1
|
Dalapati R, Sakthivel B, Ghosalya MK, Dhakshinamoorthy A, Biswas S. A cerium-based metal–organic framework having inherent oxidase-like activity applicable for colorimetric sensing of biothiols and aerobic oxidation of thiols. CrystEngComm 2017. [DOI: 10.1039/c7ce01053b] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A cerium-based MOF exhibits oxidase-like activity for colorimetric sensing of biothiols and aerobic oxidation of thiols.
Collapse
|
|
8 |
86 |
2
|
Dalapati R, Sakthivel B, Dhakshinamoorthy A, Buragohain A, Bhunia A, Janiak C, Biswas S. A highly stable dimethyl-functionalized Ce(iv)-based UiO-66 metal–organic framework material for gas sorption and redox catalysis. CrystEngComm 2016. [DOI: 10.1039/c6ce01704e] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
|
9 |
72 |
3
|
Dalapati R, Kökçam-Demir Ü, Janiak C, Biswas S. The effect of functional groups in the aqueous-phase selective sensing of Fe(iii) ions by thienothiophene-based zirconium metal–organic frameworks and the design of molecular logic gates. Dalton Trans 2018; 47:1159-1170. [DOI: 10.1039/c7dt04130f] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The effect of functional groups in the fluorescence sensing of Fe(iii) ions in aqueous medium by four thienothiophene-based Zr MOFs is discussed.
Collapse
|
|
7 |
50 |
4
|
Dalapati R, Nandi S, Gogoi C, Shome A, Biswas S. Metal-Organic Framework (MOF) Derived Recyclable, Superhydrophobic Composite of Cotton Fabrics for the Facile Removal of Oil Spills. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8563-8573. [PMID: 33577280 DOI: 10.1021/acsami.0c21337] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Marine oil spill cleanup is one of the major challenges in recent years due to its detrimental effect on our ecosystem. Hence, the development of new superhydrophobic oil absorbent materials is in high demand. The third-generation porous materials, namely metal-organic frameworks (MOFs), have drawn great attention due to their fascinating properties. In this work, a superhydrophobic MOF with UiO-66 (SH-UiO-66) topology was synthesized strategically with a new fluorinated dicarboxylate linker to absorb oil selectively from water. The fully characterized superhydrophobic MOF showed extreme water repellency with an advancing water contact angle (WCA) of 160° with a contact angle hysteresis (CAH) of 8°. The newly synthesized porous MOF (SBET = 873 m2 g-1) material with high WCA found its promising application in oil/water separation. The superhydrophobic SH-UiO-66 MOF was further used for the in-situ coating on naturally abundant cotton fiber to make a superhydrophobic MOF@cotton composite material. The MOF-coated cotton fiber composite (SH-UiO-66@CFs) showed water repellency with a WCA of 163° and a low CAH of 4°. The flexible superhydrophobic SH-UiO-66@CFs showed an oil absorption capacity more than 2500 wt % for both heavy and light oils at room temperature. The superoleophilicity of SH-UiO-66@CFs was further exploited to separate light floating oil as well as sedimentary heavy oil from water. SH-UiO-66@CFs material can also separate oil from the oil/water mixture by gravity-directed active filtration. Hence, the newly developed MOF-based composite material has high potential as an oil absorbent material for marine oil spill cleanup.
Collapse
|
|
4 |
29 |
5
|
Dalapati R, Nandi S, Reinsch H, Bhunia BK, Mandal BB, Stock N, Biswas S. Fluorogenic naked-eye sensing and live-cell imaging of cyanide by a hydrazine-functionalized CAU-10 metal–organic framework. CrystEngComm 2018. [DOI: 10.1039/c8ce00818c] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A hydrazine-functionalized Al(iii) based metal–organic framework was utilized for the detection of lethal cyanide in water and in living cells.
Collapse
|
|
7 |
25 |
6
|
Dalapati R, Biswas S. A Pyrene-Functionalized Metal–Organic Framework for Nonenzymatic and Ratiometric Detection of Uric Acid in Biological Fluid via Conformational Change. Inorg Chem 2019; 58:5654-5663. [DOI: 10.1021/acs.inorgchem.8b03629] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
|
6 |
25 |
7
|
Dalapati R, Nandi S, Biswas S. Post-synthetic modification of a metal–organic framework with a chemodosimeter for the rapid detection of lethal cyanide via dual emission. Dalton Trans 2020; 49:8684-8692. [DOI: 10.1039/d0dt00837k] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A post-synthetically modified chemodosimeter grafted MOF is presented for the selective, visual and fluorogenic detection of cyanide via dual emission.
Collapse
|
|
5 |
24 |
8
|
Das A, Alam M, Gogoi C, Dalapati R, Biswas S. Rational design of a functionalized aluminum metal-organic framework as a turn-off fluorescence sensor for α-ketoglutaric acid. Dalton Trans 2020; 49:16928-16934. [PMID: 33188376 DOI: 10.1039/d0dt02323j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A 3D metal-organic framework (MOF) called Al-DUT-5-N2H3 (1) (DUT: Dresden University of Technology) was prepared hydrothermally using Al(iii) salt and a hydrazinyl functionalized linker called 2-hydrazinyl-[1,1'-biphenyl]-4,4'-dicarboxylic acid (BPDC-N2H3). Material 1 was successfully characterized by X-ray powder diffraction (XRPD), FT-IR spectroscopy, N2 sorption (BET) experiment, thermogravimetric analysis (TGA), EDX and FE-SEM analyses. The activated form of material 1 (called 1') was achieved by a direct heating process. Material 1' was successfully employed for the solution-phase fluorescence detection of α-ketoglutaric acid (α-KG). It showed high detection performance even when there were other competitive analytes present in the mixture. Material 1' is the first MOF-based fluorescent turn-off sensor for the detection of α-KG. The response time for α-KG is exceptionally low (60 s) as compared to any other reported α-KG sensor. The limit of detection (LOD) was found to be 0.61 μM, which is far better as compared to any other reported sensor for α-KG to date. The mechanism for α-KG sensing was thoroughly investigated and proposed to be PET (photoinduced electron transfer) process by TD-DFT (time-dependent DFT) calculations.
Collapse
|
|
5 |
6 |
9
|
Santra B, Mandal D, Gupta V, Kalita P, Kumar V, Narayanan RS, Dey A, Chrysochos N, Mohammad A, Singh A, Zimmer M, Dalapati R, Biswas S, Schulzke C, Chandrasekhar V, Scheschkewitz D, Jana A. Structural Diversity in Supramolecular Organization of Anionic Phosphate Monoesters: Role of Cations. ACS OMEGA 2019; 4:2118-2133. [PMID: 31459460 PMCID: PMC6648147 DOI: 10.1021/acsomega.8b03192] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/02/2019] [Indexed: 06/10/2023]
Abstract
Syntheses and structures of anionic arylphosphate monoesters [ArOP(O)2(OH)]- (Ar = 2,6-CHPh2-4-R-C6H2; R = Me/Et/iPr/tBu) with different counter cations are reported. The counter cations were varied systematically: imidazolium cation, 2-methyl imidazolium cation, N-methyl imidazolium cation, N,N'-alkyl substituted imidazolium cation, 1,4-diazabicyclo[2.2.2]octan-1-ium cation, 4,4'-bipyridinium dication, and magnesium(II) dication. The objective was to examine if the supramolecular structure of anionic arylphosphate monoesters could be modulated by varying the cation. It was found that an eight-membered P2O4H2-hydrogen-bonded dimeric motif involving intermolecular H-bonding between the [P(O)(OH)] unit of the anionic phosphate monoester along with the counter cation is formed with 2-methyl imidazolium cation, N-methyl imidazolium cation, N,N'-alkyl substituted imidazolium cation, 1,4-diazabicyclo[2.2.2]octan-1-ium cation, and magnesium(II) dication; both discrete and polymeric H-bonded structures are observed. In the case of imidazolium cations and 1,4-diazabicyclo[2.2.2]octan-1-ium cation, the formation of one-dimensional polymers (single lane/double lane) was observed. On the other hand, two types of phosphate motifs, intermolecular H-bonded dimer and an open-form, were observed in the case of 4,4'-bipyridinium dication.
Collapse
|
research-article |
6 |
5 |
10
|
Dalapati R, Biswas S. Aqueous Phase Sensing of Fe 3+ and Ascorbic Acid by a Metal-Organic Framework and Its Implication in the Construction of Multiple Logic Gates. Chem Asian J 2019; 14:2822-2830. [PMID: 31192533 DOI: 10.1002/asia.201900546] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/10/2019] [Indexed: 11/07/2022]
Abstract
A new HfIV -based metal-organic framework with UiO-66 topology was synthesized via a one-step solvothermal method by using 3-methyl-4-phenylthieno[2,3-b]thiophene-2,5-dicarboxylic acid (H2 MPTDC) as a ligand. The MOF material showed a high stability in a broad pH range (from pH 2 to pH 12) in an aqueous medium. The presence of hydrophobic methyl and phenyl substituents in the carboxylic acid ligand and strong Hf-O bond play crucial roles in its stability. The new MOF material was systematically characterized by various techniques such as XRPD, N2 sorption, thermogravimetric analyses and FT-IR spectroscopy. The photophysical properties of the MOF material were also examined by steady-state and time-resolved fluorescence studies. It was observed that the blue fluorescence of the MOF material was selectively quenched in the presence of Fe3+ ion in pure aqueous medium. A mechanistic study disclosed that quenching occurs via a strong inner filter effect (IFE) arising from Fe3+ ion in aqueous medium. Interestingly, the fluorescence of the MOF material can be recovered by elimination of the IFE of Fe3+ ion via reduction of Fe3+ ion by ascorbic acid (AA). Based on the fluorescence recovery by AA, a MOF based on-off-on probe was developed for the sensing of Fe3+ ion and AA in aqueous medium. Inspired by this reversible sensing event, we demonstrate basic (NOT, OR, YES, INHIBIT and IMP) and higher integrated logic operations utilizing this fluorescent MOF. This MOF-based logic systems could be potentially used for next-generation logic-gate based analytical applications as well as for the detection and discrimination of targeted molecules in various complex domains.
Collapse
|
Journal Article |
6 |
4 |
11
|
Dalapati R, Manickam S, Shi J, Hunter M, Zang L. Perylene diimide based fluorescent sensors for aqueous detection of perfluorooctane sulfonate (PFOS). Anal Chim Acta 2025; 1341:343670. [PMID: 39880502 DOI: 10.1016/j.aca.2025.343670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/30/2024] [Accepted: 01/14/2025] [Indexed: 01/31/2025]
Abstract
BACKGROUND Perfluorooctane sulfonate (PFOS), one of the most harmful members of the large group of per- and poly-fluoroalkyl substances (PFAS), is notorious for its environmental persistence, bioaccumulation, and toxic effects, raising serious environmental and health concerns. Developing rapid and sensitive methods to detect PFOS in water is critical for effective monitoring and protection against this hazardous chemical. RESULTS In this study, we developed rapid and highly sensitive fluorometric sensors (PDI-2+ , PDI-6+ ) for detecting PFOS. We also investigated the influence of the sensor's molecular structure on its performance. Our findings reveal that the formation of a supramolecular complex between PFOS and the cationic fluorophores, facilitated by the synergistic interplay of electrostatic, hydrophobic and π-π stacking interactions, enables a quick and efficient fluorometric sensing response for the detection of PFOS in aqueous systems. Remarkably, the detection limit for PFOS was found to be as low as 3.5 nM (1.9 ppb) for PDI-2+ and 2.7 nM (1.4 ppb) for PDI-6+ , showcasing the high sensitivity of the sensor. The PDI sensors also demonstrate a high level of selectivity for PFOS against PFOA (another top two PFAS designated as hazardous substances by the U.S. EPA), other PFAS like GenX, structurally similar detergents, and inorganic salts typically found in water. Furthermore, the sensor's successful detection of PFOS in real water samples underscores its potential for environmental monitoring. SIGNIFICANCE The development of novel, water-soluble fluorometric sensors offers a promising solution for the rapid and sensitive detection of PFOS in water. Their high selectivity and low detection limits make them valuable tools for environmental monitoring and pollution control. The findings of this study contribute to the advancement of analytical techniques for PFAS detection and support ongoing efforts to mitigate the environmental and health risks posed by PFOS contamination.
Collapse
|
|
1 |
|
12
|
Zhang M, Dalapati R, Shi J, Liao C, Tian Q, Wang C, Yang X, Chen S, Porter MD, Zang L. Fluorescent sensor based on solid-phase extraction with negligible depletion: A proof-of-concept study with amines as analytes. Anal Chim Acta 2023; 1245:340828. [PMID: 36737131 DOI: 10.1016/j.aca.2023.340828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/21/2022] [Accepted: 01/11/2023] [Indexed: 01/14/2023]
Abstract
This paper describes the development and proof-of-concept testing of an easy-to-use trace analysis technique, namely F-SPE, by coupling fluorescent sensor with solid phase extraction (SPE). F-SPE is a two-step methodology that concentrates an analyte from a liquid sample onto a fluorophore-modified membrane and measures the amount of analyte from the extent the extracted analyte quenches the emission of the fluorophore. By applying the principle of negligible depletion (ND) intrinsic to SPE, the procedure of F-SPE for analyzing a sample can be markedly simplified while maintaining the ability to detect analytes at low limits of detection (LOD). The merits of this approach are demonstrated by impregnating a SPE membrane with a perylene diimide (PDI) fluorophore, N,N'-di(nonyldecyl)-perylene-3,4,9,10-tetracarboxylic diimide (C9/9-PDI), for the low-level detection of organic amines (e.g., aniline) and amine-containing drugs (e.g., Kanamycin). The sensing mechanism is based on the donor-acceptor quenching of PDI by amines, which, when coupled with the concentrative nature of SPE, yields LODs for aniline and Kanamycin of 67 nM (∼6 ppb) and 32 nM (∼16 ppb), respectively.
Collapse
|
|
2 |
|
13
|
Gao L, Dalapati R, Gao B, Huang X, Zhao D, Wang F, Zang L. Mitochondrial STED Imaging and Membrane Potential Monitoring with a Cationic Molecular Probe. SMALL METHODS 2024; 8:e2400525. [PMID: 39268793 DOI: 10.1002/smtd.202400525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/05/2024] [Indexed: 09/15/2024]
Abstract
Mitochondria are essential organelles that not only undergo dynamic morphological changes but also exhibit functional activities such as mitochondrial membrane potential (MMP). While super-resolution techniques such as stimulated emission depletion (STED) nanoscopy can visualize the ultrastructure of mitochondria and the MMP probe can monitor mitochondria function, few dyes meet both demands. Here, a small molecule (MitoPDI-90) based on perylene diimide with cationic groups is reported and used for mitochondrial STED imaging and MMP indication. Characterized by excellent photostability, biocompatibility, and high quantum yield, MitoPDI-90 exhibits STED imaging compatibility, facilitating visualization of mitochondrial cristae and time-lapse imaging of highly dynamic mitochondria in living cells. Besides, MitoPDI-90 targets the mitochondria through electrical potential, also enabling live-cell MMP monitoring. MitoPDI-90 allows for super-resolution visualization and time-lapse imaging of mitochondria, and more importantly, indication of changes in MMP, providing insight into the functional activity of live-cell mitochondria.
Collapse
|
|
1 |
|
14
|
Dalapati R, Hunter M, Sk M, Yang X, Zang L. Fluorescence Turn-on Detection of Perfluorooctanoic Acid (PFOA) by Perylene Diimide-Based Metal-Organic Framework. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32344-32356. [PMID: 38718353 DOI: 10.1021/acsami.4c03389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
A novel, water-stable, perylene diimide (PDI) based metal-organic framework (MOF), namely, U-1, has been synthesized for selective and sensitive detection of perfluorooctanoic acid (PFOA) in mixed aqueous solutions. The MOF shows highly selective fluorescence turn-on detection via the formation of a PFOA-MOF complex. This PFOA-MOF complex formation was confirmed by various spectroscopic techniques. The detection limit of the MOF for PFOA was found to be 1.68 μM in an aqueous suspension. Upon coating onto cellulose paper, the MOF demonstrated a significantly lower detection limit, down to 3.1 nM, which is mainly due to the concentrative effect of solid phase extraction (SPE). This detection limit is lower than the fluorescence sensors based on MOFs previously reported for PFAS detection. The MOF sensor is regenerable and capable of detecting PFOA in drinking and tap water samples. The PDI-MOF-based sensor reported herein represents a novel approach, relying on fluorescence turn-on response, that has not yet been thoroughly investigated for detecting per- and polyfluoroalkyl substances (PFAS) until now.
Collapse
|
|
1 |
|