1
|
Abdulkhaleq LA, Assi MA, Abdullah R, Zamri-Saad M, Taufiq-Yap YH, Hezmee MNM. The crucial roles of inflammatory mediators in inflammation: A review. Vet World 2018; 11:627-635. [PMID: 29915501 PMCID: PMC5993766 DOI: 10.14202/vetworld.2018.627-635] [Citation(s) in RCA: 364] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/10/2018] [Indexed: 12/12/2022] Open
Abstract
The inflammatory response is a crucial aspect of the tissues' responses to deleterious inflammogens. This complex response involves leukocytes cells such as macrophages, neutrophils, and lymphocytes, also known as inflammatory cells. In response to the inflammatory process, these cells release specialized substances which include vasoactive amines and peptides, eicosanoids, proinflammatory cytokines, and acute-phase proteins, which mediate the inflammatory process by preventing further tissue damage and ultimately resulting in healing and restoration of tissue function. This review discusses the role of the inflammatory cells as well as their by-products in the mediation of inflammatory process. A brief insight into the role of natural anti-inflammatory agents is also discussed. The significance of this study is to explore further and understand the potential mechanism of inflammatory processes to take full advantage of vast and advanced anti-inflammatory therapies. This review aimed to reemphasize the importance on the knowledge of inflammatory processes with the addition of newest and current issues pertaining to this phenomenon.
Collapse
|
Review |
7 |
364 |
2
|
Taha MME, Abdul AB, Abdullah R, Ibrahim TAT, Abdelwahab SI, Mohan S. Potential chemoprevention of diethylnitrosamine-initiated and 2-acetylaminofluorene-promoted hepatocarcinogenesis by zerumbone from the rhizomes of the subtropical ginger (Zingiber zerumbet). Chem Biol Interact 2010; 186:295-305. [PMID: 20452335 DOI: 10.1016/j.cbi.2010.04.029] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2009] [Revised: 04/27/2010] [Accepted: 04/28/2010] [Indexed: 01/12/2023]
Abstract
Zerumbone (ZER), a monosesquiterpene found in the subtropical ginger (Zingiber zerumbet Smith), possesses antiproliferative properties to several cancer cells lines, including the cervical, skin and colon cancers. In this study, the antitumourigenic effects of ZER were assessed in rats induced to develop liver cancer with a single intraperitoneal injection of diethylnitrosamine (DEN, 200 mg/kg) and dietary 2-acetylaminofluorene (AAF) (0.02%). The rats also received intraperitoneal ZER injections at 15, 30 or 60 mg/kg body wt. twice a week for 11 weeks, beginning week four post-DEN injection. The hepatocytes of positive control (DEN/AAF) rats were smaller with larger hyperchromatic nuclei than normal, showing cytoplasmic granulation and intracytoplasmic violaceous material, which were characteristics of hepatocarcinogenesis. Histopathological evaluations showed that ZER protects the rat liver from the carcinogenic effects of DEN and AAF. Serum alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (AP) and alpha-fetoprotein (AFP) were significantly lower (P<0.05) in ZER-treated than untreated rats with liver cancer. The liver malondialdehyde (MDA) concentrations significantly (P<0.05) increased in the untreated DEN/AAF rats indicating hepatic lipid peroxidation. There was also significant (P<0.05) reduction in the hepatic tissue glutathione (GSH) concentrations. The liver sections of untreated DEN/AAF rats also showed abundant proliferating cell nuclear antigen (PCNA), while in ZER-treated rats the expression of this antigen was significantly (P<0.05) lowered. By the TUNEL assay, there were significantly (P<0.05) higher numbers of apoptotic cells in DEN/AAF rats treated with ZER than those untreated. Zerumbone treatment had also increased Bax and decreased Bcl-2 protein expression in the livers of DEN/AAF rats, which suggested increased apoptosis. Even after 11 weeks of ZER treatment, there was no evidence of abnormality in the liver of normal rats. This study suggests that ZER reduces oxidative stress, inhibits proliferation, induces mitochondria-regulated apoptosis, thus minimising DEN/AAF-induced carcinogenesis in rat liver. Therefore, ZER has great potential in the treatment of liver cancers.
Collapse
|
|
15 |
78 |
3
|
Awang MB, Jaafar AB, Abdullah AM, Ismail MB, Hassan MN, Abdullah R, Johan S, Noor H. Air quality in Malaysia: impacts, management issues and future challenges. Respirology 2000; 5:183-96. [PMID: 10894109 DOI: 10.1046/j.1440-1843.2000.00248.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Observations have been made on the long-term trends of major air pollutants in Malaysia including nitrogen dioxide, carbon monoxide, the ozone and total suspended particulate matter (particularly PM10), and sulfur dioxide, emitted from industrial and urban areas from early 1970s until late 1998. METHODOLOGY The data show that the status of atmospheric environment in Malaysia, in particular in highly industrialized areas such as Klang Valley, was determined both by local and transboundary emissions and could be described as haze and non-haze periods. RESULTS During the non-haze periods, vehicular emissions accounted for more than 70% of the total emissions in the urban areas and have demonstrated two peaks in the diurnal variations of the aforementioned air pollutants, except ozone. The morning 'rush-hour' peak was mainly due to vehicle emissions, while the late evening peak was mainly attributed to meteorological conditions, particularly atmospheric stability and wind speed. Total suspended particulate matter was the main pollutant with its concentrations at few sites often exceeding the Recommended Malaysia Air Quality Guidelines. The levels of other pollutants were generally within the guidelines. Since 1980, six major haze episodes were officially reported in Malaysia: April 1983, August 1990, June 1991, October 1991, August to October 1994, and July to October 1997. The 1997 haze episode was the worst ever experienced by the country. Short-term observations using continuous monitoring systems during the haze episodes during these periods clearly showed that suspended particulate matter (PM10) was the main cause of haze and was transboundary in nature. Large forest fires in parts of Sumatra and Kalimantan during the haze period, clearly evident in satellite images, were identified as the probable key sources of the widespread heavy haze that extended across Southeast Asia from Indonesia to Singapore, Malaysia and Brunei. The results of several studies have also provided strong evidence that biomass burning is the dominating source of particulate matter. The severity and extent of 1997's haze pollution was unprecedented, affecting some 300 million people across the region. The amount of economic costs suffered by Southeast Asian countries during this environmental disaster was enormous and is yet to be fully determined. Among the important sectors severely affected were air and land transport, shipping, construction, tourism and agro-based industries. The economic cost of the haze-related damage to Malaysia presented in this study include short-term health costs, production losses, tourism-related losses and the cost of avertive action. Although the cost reported here is likely to be underestimated, they are nevertheless significant (roughly RM1 billion). CONCLUSIONS The general air quality of Malaysia since 1970 has deteriorated. Studies have shown that should no effective countermeasures be introduced, the emissions of sulfur dioxide, nitrogen oxides, particulate matter, hydrocarbons and carbon monoxide in the year 2005 would increase by 1.4, 2.12, 1.47 and 2.27 times, respectively, from the 1992 levels.
Collapse
|
|
25 |
78 |
4
|
Mehra RK, Kodati VR, Abdullah R. Chain length-dependent Pb(II)-coordination in phytochelatins. Biochem Biophys Res Commun 1995; 215:730-6. [PMID: 7488015 DOI: 10.1006/bbrc.1995.2524] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
UV/visible and circular dichroism (CD) spectroscopy have been used to study the binding of Pb(II) to plant metal-sequestering peptides, phytochelatins (PCs), with the structure (gamma Glu-Cys)2Gly, (gamma Glu-Cys)3Gly and (gamma Glu-Cys)4Gly. Saturation of the Pb(II)-induced charge-transfer bands indicated that both (gamma Glu-Cys)2Gly and (gamma Glu-Cys)3Gly bound one metal ion per peptide molecule. However, (gamma Glu-Cys)4Gly formed two distinct species with stoichiometries of one and two Pb(II) ions per peptide molecule, respectively. The optical spectra of Pb(II)1-(gamma Glu-Cys)4Gly were similar to those of Pb(II)1-(gamma Glu-Cys)3Gly, whereas the spectra of Pb(II)2-(gamma Glu-Cys)4Gly were similar to those of Pb(II)1-(gamma Glu-Cys)2Gly. Since cysteinyl thiolates are the likely ligands for Pb(II) in PCs, Pb(II) appears to form two-, three- and four-coordinate complexes with PCs depending on their chain length. Furthermore, Pb(II) may exhibit multiple coordination in longer chain PCs as indicated by the formation of two Pb(II)-binding species of (gamma Glu-Cys)4Gly. The transfer of Pb(II) from glutathione to PCs and from shorter chain to longer chain PCs is also demonstrated.
Collapse
|
Comparative Study |
30 |
76 |
5
|
Abdelwahab SI, Sheikh BY, Taha MME, How CW, Abdullah R, Yagoub U, El-Sunousi R, Eid EEM. Thymoquinone-loaded nanostructured lipid carriers: preparation, gastroprotection, in vitro toxicity, and pharmacokinetic properties after extravascular administration. Int J Nanomedicine 2013; 8:2163-72. [PMID: 23818776 PMCID: PMC3692342 DOI: 10.2147/ijn.s44108] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Nanostructured lipid carriers (NLCs), composed of solid and liquid lipids, and surfactants are potentially good colloidal drug carriers. Thymoquinone is the main bioactive compound of Nigella sativa. In this study, the preparation, gastroprotective effects, and pharmacokinetic (PK) properties of thymoquinone (TQ)-loaded NLCs (TQNLCs) were evaluated. Method TQNLCs were prepared using hydrogenated palm oil (Softisan® 154), olive oil, and phosphatidylcholine for the lipid phase and sorbitol, polysorbate 80, thimerosal, and double distilled water for the liquid lipid material. A morphological assessment of TQNLCs was performed using various methods. Analysis of the ulcer index, hydrogen concentration, mucus content, and biochemical and histochemical studies confirmed that the loading of TQ into the NLCs significantly improved the gastroprotective activity of this natural compound against the formation of ethanol-induced ulcers. The safety of TQNLC was tested on WRL68 liver normal cells with cisplatin as a positive control. Results The average diameter of the TQNLCs was 75 ± 2.4 nm. The particles had negative zeta potential values of −31 ± 0.1 mV and a single melting peak of 55.85°C. Immunohistochemical methods revealed that TQNLCs inhibited the formation of ethanol-induced ulcers through the modulation of heat shock protein-70 (Hsp70). Acute hepatotoxic effects of the TQNLCs were not observed in rats or normal human liver cells (WRL-68). After validation, PK studies in rabbits showed that the PK properties of TQ were improved and indicated that the drug behaves linearly. The Tmax, Cmax, and elimination half-life of TQ were found to be 3.96 ± 0.19 hours, 4811.33 ± 55.52 ng/mL, and 4.4933 ± 0.015 hours, respectively, indicating that TQ is suitable for extravascular administration. Conclusion NLCs could be a promising vehicle for the oral delivery of TQ and improve its gastroprotective properties.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
74 |
6
|
Abdullah ASH, Mohammed AS, Abdullah R, Mirghani MES, Al-Qubaisi M. Cytotoxic effects of Mangifera indica L. kernel extract on human breast cancer (MCF-7 and MDA-MB-231 cell lines) and bioactive constituents in the crude extract. Altern Ther Health Med 2014; 14:199. [PMID: 24962691 PMCID: PMC4077144 DOI: 10.1186/1472-6882-14-199] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 06/23/2014] [Indexed: 12/03/2022]
Abstract
Background Waterlily Mango (Mangifera indica L.) is thought to be antioxidant-rich, conferred by its functional phytochemicals. Methods The potential anticancer effects of the ethanolic kernel extract on breast cancer cells (MDA-MB-231 and MCF-7) using MTT, anti-proliferation, neutral red (NR) uptake and lactate dehydrogenase (LDH) release assays were evaluated. Cytological studies on the breast cancer cells were also conducted, and phytochemical analyses of the extract were carried out to determine the likely bioactive compounds responsible for such effects. Results Results showed the extract induced cytotoxicity in MDA-MB-231 cells and MCF-7 cells with IC50 values of 30 and 15 μg/mL, respectively. The extract showed significant toxicity towards both cell lines, with low toxicity to normal breast cells (MCF-10A). The cytotoxic effects on the cells were further confirmed by the NR uptake, antiproliferative and LDH release assays. Bioactive analyses revealed that many bioactives were present in the extract although butylated hydroxytoluene, a potent antioxidant, was the most abundant with 44.65%. Conclusions M. indica extract appears to be more cytoxic to both estrogen positive and negative breast cancer cell lines than to normal breast cells. Synergistic effects of its antioxidant bioactives could have contributed to the cytotoxic effects of the extract. The extract of M. indica, therefore, has potential anticancer activity against breast cancer cells. This potential is worth studying further, and could have implications on future studies and eventually management of human breast cancers.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
69 |
7
|
Rahman HS, Aziz MS, Hussein RH, Othman HH, Salih Omer SH, Khalid ES, Abdulrahman NA, Amin K, Abdullah R. The transmission modes and sources of COVID-19: A systematic review. INTERNATIONAL JOURNAL OF SURGERY OPEN 2020; 26:125-136. [PMID: 34568614 PMCID: PMC7484735 DOI: 10.1016/j.ijso.2020.08.017] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/30/2020] [Accepted: 08/31/2020] [Indexed: 02/09/2023]
Abstract
The current rampant coronavirus infection in humans, commonly known as COVID-19, a pandemic that may cause mortality in humans, has been declared a global emergency by the World Health Organization (WHO). The morbidity and mortality rates due to the pandemic are increasing rapidly worldwide, with the USA most affected by the disease. The source COVID-19 is not absolutely clear; however, the disease may be transmitted by either by COVID-19-positive individuals or from a contaminated environment. In this review, we focused on how the COVID-19 virus is transmitted in the community. An extensive literature search was conducted using specific keywords and criteria. Based on the published report, it is concluded that COVID-19 is primarily transmitted human-to-human via oral and respiratory aerosols and droplets with the virus-contaminated environment play a lesser role in the propagation of disease. Healthcare providers and the elderly with comorbidities are especially susceptible to the infection.
Collapse
|
Review |
5 |
66 |
8
|
Ross ME, Allen KM, Srivastava AK, Featherstone T, Gleeson JG, Hirsch B, Harding BN, Andermann E, Abdullah R, Berg M, Czapansky-Bielman D, Flanders DJ, Guerrini R, Motté J, Mira AP, Scheffer I, Berkovic S, Scaravilli F, King RA, Ledbetter DH, Schlessinger D, Dobyns WB, Walsh CA. Linkage and physical mapping of X-linked lissencephaly/SBH (XLIS): a gene causing neuronal migration defects in human brain. Hum Mol Genet 1997; 6:555-62. [PMID: 9097958 DOI: 10.1093/hmg/6.4.555] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
While disorders of neuronal migration are associated with as much as 25% of recurrent childhood seizures, few of the genes required to establish neuronal position in cerebral cortex are known. Subcortical band heterotopia (SBH) and lissencephaly (LIS), two distinct neuronal migration disorders producing epilepsy and variable cognitive impairment, can be inherited alone or together in a single pedigree. Here we report a new genetic locus, XLIS, mapped by linkage analysis of five families and physical mapping of a balanced X;2 translocation in a girl with LIS. Linkage places the critical region in Xq21-q24, containing the breakpoint that maps to Xq22.3-q23 by high-resolution chromosome analysis. Markers used for somatic cell hybrid and fluorescence in situ hybridization analyses place the XLIS region within a 1 cM interval. These data suggest that SBH and X-linked lissencephaly are caused by mutation of a single gene, XLIS, that the milder SBH phenotype in females results from random X-inactivation (Lyonization), and that cloning of genes from the breakpoint region on X will yield XLIS.
Collapse
|
|
28 |
66 |
9
|
Mehra RK, Miclat J, Kodati VR, Abdullah R, Hunter TC, Mulchandani P. Optical spectroscopic and reverse-phase HPLC analyses of Hg(II) binding to phytochelatins. Biochem J 1996; 314 ( Pt 1):73-82. [PMID: 8660312 PMCID: PMC1217054 DOI: 10.1042/bj3140073] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Optical spectroscopy and reverse-phase HPLC were used to investigate the binding of Hg(II) to plant metal-binding peptides (phytochelatins) with the structure (gammaGlu-Cys)2Gly, (gammaGlu-Cys)3Gly and (gammaGlu-Cys)4Gly. Glutathione-mediated transfer of Hg(II) into phytochelatins and the transfer of the metal ion from one phytochelatin to another was also studied using reverse-phase HPLC. The saturation of Hg(II)-induced bands in the UV/visible and CD spectra of (gammaGlu-Cys)2Gly suggested the formation of a single Hg(II)-binding species of this peptide with a stoichiometry of one metal ion per peptide molecule. The separation of apo-(gammaGlu-Cys)2Gly from its Hg(II) derivative on a C18 reverse-phase column also indicated the same metal-binding stoichiometry. The UV/visible spectra of both (gammaGlu-Cys)3Gly and (gammaGlu-Cys)4Gly at pH 7.4 showed distinct shoulders in the ligand-to-metal charge-transfer region at 280-290 mm. Two distinct Hg(II)-binding species, occurring at metal-binding stoichiometries of around 1.25 and 2.0 Hg(II) ions per peptide molecule, were observed for (gammaGlu-Cys)3Gly. These species exhibited specific spectral features in the charge-transfer region and were separable by HPLC. Similarly, two main Hg(II)-binding species of (gammaGlu-Cys)4Gly were observed by UV/visible and CD spectroscopy at metal-binding stoichiometries of around 1.25 and 2.5 respectively. Only a single peak of Hg(II)-(gammaGlu-Cys)4Gly complexes was resolved under the conditions used for HPLC. The overall Hg(II)-binding stoichiometries of phytochelatins were similar at pH 2.0 and at pH 7.4, indicating that pH did not influence the final Hg(II)-binding capacity of these peptides. The reverse-phase HPLC assays indicated a rapid transfer of Hg(II) from glutathione to phytochelatins. These assays also demonstrated a facile transfer of the metal ion from shorter- to longer-chain phytochelatins. The strength of Hg(II) binding to glutathione and phytochelatins followed the order: gammaGlu-Cys-Gly<(gammaGlu-Cys)2Gly<(gammaGlu-Cy s)3Gly<(gamma Glu-Cys)4Gly.
Collapse
|
research-article |
29 |
60 |
10
|
Nordin N, Yeap SK, Rahman HS, Zamberi NR, Abu N, Mohamad NE, How CW, Masarudin MJ, Abdullah R, Alitheen NB. In vitro cytotoxicity and anticancer effects of citral nanostructured lipid carrier on MDA MBA-231 human breast cancer cells. Sci Rep 2019; 9:1614. [PMID: 30733560 PMCID: PMC6367486 DOI: 10.1038/s41598-018-38214-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 11/23/2018] [Indexed: 12/21/2022] Open
Abstract
Very recently, we postulated that the incorporation of citral into nanostructured lipid carrier (NLC-Citral) improves solubility and delivery of the citral without toxic effects in vivo. Thus, the objective of this study is to evaluate anti-cancer effects of NLC-Citral in MDA MB-231 cells in vitro through the Annexin V, cell cycle, JC-1 and fluorometric assays. Additionally, this study is aimed to effects of NLC-Citral in reducing the tumor weight and size in 4T1 induced murine breast cancer model. Results showed that NLC-Citral induced apoptosis and G2/M arrest in MDA MB-231 cells. Furthermore, a prominent anti-metastatic ability of NLC-Citral was demonstrated in vitro using scratch, migration and invasion assays. A significant reduction of migrated and invaded cells was observed in the NLC-Citral treated MDA MB-231 cells. To further evaluate the apoptotic and anti-metastatic mechanism of NLC-Citral at the molecular level, microarray-based gene expression and proteomic profiling were conducted. Based on the result obtained, NLC-Citral was found to regulate several important signaling pathways related to cancer development such as apoptosis, cell cycle, and metastasis signaling pathways. Additionally, gene expression analysis was validated through the targeted RNA sequencing and real-time polymerase chain reaction. In conclusion, the NLC-Citral inhibited the proliferation of breast cancer cells in vitro, majorly through the induction of apoptosis, anti-metastasis, anti-angiogenesis potentials, and reducing the tumor weight and size without altering the therapeutic effects of citral.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
57 |
11
|
Tor YS, Yazan LS, Foo JB, Wibowo A, Ismail N, Cheah YK, Abdullah R, Ismail M, Ismail IS, Yeap SK. Induction of Apoptosis in MCF-7 Cells via Oxidative Stress Generation, Mitochondria-Dependent and Caspase-Independent Pathway by Ethyl Acetate Extract of Dillenia suffruticosa and Its Chemical Profile. PLoS One 2015; 10:e0127441. [PMID: 26047480 PMCID: PMC4457850 DOI: 10.1371/journal.pone.0127441] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 04/14/2015] [Indexed: 01/10/2023] Open
Abstract
Dillenia suffruticosa, which is locally known as Simpoh air, has been traditionally used to treat cancerous growth. The ethyl acetate extract of D. suffruticosa (EADs) has been shown to induce apoptosis in MCF-7 breast cancer cells in our previous study. The present study aimed to elucidate the molecular mechanisms involved in EADs-induced apoptosis and to identify the major compounds in the extract. EADs was found to promote oxidative stress in MCF-7 cells that led to cell death because the pre-treatment with antioxidants α-tocopherol and ascorbic acid significantly reduced the cytotoxicity of the extract (P<0.05). DCFH-DA assay revealed that treatment with EADs attenuated the generation of intracellular ROS. Apoptosis induced by EADs was not inhibited by the use of caspase-inhibitor Z-VAD-FMK, suggesting that the cell death is caspase-independent. The use of JC-1 dye reflected that EADs caused disruption in the mitochondrial membrane potential. The related molecular pathways involved in EADs-induced apoptosis were determined by GeXP multiplex system and Western blot analysis. EADs is postulated to induce cell cycle arrest that is p53- and p21-dependent based on the upregulated expression of p53 and p21 (P<0.05). The expression of Bax was upregulated with downregulation of Bcl-2 following treatment with EADs. The elevated Bax/Bcl-2 ratio and the depolarization of mitochondrial membrane potential suggest that EADs-induced apoptosis is mitochondria-dependent. The expression of oxidative stress-related AKT, p-AKT, ERK, and p-ERK was downregulated with upregulation of JNK and p-JNK. The data indicate that induction of oxidative-stress related apoptosis by EADs was mediated by inhibition of AKT and ERK, and activation of JNK. The isolation of compounds in EADs was carried out using column chromatography and elucidated using the nuclear resonance magnetic analysis producing a total of six compounds including 3-epimaslinic acid, kaempferol, kaempferide, protocatechuic acid, gallic acid and β-sitosterol-3-O-β-D-glucopyranoside. The cytotoxicity of the isolated compounds was determined using MTT assay. Gallic acid was found to be most cytotoxic against MCF-7 cell line compared to others, with IC50 of 36 ± 1.7 μg/mL (P<0.05). In summary, EADs generated oxidative stress, induced cell cycle arrest and apoptosis in MCF-7 cells by regulating numerous genes and proteins that are involved in the apoptotic signal transduction pathway. Therefore, EADs has the potential to be developed as an anti-cancer agent against breast cancer.
Collapse
|
research-article |
10 |
55 |
12
|
Abdulkhaleq LA, Assi MA, Noor MHM, Abdullah R, Saad MZ, Taufiq-Yap YH. Therapeutic uses of epicatechin in diabetes and cancer. Vet World 2017; 10:869-872. [PMID: 28919675 PMCID: PMC5591471 DOI: 10.14202/vetworld.2017.869-872] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/13/2017] [Indexed: 12/20/2022] Open
Abstract
Epicatechin is a natural flavonoid found in green tea. It has been reported to possess an immense antioxidant effect which contributes to its therapeutic effect against a handful of ailments. In this review, we discuss its therapeutic role in the management of two of the most important human diseases; diabetes and cancer. The consumption of epicatechin has been shown to reduce blood glucose levels in diabetic patients, while is anticancer effect was attributed to its antioxidant properties, antiangiogenic and direct cytotoxicity to cancer cells. Although the exact mechanism of action of epicatechin is still being explored, there is no doubt that it is a promising candidate as an alternative. The significance of this review is to highlight the importance of the usage of natural products (in this case, epicatechin) as an alternative for the treatment of two potentially fatal diseases which is diabetes and cancer. The aim of this review is to educate the scientific community on the role of epicatechin in ameliorating the effects of diabetes and cancers on human while understanding the potential mechanisms of these aforementioned effects.
Collapse
|
Review |
8 |
47 |
13
|
Tor YS, Yazan LS, Foo JB, Armania N, Cheah YK, Abdullah R, Imam MU, Ismail N, Ismail M. Induction of apoptosis through oxidative stress-related pathways in MCF-7, human breast cancer cells, by ethyl acetate extract of Dillenia suffruticosa. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:55. [PMID: 24524627 PMCID: PMC3927215 DOI: 10.1186/1472-6882-14-55] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 02/10/2014] [Indexed: 11/18/2022]
Abstract
Background Breast cancer is one of the most dreading types of cancer among women. Herbal medicine has becoming a potential source of treatment for breast cancer. Herbal plant Dillenia suffruticosa (Griff) Martelli under the family Dilleniaceae has been traditionally used to treat cancerous growth. In this study, the anticancer effect of ethyl acetate extract of D. suffruticosa (EADs) was examined on human breast adenocarcinoma cell line MCF-7 and the molecular pathway involved was elucidated. Methods EADs was obtained from the root of D. suffruticosa by using sequential solvent extraction. Cytotoxicity was determined by using MTT assay, mode of cell death by cell cycle analysis and apoptosis induction by Annexin-FITC/PI assay. Morphology changes in cells were observed under inverted light microscope. Involvement of selected genes in the oxidative stress-mediated signaling pathway was explored using multiplex gene expression analysis. Results The treatment of EADs caused cytotoxicity to MCF-7 cells in a dose- and time-dependent manner at 24, 48 and 72 hours with IC50 of 76 ± 2.3, 58 ± 0.7 and 39 ± 3.6 μg/mL, respectively. The IC50 of tamoxifen-treated MCF-7 cells was 8 ± 0.5 μg/mL. Induction of apoptosis by EADs was dose- and time- dependent. EADs induced non-phase specific cell cycle arrest at different concentration and time point. The multiplex mRNA expression study indicated that EADs-induced apoptosis was accompanied by upregulation of the expression of SOD1, SOD2, NF-κB, p53, p38 MAPK, and catalase, but downregulation of Akt1. Conclusion It is suggested that EADs induced apoptosis in MCF-7 cells by modulating numerous genes which are involved in oxidative stress pathway. Therefore, EADs has the potential to act as an effective intervention against breast cancer cells.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
45 |
14
|
Mohan S, Abdul AB, Abdelwahab SI, Al-Zubairi AS, Sukari MA, Abdullah R, Elhassan Taha MM, Ibrahim MY, Syam S. Typhonium flagelliforme induces apoptosis in CEMss cells via activation of caspase-9, PARP cleavage and cytochrome c release: its activation coupled with G0/G1 phase cell cycle arrest. JOURNAL OF ETHNOPHARMACOLOGY 2010; 131:592-600. [PMID: 20673794 DOI: 10.1016/j.jep.2010.07.043] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 07/11/2010] [Accepted: 07/20/2010] [Indexed: 05/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The plant Typhonium flagelliforme (TF), commonly known as 'rodent tuber' in Malaysia, is often used as traditional remedy for cancer, including leukemia. AIM OF THE STUDY We had previously identified morphologically that the linoleic acid rich fraction (DCM/F7) from the tubers of this plant induces selective anti-proliferative effects and apoptosis in CEMss cells. In this present study, we subjected the same DCM/F7 fraction to cell based activity analyses in order to determine the possible mechanism of cell death in leukemic CEMss cells in vitro. MATERIALS AND METHODS Extraction of Typhonium flagelliforme tuber has done and fractionation has been done by vacuum liquid column chromatography. The anti-proliferative activity was assayed using MTT and the apoptosis detection was done by Annexin V and DNA laddering assay. Colorimetric caspase assay and immunoblot analysis were employed to detect the expression of protein associated with cell death. Cell cycle analysis was done using flow cytometry. RESULTS We found that the cancer inhibitory effect of the DCM/F7 fraction in CEMss cells was 3 ± 0.08 μg/ml (IC(50)). An early apoptotic induction in CEMss cells was observed by Annexin V assay, which showed a clear dose-dependent DNA fragmentation being observed in gel electrophoresis at 10 and 20 μg/ml. The DCM/F7 fraction at 3 μg/ml significantly arrested CEMss cells at G0/G1 phase (p<0.05). A constant but increasing pattern-related Sub-G0/G1 index was observed between 12 and 72 h treatment. In relation to this, we further investigated the biochemical events leading to cell death and found that the DCM/F7 fraction increased the cellular levels of caspase-3 and -9 on treated cells. Our results indicated that cytochrome c from mitochondria into the cytosol increased gradually as the DCM/F7 concentration increases, which later lead to the subsequent cleavage of PARP in to 85kDa fragments. On the contrary, Bcl-2 protein was found to decrease concomitantly during treatment. CONCLUSIONS Collectively, results presented in this study demonstrated that the DCM/F7 fraction inhibited the proliferation of leukemia cells, leading to the programmed cell death, which was confirmed to be through the mitochondrial pathway.
Collapse
|
|
15 |
44 |
15
|
Foo JB, Saiful Yazan L, Tor YS, Wibowo A, Ismail N, How CW, Armania N, Loh SP, Ismail IS, Cheah YK, Abdullah R. Induction of cell cycle arrest and apoptosis by betulinic acid-rich fraction from Dillenia suffruticosa root in MCF-7 cells involved p53/p21 and mitochondrial signalling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2015; 166:270-278. [PMID: 25797115 DOI: 10.1016/j.jep.2015.03.039] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 02/26/2015] [Accepted: 03/12/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dillenia suffruticosa (Family: Dilleniaceae) or commonly known as "Simpoh air" in Malaysia, is traditionally used for treatment of cancerous growth including breast cancer. AIM OF THE STUDY D. suffruticosa root dichloromethane extract (DCM-DS) has been reported to induce G0/G1 phase cell cycle arrest and apoptosis in caspase-3 deficient MCF-7 breast cancer cells. The present study was designed to investigate the involvement of p53/p21 and mitochondrial pathway in DCM-DS-treated MCF-7 cells as well as to identify the bioactive compounds responsible for the cytotoxicity of DCM-DS. MATERIALS AND METHODS Extraction of D. suffruticosa root was performed by the use of sequential solvent procedure. GeXP-based multiplex system was employed to investigate the expression of p53, p21, Bax and Bcl-2 genes in MCF-7 cells treated with DCM-DS. The protein expression was then determined using Western blot analysis. The bioactive compounds present in DCM-DS were isolated by using column chromatography. The structure of the compounds was elucidated by using nuclear magnetic resonance spectroscopy. The cytotoxicity of the isolated compounds towards MCF-7 cells was evaluated by using MTT assay. The percentage of betulinic acid (BA) in DCM-DS was determined by HPLC analysis. RESULTS The expression of p53 was significantly up-regulated at protein level. The expression of p21 at both gene and protein levels was significantly up-regulated upon treatment with DCM-DS, suggesting that the induction of G0/G1 phase cell cycle arrest in MCF-7 cells was via p53/p21 pathway. Bcl-2 protein was down-regulated with no change at the mRNA level, postulating that post-translational modification has occurred resulting in the degradation of Bcl-2 protein. Overall, treatment with DCM-DS increased the ratio of Bax/Bcl-2 that drove the cells to undergo apoptosis. A total of 3 triterpene compounds were isolated from DCM-DS. Betulinic acid appears to be the most major and most cytotoxic compound in DCM-DS. CONCLUSION DCM-DS induced cell cycle arrest and apoptosis in MCF-7 cells via p53/p21 pathway. In addition, DCM-DS induced apoptosis by increasing the ratio of Bax/Bcl-2. Betulinic acid, which is one of the major compounds, is responsible for the cytotoxicity of the DCM-DS. Therefore, BA can be used as a marker for standardisation of herbal product from D. suffruticosa. DCM-DS can also be employed as BA-rich extract from roots of D. suffruticosa for the management of breast cancer.
Collapse
|
|
10 |
41 |
16
|
Bae W, Abdullah R, Henderson D, Mehra RK. Characteristics of glutathione-capped ZnS nanocrystallites. Biochem Biophys Res Commun 1997; 237:16-23. [PMID: 9266821 DOI: 10.1006/bbrc.1997.7062] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The titration of increasing equivalents of inorganic sulfide into preformed Zn-glutathione led to the appearance of UV/VIS spectral features attributable to ZnS nanocrystallites. Glutathione-ZnS complexes upon irradiation caused reduction of methylviologen confirming their semiconductor properties. Size-fractionation of glutathione-ZnS samples on a gel filtration column showed the formation of a range of complexes whose spectral properties were correlated with the sulfide content. The stoichiometry of Zn:glutathione increased from 1:2 to a maximum of about 7:1 as the sulfide/Zn ratios increase from 0 to approximately 1.0 in Zn-glutathione complex indicating up to 14-fold increase in the Zn-binding capacity of glutathione upon sulfide incorporation. Spectral characteristics of GSH-capped ZnS nanocrystallites were significantly influenced by pH and by the stoichiometry of Zn, sulfide and glutathione in the complex. Samples containing least glutathione and highest sulfide showed maximal luminescence at pH 6, whereas those with higher glutathione and lower sulfide content showed maximal luminescence at pH 11.
Collapse
|
|
28 |
37 |
17
|
ALHaj NA, Abdullah R, Ibrahim S, Bustamam A. Tamoxifen Drug Loading Solid Lipid Nanoparticles Prepared by Hot High Pressure Homogenization Techniques. ACTA ACUST UNITED AC 2008. [DOI: 10.3844/ajptsp.2008.219.224] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
|
17 |
35 |
18
|
Foo JB, Yazan LS, Tor YS, Armania N, Ismail N, Imam MU, Yeap SK, Cheah YK, Abdullah R, Ismail M. Induction of cell cycle arrest and apoptosis in caspase-3 deficient MCF-7 cells by Dillenia suffruticosa root extract via multiple signalling pathways. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:197. [PMID: 24947113 PMCID: PMC4096536 DOI: 10.1186/1472-6882-14-197] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 06/13/2014] [Indexed: 12/18/2022]
Abstract
BACKGROUND Dillenia suffruticosa root dichloromethane extract (DCM-DS) has been reported to exhibit strong cytotoxicity towards breast cancer cells. The present study was designed to investigate the cell cycle profile, mode of cell death and signalling pathways of DCM-DS-treated human caspase-3 deficient MCF-7 breast cancer cells. METHODS Dillenia suffruticosa root was extracted by sequential solvent extraction. The anti-proliferative activity of DCM-DS was determined by using MTT assay. The mode of cell death was evaluated by using inverted light microscope and Annexin-V/PI-flow cytometry analysis. Cell cycle analysis and measurement of intracellular reactive oxygen species (ROS) were performed by using flow cytometry. MCF-7 cells were co-treated with antioxidants α-tocopherol and ascorbic acid to evaluate whether the cell death was mainly due to oxidative stress. GeXP-based multiplex system was employed to investigate the expression of apoptotic, growth and survival genes in MCF-7 cells. Western blot analysis was performed to confirm the expression of the genes. RESULTS DCM-DS was cytotoxic to the MCF-7 cells in a time-and dose-dependent manner. The IC50 values of DCM-DS at 24, 48 and 72 hours were 20.3 ± 2.8, 17.8 ± 1.5 and 15.5 ± 0.5 μg/mL, respectively. Cell cycle analysis revealed that DCM-DS induced G0/G1 and G2/M phase cell cycle arrest in MCF-7 cells at low concentration (12.5 and 25 μg/mL) and high concentration (50 μg/mL), respectively. Although Annexin-V/PI-flow cytometry analysis has confirmed that DCM-DS induced apoptosis in MCF-7 cells, the distinct characteristics of apoptosis such as membrane blebbing, chromatin condensation, nuclear fragmentation and formation of apoptotic bodies were not observed under microscope. DCM-DS induced formation of ROS in MCF-7 cells. Nevertheless, co-treatment with antioxidants did not attenuate the cell death at low concentration of DCM-DS. The pro-apoptotic gene JNK was up-regulated whereby anti-apoptotic genes AKT1 and ERK1/2 were down-regulated in a dose-dependent manner. Western blot analysis has confirmed that DCM-DS significantly up-regulated the expression of pro-apoptotic JNK1, pJNK and down-regulated anti-apoptotic AKT1, ERK1 in MCF-7 cells. CONCLUSION DCM-DS induced cell cycle arrest and apoptosis in MCF-7 cells via multiple signalling pathways. It shows the potential of DCM-DS to be developed to target the cancer cells with mutant caspase-3.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
32 |
19
|
Ajdari Z, Rahman H, Shameli K, Abdullah R, Abd Ghani M, Yeap S, Abbasiliasi S, Ajdari D, Ariff A. Novel Gold Nanoparticles Reduced by Sargassum glaucescens: Preparation, Characterization and Anticancer Activity. Molecules 2016; 21:123. [PMID: 26938520 PMCID: PMC6273738 DOI: 10.3390/molecules21030123] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 01/06/2016] [Accepted: 01/12/2016] [Indexed: 11/30/2022] Open
Abstract
The current study investigated the anticancer properties of gold nanoparticles (SG-stabilized AuNPs) synthesized using water extracts of the brown seaweed Sargassum glaucescens (SG). SG-stabilized AuNPs were characterized by ultraviolet-visible spectroscopy, transmission and scanning electron microscopy, and energy dispersive X-ray fluorescence spectrometry. The SG-stabilized AuNPs were stable and small at 3.65 ± 1.69 nm in size. The in vitro anticancer effect of SG-stabilized AuNPs was determined on cervical (HeLa), liver (HepG2), breast (MDA-MB-231) and leukemia (CEM-ss) cell lines using fluorescence microscopy, flow cytometry, caspase activity determination, and MTT assays. After 72 h treatment, SG-stabilized AuNPs was shown to be significant (p < 0.05) cytotoxic to the cancer cells in a dose- and time-dependent manner. The IC50 values of SG-stabilized AuNPs on the HeLa, HepG2, CEM-ss, MDA-MB-231 cell lines were 4.75 ± 1.23, 7.14 ± 1.45, 10.32 ± 1.5, and 11.82 ± 0.9 μg/mL, respectively. On the other hand, SG-stabilized AuNPs showed no cytotoxic effect towards the normal human mammary epithelial cells (MCF-10A). SG-stabilized AuNPs significantly (p < 0.05) arrest HeLa cell cycle at G2/M phase and significantly (p < 0.05) activated caspases-3 and -9 activities. The anticancer effect of SG-stabilized AuNPs is via the intrinsic apoptotic pathway. The study showed that SG-stabilized AuNPs is a good candidate to be developed into a chemotherapeutic compound for the treatment of cancers especially cervical cancer.
Collapse
|
research-article |
9 |
31 |
20
|
Syam S, Bustamam A, Abdullah R, Sukari MA, Hashim NM, Mohan S, Looi CY, Wong WF, Yahayu MA, Abdelwahab SI. β Mangostin suppress LPS-induced inflammatory response in RAW 264.7 macrophages in vitro and carrageenan-induced peritonitis in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2014; 153:435-445. [PMID: 24607509 DOI: 10.1016/j.jep.2014.02.051] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 02/08/2014] [Accepted: 02/26/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The fruit hull of Garcinia mangostana Linn. has been used in traditional medicine for treatment of various inflammatory diseases. Hence, this study aims to investigate the in vitro and in vivo anti-inflammatory effect of β mangostin (βM), a major compound present in Garcinia mangostana. MATERIALS AND METHODS The in silico analysis of inflammatory mediators such as cyclooxygenase (COX) and nuclear factor-kappa B (NF-kB) were performed via molecular docking. Further evaluation of anti-inflammatory effect was conducted in lipopolysaccharide (LPS) induced RAW 264.7 macrophages. Suppression of activated NF-kB was analyzed by high content screening. βM triggered inhibition of COX-1 and COX-2 in vitro were studied using biochemical kit. The in vivo model used in this study was carrageenan-induced peritonitis model, where reduction in carrageenan-induced peritonitis is measured by leukocyte migration and vascular permeability. In addition, the evaluation of βM׳s effect on carrageenan induced TNF-α and IL-1β release on peritoneal fluid was also carried out. RESULTS Treatment with βM could inhibit the LPS-induced NO production but not the viability of RAW 264.7. Similarly, βM inhibited PGE2 production and the cytokines: TNF-α and IL-6. The COX catalyzed prostaglandin biosynthesis assay had showed selective COX-2 inhibition with a 53.0±6.01% inhibition at 20 µg/ml. Apart from this, βM was capable in repressing translocation of NF-kB into the nucleus. These results were concurrent with molecular docking which revealed COX-2 selectivity and NF-kB inhibition. The in vivo analysis showed that after four hours of peritonitis, βM was unable to reduce vascular permeability, yet could decrease the total leukocyte migration; particularly, neutrophils. Meanwhile, dexamethasone 0.5 mg/kg, successfully reduced vascular permeability. The levels of TNF-α and IL-1β in peritoneal fluid was reduced significantly by βM treatment. CONCLUSION The current study supports the traditional use of Garcinia mangostana fruit hull for treatment of inflammatory conditions. In addition, it is clear that the anti-inflammatory efficacy of this plant is not limited to the presence of α and γ, but β also with significant activity.
Collapse
|
|
11 |
29 |
21
|
Syam S, Bustamam A, Abdullah R, Sukari MA, Hashim NM, Ghaderian M, Rahmani M, Mohan S, Abdelwahab SI, Ali HM. β-Mangostin induces p53-dependent G2/M cell cycle arrest and apoptosis through ROS mediated mitochondrial pathway and NfkB suppression in MCF-7 cells. J Funct Foods 2014. [DOI: 10.1016/j.jff.2013.10.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
|
11 |
28 |
22
|
Etti IC, Abdullah R, Kadir A, Hashim NM, Yeap SK, Imam MU, Ramli F, Malami I, Lam KL, Etti U, Waziri P, Rahman M. The molecular mechanism of the anticancer effect of Artonin E in MDA-MB 231 triple negative breast cancer cells. PLoS One 2017; 12:e0182357. [PMID: 28771532 PMCID: PMC5542509 DOI: 10.1371/journal.pone.0182357] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 07/17/2017] [Indexed: 02/07/2023] Open
Abstract
Nature has provided us with a wide spectrum of disease healing phytochemicals like Artonin E, obtained from the root bark of Artocarpus elasticus. This molecule had been predicted to be drug-like, possessing unique medicinal properties. Despite strides made in chemotherapy, prognosis of the heterogenous aggressive triple negative breast cancer is still poor. This study was conducted to investigate the mechanism of inhibition of Artonin E, a prenylated flavonoid on MDA-MB 231 triple negative breast cancer cell, with a view of mitigating the hallmarks displayed by these tumors. The anti-proliferative effect, mode of cell death and the mechanism of apoptosis induction were investigated. Artonin E, was seen to effectively relinquish MDA-MB 231 breast cancer cells of their apoptosis evading capacity, causing a half-maximal growth inhibition at low concentrations (14.3, 13.9 and 9.8 μM) after the tested time points (24, 48 and 72 hours), respectively. The mode of cell death was observed to be apoptosis with defined characteristics. Artonin E was seen to induce the activation of both extrinsic and intrinsic caspases initiators of apoptosis. It also enhanced the release of total reactive oxygen species which polarized the mitochondrial membrane, compounding the release of cytochrome c. Gene expression studies revealed the upregulation of TNF-related apoptosis inducing ligand and proapoptotic genes with down regulation of anti-apoptotic genes and proteins. A G2/M cell cycle arrest was also observed and was attributed to the observed upregulation of p21 independent of the p53 status. Interestingly, livin, a new member of the inhibitors of apoptosis was confirmed to be significantly repressed. In all, Artonin E showed the potential as a promising candidate to combat the aggressive triple negative breast cancer.
Collapse
|
research-article |
8 |
26 |
23
|
Abbasalipo R, Salehzadeh A, Abdullah R. Cytotoxicity Effect of Solid Lipid Nanoparticles on Human Breast Cancer Cell Lines. ACTA ACUST UNITED AC 2011. [DOI: 10.3923/biotech.2011.528.533] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
|
14 |
25 |
24
|
Isa NM, Abdul AB, Abdelwahab SI, Abdullah R, Sukari MA, Kamalidehghan B, Hadi AHA, Mohan S. Boesenbergin A, a chalcone from Boesenbergia rotunda induces apoptosis via mitochondrial dysregulation and cytochrome c release in A549 cells in vitro: Involvement of HSP70 and Bcl2/Bax signalling pathways. J Funct Foods 2013. [DOI: 10.1016/j.jff.2012.08.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
|
12 |
24 |
25
|
Ong YS, Saiful Yazan L, Ng WK, Abdullah R, Mustapha NM, Sapuan S, Foo JB, Tor YS, How CW, Abd Rahman N, Zakarial Ansar FH. Thymoquinone loaded in nanostructured lipid carrier showed enhanced anticancer activity in 4T1 tumor-bearing mice. Nanomedicine (Lond) 2018; 13:1567-1582. [DOI: 10.2217/nnm-2017-0322] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Aim: To investigate the enhancement of anticancer activity of thymoquinone (TQ) by the use of nanostructured lipid carrier (NLC) in 4T1 tumor-bearing female BALB/c mice. Material & methods: TQ was incorporated into NLC (TQNLC) by using high pressure homogenization. TQNLC and TQ were orally administered to the mice. Results & conclusion: TQNLC and TQ are potential chemotherapeutic drugs as they exhibited anticancer activity. The use of NLC as a carrier has enhanced the therapeutic property of TQ by increasing the survival rate of mice. The antimetastasis effect of TQNLC and TQ to the lungs was evidence by downregulation of MMP-2. TQNLC and TQ induced apoptosis via modulation of Bcl-2 and caspase-8 in the intrinsic apoptotic pathway.
Collapse
|
|
7 |
23 |