRp) and the viral proteases such as papain-like protease (PLpro) and main protease (Mpro). Overall, we aim at presenting up-to-date details of anti-COVID-19 therapeutics so as to catalyze their potential effective use in fighting the pandemic.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
28 |
15
|
Gangji RN, Sankaranarayanan NV, Elste J, Al-Horani RA, Afosah DK, Joshi R, Tiwari V, Desai UR. Inhibition of Herpes Simplex Virus-1 Entry into Human Cells by Nonsaccharide Glycosaminoglycan Mimetics. ACS Med Chem Lett 2018; 9:797-802. [PMID: 30128070 DOI: 10.1021/acsmedchemlett.7b00364] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 07/16/2018] [Indexed: 01/29/2023] Open
Abstract
Although heparan sulfate (HS) has been implicated in facilitating entry of enveloped viruses including herpes simplex virus (HSV), small molecules that effectively compete with this abundant, cell surface macromolecule remain unknown. We reasoned that entry of HSV-1 involving its glycoprotein D (gD) binding to HS could be competitively targeted through small, synthetic, nonsaccharide glycosaminoglycan mimetics (NSGMs). Screening a library of NSGMs identified a small, distinct group that bound gD with affinities of 8-120 nM. Studies on HSV-1 entry into HeLa, HFF-1, and VK2/E6E7 cells identified inhibitors with potencies in the range of 0.4-1.0 μM. These synthetic NSGMs are likely to offer promising chemical biology probes and/or antiviral drug discovery opportunities.
Collapse
|
Journal Article |
7 |
23 |
16
|
Al-Horani RA, Abdelfadiel EI, Afosah DK, Morla S, Sistla JC, Mohammed B, Martin EJ, Sakagami M, Brophy DF, Desai UR. A synthetic heparin mimetic that allosterically inhibits factor XIa and reduces thrombosis in vivo without enhanced risk of bleeding. J Thromb Haemost 2019; 17:2110-2122. [PMID: 31397071 PMCID: PMC6893084 DOI: 10.1111/jth.14606] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 07/15/2019] [Accepted: 08/07/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Human factor XIa (FXIa) is an actively pursued target for development of safer anticoagulants. Our long-standing hypothesis has been that allosterism originating from heparin-binding site(s) on coagulation enzymes is a promising approach to yield safer agents. OBJECTIVES To develop a synthetic heparin mimetic as an inhibitor of FXIa so as to reduce clot formation in vivo but not carry high bleeding risk. METHODS We employed a gamut of methods involving synthetic chemistry, biophysical biochemistry, enzyme assays, blood and plasma coagulation assays, and in vivo thrombosis models in this work. RESULTS Sulfated chiro-inositol (SCI), a non-saccharide mimetic of heparin, was synthesized in three steps in overall yields of >50%. SCI inhibited FXIa with potency of 280 nmol/L and preferentially engaged FXIa's heparin-binding site to conformationally alter its active site. SCI inhibition of FXIa could be rapidly reversed by common antidotes, such as protamine. SCI preferentially prolonged plasma clotting initiated with recalcification, rather than thromboplastin, alluding to its intrinsic pathway-based mechanism. Human blood thromboelastography indicated good ex vivo anticoagulation properties of SCI. Rat tail bleeding and maximum-dose-tolerated studies indicated that no major bleeding or toxicity concerns for SCI suggesting a potentially safer anticoagulation outcome. FeCl3 -induced arterial and thromboplastin-induced venous thrombosis model studies in the rat showed reduced thrombus formation by SCI at 250 μg/animal, which matched enoxaparin at 2500 μg/animal. CONCLUSIONS Overall, SCI is a highly promising, allosteric inhibitor of FXIa that induces potent anticoagulation in vivo. Further studies are necessary to assess SCI in animal models mimicking human clinical indications.
Collapse
|
research-article |
6 |
21 |
17
|
Afosah DK, Al-Horani RA, Sankaranarayanan NV, Desai UR. Potent, Selective, Allosteric Inhibition of Human Plasmin by Sulfated Non-Saccharide Glycosaminoglycan Mimetics. J Med Chem 2017; 60:641-657. [DOI: 10.1021/acs.jmedchem.6b01474] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
|
8 |
20 |
18
|
Al-Horani RA. Serpin regulation of fibrinolytic system: implications for therapeutic applications in cardiovascular diseases. Cardiovasc Hematol Agents Med Chem 2015; 12:91-125. [PMID: 25374013 DOI: 10.2174/1871525712666141106095927] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/27/2014] [Accepted: 10/28/2014] [Indexed: 11/22/2022]
Abstract
Fibrinolysis is the ultimate outcome of a cascade of enzymatic reactions in which serine proteases such as plasmin, tissue plasminogen activator (tPA), and urokinase plasminogen activator (uPA) are the key players. Plasmin degrades fibrin into soluble fibrin degradation products. The tPA-mediated plasminogen activation is mainly involved in the dissolution of fibrin in the circulating blood whereas the uPA binds to a specific cellular receptor, resulting in an enhanced activation of cell membrane bound plasminogen. These proteases are regulated by serine protease inhibitors (serpins). Serpin-mediated regulation may occur either at the level of plasmin, mainly by α2-antiplasmin (α2-AP) or at the level of the PAs, mainly by plasminogen activator inhibitor -1 (PAI-1). Other serpins may also be involved including plasminogen activator inhibitor -2 and -3 (PAI-2 and PAI-3), protease nexin-1 (PN-1), C1-inhibitor (C1-INH), placental thrombin inhibitor (PTI), neuroserpin, and yukopin. The serpin-protease reactions serve as potential platforms to develop therapeutics for the treatment and prevention of cardiovascular diseases such as thrombosis and hemorrhage. This review will describe key serpins involved in the regulation of fibrinolytic system, particularly α2-AP and PAI-1, with the focus on their biochemical and biophysical aspects, the pathologies related to their dysfunction or deficiency, their therapeutic roles, and their reported cofactors or modulators.
Collapse
|
Review |
10 |
19 |
19
|
Aliter KF, Al-Horani RA. Potential Therapeutic Benefits of Dipyridamole in COVID-19 Patients. Curr Pharm Des 2021; 27:866-875. [PMID: 33001004 PMCID: PMC7990686 DOI: 10.2174/1381612826666201001125604] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/31/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND COVID-19 pandemic is caused by coronavirus also known as severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The viral infection continues to impact the globe with no vaccine to prevent the infection or highly effective therapeutics to treat the millions of infected people around the world. The disease starts as a respiratory infection, yet it may also be associated with a hypercoagulable state, severe inflammation owing to excessive cytokines production, and a potentially significant oxidative stress. The disease may progress to multiorgan failure and eventually death. OBJECTIVE In this article, we summarize the potential of dipyridamole as an adjunct therapy for COVID-19. METHODS We reviewed the literature describing the biological activities of dipyridamole in various settings of testing. Data were retrieved from PubMed, SciFinder-CAS, and Web of Science. The review concisely covered relevant studies starting from 1977. RESULTS Dipyridamole is an approved antiplatelet drug, that has been used to prevent stroke, among other indications. Besides its antithrombotic activity, the literature indicates that dipyridamole also promotes a host of other biological activities including antiviral, anti-inflammatory, and antioxidant ones. CONCLUSION Dipyridamole may substantially help improve the clinical outcomes of COVID-19 treatment. The pharmacokinetics profile of the drug is well established which makes it easier to design an appropriate therapeutic course. The drug is also generally safe, affordable, and available worldwide. Initial clinical trials have shown a substantial promise for dipyridamole in treating critically ill COVID-19 patients, yet larger randomized and controlled trials are needed to confirm this promise.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
19 |
20
|
Al-Horani RA, Mehta AY, Desai UR. Potent direct inhibitors of factor Xa based on the tetrahydroisoquinoline scaffold. Eur J Med Chem 2012; 54:771-83. [PMID: 22770607 DOI: 10.1016/j.ejmech.2012.06.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 06/12/2012] [Accepted: 06/15/2012] [Indexed: 12/31/2022]
Abstract
Direct inhibition of coagulation factor Xa (FXa) carries significant promise for developing effective and safe anticoagulants. Although a large number of FXa inhibitors have been studied, each can be classified as either possessing a highly flexible or a rigid core scaffold. We reasoned that an intermediate level of flexibility will provide high selectivity for FXa considering that its active site is less constrained in comparison to thrombin and more constrained as compared to trypsin. We studied several core scaffolds including 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid for direct FXa inhibition. Using a genetic algorithm-based docking and scoring approach, a promising candidate 23 was identified, synthesized, and found to inhibit FXa with a K(i) of 28 μM. Optimization of derivative 23 resulted in the design of a potent dicarboxamide 47, which displayed a K(i) of 135 nM. Dicarboxamide 47 displayed at least 1852-fold selectivity for FXa inhibition over other coagulation enzymes and doubled PT and aPTT of human plasma at 17.1 μM and 20.2 μM, respectively, which are comparable to those of clinically relevant agents. Dicarboxamide 47 is expected to serve as an excellent lead for further anticoagulant discovery.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
17 |
21
|
Al-Horani RA, Kar S. Factor XIIIa inhibitors as potential novel drugs for venous thromboembolism. Eur J Med Chem 2020; 200:112442. [PMID: 32502864 PMCID: PMC7513741 DOI: 10.1016/j.ejmech.2020.112442] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/11/2022]
Abstract
Human factor XIIIa (FXIIIa) is a multifunctional transglutaminase with a significant role in hemostasis. FXIIIa catalyzes the last step in the coagulation process. It stabilizes the blood clot by cross-linking the α- and γ-chains of fibrin. It also protects the newly formed clot from plasmin-mediated fibrinolysis, primarily by cross-linking α2-antiplasmin to fibrin. Furthermore, FXIIIa is a major determinant of clot size and clot's red blood cells content. Therefore, inhibitors targeting FXIIIa have been considered to develop a new generation of anticoagulants to prevent and/or treat venous thromboembolism. Several inhibitors of FXIIIa have been discovered or designed including active site and allosteric site small molecule inhibitors as well as natural and modified polypeptides. This work reviews the structural, biochemical, and pharmacological aspects of FXIIIa inhibitors so as to advance their molecular design to become more clinically relevant.
Collapse
|
Review |
5 |
17 |
22
|
Clemons Bankston P, Al-Horani RA. New Small Molecule Drugs for Thrombocytopenia: Chemical, Pharmacological, and Therapeutic Use Considerations. Int J Mol Sci 2019; 20:ijms20123013. [PMID: 31226783 PMCID: PMC6628068 DOI: 10.3390/ijms20123013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/16/2019] [Accepted: 06/18/2019] [Indexed: 12/18/2022] Open
Abstract
This review provides details about three small molecules that were recently approved by the FDA for the treatment of thrombocytopenia. The new treatments include lusutrombopag, avatrombopag, and fostamatinib. The first two drugs are orally active thrombopoietin receptor (TPO-R) agonists which are FDA-approved for the treatment of thrombocytopenia in adult patients with chronic liver disease who are scheduled to undergo a procedure. Fostamatinib is orally active prodrug that, after activation, becomes spleen tyrosine kinase (SYK) inhibitor. Fostamatinib is currently used to treat chronic and refractory immune thrombocytopenia in patients who have had insufficient response to previous treatment. Chemical structures, available dosage forms, recommended dosing, pharmacokinetics, results of toxicity studies in animals, most frequent adverse effects, significant outcomes of the corresponding clinical trials, and their use in specific patient populations are thoroughly described. Described also is a comparative summary of the different aspects of five currently available therapies targeting TPO-R or SYK for the treatment of thrombocytopenia.
Collapse
|
Review |
6 |
17 |
23
|
Al-Horani RA, Aliter KF, Kar S, Mottamal M. Sulfonated Nonsaccharide Heparin Mimetics Are Potent and Noncompetitive Inhibitors of Human Neutrophil Elastase. ACS OMEGA 2021; 6:12699-12710. [PMID: 34056422 PMCID: PMC8154244 DOI: 10.1021/acsomega.1c00935] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/13/2021] [Indexed: 05/03/2023]
Abstract
Human neutrophil elastase (HNE) is a serine protease that plays vital roles in inflammation, innate immune response, and tissue remodeling processes. HNE has been actively pursued as a drug target, particularly for the treatment of cardiopulmonary diseases. Although thousands of molecules have been reported to inhibit HNE, yet very few are being evaluated in early clinical trials, with sivelestat as the only approved HNE inhibitor. We report here a novel chemotype of sulfonated nonsaccharide heparin mimetics as potent and noncompetitive inhibitors of HNE. Using a chromogenic substrate hydrolysis assay, 14 sulfonated nonsaccharide heparin mimetics were tested for their inhibitory activity against HNE. Only 12 molecules inhibited HNE with IC50 values of 0.22-88.3 μM. The inhibition of HNE by these molecules was salt-dependent. Interestingly, a specific hexa-sulfonated molecule inhibited HNE with an IC50 value of 0.22 μM via noncompetitive mechanism, as demonstrated by Michaelis-Menten kinetics. The hexa-sulfonated derivative demonstrated at least 455-, 221-, 1590-, 21-, and 381-fold selectivity indices over other heparin-binding coagulation proteins including factors IIa, Xa, IXa, XIa, and FXIIIa, respectively. At the highest concentrations tested, the molecule also did not significantly inhibit other serine proteases of plasmin, trypsin, and chymotrypsin. Further supporting its selectivity, the molecule did not show heparin-like effects on clotting times of human plasma. The molecule also did not affect the proliferation of three cell lines at a concentration as high as 10 μM. Interestingly, the hexa-sulfonated molecule also inhibited cathepsin G with an IC50 value of 0.57 μM alluding to a dual anti-inflammatory action. A computational approach was exploited to identify putative binding site(s) for this novel class of HNE inhibitors. Overall, the reported hexa-sulfonated nonsaccharide heparin mimetic serves as a new platform to develop potent, selective, and noncompetitive inhibitors of HNE for therapeutic purposes.
Collapse
|
research-article |
4 |
16 |
24
|
Al-Horani RA, Karuturi R, Lee M, Afosah DK, Desai UR. Allosteric Inhibition of Factor XIIIa. Non-Saccharide Glycosaminoglycan Mimetics, but Not Glycosaminoglycans, Exhibit Promising Inhibition Profile. PLoS One 2016; 11:e0160189. [PMID: 27467511 PMCID: PMC4965010 DOI: 10.1371/journal.pone.0160189] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/14/2016] [Indexed: 12/13/2022] Open
Abstract
Factor XIIIa (FXIIIa) is a transglutaminase that catalyzes the last step in the coagulation process. Orthostery is the only approach that has been exploited to design FXIIIa inhibitors. Yet, allosteric inhibition of FXIIIa is a paradigm that may offer a key advantage of controlled inhibition over orthosteric inhibition. Such an approach is likely to lead to novel FXIIIa inhibitors that do not carry bleeding risks. We reasoned that targeting a collection of basic amino acid residues distant from FXIIIa’s active site by using sulfated glycosaminoglycans (GAGs) or non-saccharide GAG mimetics (NSGMs) would lead to the discovery of the first allosteric FXIIIa inhibitors. We tested a library of 22 variably sulfated GAGs and NSGMs against human FXIIIa to discover promising hits. Interestingly, although some GAGs bound to FXIIIa better than NSGMs, no GAG displayed any inhibition. An undecasulfated quercetin analog was found to inhibit FXIIIa with reasonable potency (efficacy of 98%). Michaelis-Menten kinetic studies revealed an allosteric mechanism of inhibition. Fluorescence studies confirmed close correspondence between binding affinity and inhibition potency, as expected for an allosteric process. The inhibitor was reversible and at least 9-fold- and 26-fold selective over two GAG-binding proteins factor Xa (efficacy of 71%) and thrombin, respectively, and at least 27-fold selective over a cysteine protease papain. The inhibitor also inhibited the FXIIIa-mediated polymerization of fibrin in vitro. Overall, our work presents the proof-of-principle that FXIIIa can be allosterically modulated by sulfated non-saccharide agents much smaller than GAGs, which should enable the design of selective and safe anticoagulants.
Collapse
|
Journal Article |
9 |
16 |
25
|
Afosah DK, Verespy S, Al-Horani RA, Boothello RS, Karuturi R, Desai UR. A small group of sulfated benzofurans induces steady-state submaximal inhibition of thrombin. Bioorg Med Chem Lett 2018; 28:1101-1105. [PMID: 29459207 DOI: 10.1016/j.bmcl.2018.01.069] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 01/29/2018] [Accepted: 01/31/2018] [Indexed: 01/07/2023]
Abstract
Despite the development of promising direct oral anticoagulants, which are all orthosteric inhibitors, a sizable number of patients suffer from bleeding complications. We have hypothesized that allosterism based on the heparin-binding exosites presents a major opportunity to induce sub-maximal inhibition of coagulation proteases, thereby avoiding/reducing bleeding risk. We present the design of a group of sulfated benzofuran dimers that display heparin-binding site-dependent partial allosteric inhibition of thrombin against fibrinogen (ΔY = 55-75%), the first time that a small molecule (MW < 800) has been found to thwart macromolecular cleavage by a monomeric protease in a controlled manner. The work leads to the promising concept that it should be possible to develop allosteric inhibitors that reduce clotting, but do not completely eliminate it, thereby avoiding major bleeding complications that beset anticoagulants today.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
16 |