1
|
Linker RA, Lee DH, Ryan S, van Dam AM, Conrad R, Bista P, Zeng W, Hronowsky X, Buko A, Chollate S, Ellrichmann G, Brück W, Dawson K, Goelz S, Wiese S, Scannevin RH, Lukashev M, Gold R. Fumaric acid esters exert neuroprotective effects in neuroinflammation via activation of the Nrf2 antioxidant pathway. ACTA ACUST UNITED AC 2011; 134:678-92. [PMID: 21354971 DOI: 10.1093/brain/awq386] [Citation(s) in RCA: 852] [Impact Index Per Article: 60.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Inflammation and oxidative stress are thought to promote tissue damage in multiple sclerosis. Thus, novel therapeutics enhancing cellular resistance to free radicals could prove useful for multiple sclerosis treatment. BG00012 is an oral formulation of dimethylfumarate. In a phase II multiple sclerosis trial, BG00012 demonstrated beneficial effects on relapse rate and magnetic resonance imaging markers indicative of inflammation as well as axonal destruction. First we have studied effects of dimethylfumarate on the disease course, central nervous system, tissue integrity and the molecular mechanism of action in an animal model of chronic multiple sclerosis: myelin oligodendrocyte glycoprotein induced experimental autoimmune encephalomyelitis in C57BL/6 mice. In the chronic phase of experimental autoimmune encephalomyelitis, preventive or therapeutic application of dimethylfumarate ameliorated the disease course and improved preservation of myelin, axons and neurons. In vitro, the application of fumarates increased murine neuronal survival and protected human or rodent astrocytes against oxidative stress. Application of dimethylfumarate led to stabilization of the transcription factor nuclear factor (erythroid-derived 2)-related factor 2, activation of nuclear factor (erythroid-derived 2)-related factor 2-dependent transcriptional activity and accumulation of NADP(H) quinoline oxidoreductase-1 as a prototypical target gene. Furthermore, the immediate metabolite of dimethylfumarate, monomethylfumarate, leads to direct modification of the inhibitor of nuclear factor (erythroid-derived 2)-related factor 2, Kelch-like ECH-associated protein 1, at cysteine residue 151. In turn, increased levels of nuclear factor (erythroid-derived 2)-related factor 2 and reduced protein nitrosylation were detected in the central nervous sytem of dimethylfumarate-treated mice. Nuclear factor (erythroid-derived 2)-related factor 2 was also upregulated in the spinal cord of autopsy specimens from untreated patients with multiple sclerosis. In dimethylfumarate-treated mice suffering from experimental autoimmune encephalomyelitis, increased immunoreactivity for nuclear factor (erythroid-derived 2)-related factor 2 was detected by confocal microscopy in neurons of the motor cortex and the brainstem as well as in oligodendrocytes and astrocytes. In mice deficient for nuclear factor (erythroid-derived 2)-related factor 2 on the same genetic background, the dimethylfumarate mediated beneficial effects on clinical course, axon preservation and astrocyte activation were almost completely abolished thus proving the functional relevance of this transcription factor for the neuroprotective mechanism of action. We conclude that the ability of dimethylfumarate to activate nuclear factor (erythroid-derived 2)-related factor 2 may offer a novel cytoprotective modality that further augments the natural antioxidant responses in multiple sclerosis tissue and is not yet targeted by other multiple sclerosis therapies.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
852 |
2
|
Conrad R. Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments. FEMS Microbiol Ecol 1999. [DOI: 10.1111/j.1574-6941.1999.tb00575.x] [Citation(s) in RCA: 552] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
|
26 |
552 |
3
|
Schütz H, Holzapfel-Pschorn A, Conrad R, Rennenberg H, Seiler W. A 3-year continuous record on the influence of daytime, season, and fertilizer treatment on methane emission rates from an Italian rice paddy. ACTA ACUST UNITED AC 1989. [DOI: 10.1029/jd094id13p16405] [Citation(s) in RCA: 417] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
|
36 |
417 |
4
|
Conrad R. Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol Rev 1996; 60:609-40. [PMID: 8987358 PMCID: PMC239458 DOI: 10.1128/mr.60.4.609-640.1996] [Citation(s) in RCA: 377] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Production and consumption processes in soils contribute to the global cycles of many trace gases (CH4, CO, OCS, H2, N2O, and NO) that are relevant for atmospheric chemistry and climate. Soil microbial processes contribute substantially to the budgets of atmospheric trace gases. The flux of trace gases between soil and atmosphere is usually the result of simultaneously operating production and consumption processes in soil: The relevant processes are not yet proven with absolute certainty, but the following are likely for trace gas consumption: H2 oxidation by abiontic soil enzymes; CO cooxidation by the ammonium monooxygenase of nitrifying bacteria; CH4 oxidation by unknown methanotrophic bacteria that utilize CH4 for growth; OCS hydrolysis by bacteria containing carbonic anhydrase; N2O reduction to N2 by denitrifying bacteria; NO consumption by either reduction to N2O in denitrifiers or oxidation to nitrate in heterotrophic bacteria. Wetland soils, in contrast to upland soils are generally anoxic and thus support the production of trace gases (H2, CO, CH4, N2O, and NO) by anaerobic bacteria such as fermenters, methanogens, acetogens, sulfate reducers, and denitrifiers. Methane is the dominant gaseous product of anaerobic degradation of organic matter and is released into the atmosphere, whereas the other trace gases are only intermediates, which are mostly cycled within the anoxic habitat. A significant percentage of the produced methane is oxidized by methanotrophic bacteria at anoxic-oxic interfaces such as the soil surface and the root surface of aquatic plants that serve as conduits for O2 transport into and CH4 transport out of the wetland soils. The dominant production processes in upland soils are different from those in wetland soils and include H2 production by biological N2 fixation, CO production by chemical decomposition of soil organic matter, and NO and N2O production by nitrification and denitrification. The processes responsible for CH4 production in upland soils are completely unclear, as are the OCS production processes in general. A problem for future research is the attribution of trace gas metabolic processes not only to functional groups of microorganisms but also to particular taxa. Thus, it is completely unclear how important microbial diversity is for the control of trace gas flux at the ecosystem level. However, different microbial communities may be part of the reason for differences in trace gas metabolism, e.g., effects of nitrogen fertilizers on CH4 uptake by soil; decrease of CH4 production with decreasing temperature; or different rates and modes of NO and N2O production in different soils and under different conditions.
Collapse
|
research-article |
29 |
377 |
5
|
Chin KJ, Lukow T, Conrad R. Effect of temperature on structure and function of the methanogenic archaeal community in an anoxic rice field soil. Appl Environ Microbiol 1999; 65:2341-9. [PMID: 10347011 PMCID: PMC91346 DOI: 10.1128/aem.65.6.2341-2349.1999] [Citation(s) in RCA: 206] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Soil temperatures in Italian rice fields typically range between about 15 and 30 degrees C. A change in the incubation temperature of anoxic methanogenic soil slurry from 30 degrees C to 15 degrees C typically resulted in a decrease in the CH4 production rate, a decrease in the steady-state H2 partial pressure, and a transient accumulation of acetate. Previous experiments have shown that these changes were due to an alteration of the carbon and electron flow in the methanogenic degradation pathway of organic matter caused by the temperature shift (K. J. Chin and R. Conrad, FEMS Microbiol. Ecol. 18:85-102, 1995). To investigate how temperature affects the structure of the methanogenic archaeal community, total DNA was extracted from soil slurries incubated at 30 and 15 degrees C. The archaeal small-subunit (SSU) rRNA-encoding genes (rDNA) of these environmental DNA samples were amplified by PCR with an archaeal-specific primer system and used for the generation of clone libraries. Representative rDNA clones (n = 90) were characterized by terminal restriction fragment length polymorphism (T-RFLP) and sequence analysis. T-RFLP analysis produced for the clones terminally labeled fragments with a characteristic length of mostly 185, 284, or 392 bp. Sequence analysis allowed determination of the phylogenetic affiliation of the individual clones with their characteristic T-RFLP fragment lengths and showed that the archaeal community of the anoxic rice soil slurry was dominated by members of the families Methanosarcinaceae (185 bp) and Methanosaetaceae (284 bp), the kingdom Crenarchaeota (185 or 284 bp), and a novel, deeply branching lineage of the (probably methanogenic) kingdom Euryarchaeota (392 bp) that has recently been detected on rice roots (R. Grosskopf, S. Stubner, and W. Liesack, Appl. Environ. Microbiol. 64:4983-4989, 1998). The structure of the archaeal community changed when the temperature was shifted from 30 degrees C to 15 degrees C. Before the temperature shift, the clones (n = 30) retrieved from the community were dominated by Crenarchaeota (70%), "novel Euryarchaeota" (23%), and Methanosarcinacaeae (7%). Further incubation at 30 degrees C (n = 30 clones) resulted in a relative increase in members of the Methanosarcinaceae (77%), whereas further incubation at 15 degrees C (n = 30 clones) resulted in a much more diverse community consisting of 33% Methanosarcinaceae, 23% Crenarchaeota, 20% Methanosaetaceae, and 17% novel Euryarchaeota. The appearance of Methanosaetaceae at 15 degrees C was conspicuous. These results demonstrate that the structure of the archaeal community in anoxic rice field soil changed with time and incubation temperature.
Collapse
|
research-article |
26 |
206 |
6
|
Conrad R, Phelps TJ, Zeikus JG. Gas metabolism evidence in support of the juxtaposition of hydrogen-producing and methanogenic bacteria in sewage sludge and lake sediments. Appl Environ Microbiol 2010; 50:595-601. [PMID: 16346879 PMCID: PMC238674 DOI: 10.1128/aem.50.3.595-601.1985] [Citation(s) in RCA: 187] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We developed new techniques to measure dissolved H(2) and H(2) consumption kinetics in anoxic ecosystems that were not dependent on headspace measurements or gas transfer-limited experimentation. These H(2) metabolism parameters were then compared with measured methane production rates, and estimates of H(2) production and interspecies H(2) transfer were made. The H(2) pool sizes were 205 and 31 nM in sewage sludge from an anaerobic digestor and in sediments (24 m) from Lake Mendota, respectively. The H(2) turnover rate constants, as determined by using in situ pool sizes and temperatures, were 103 and 31 h for sludge and sediment, respectively. The observed H(2) turnover rate accounted for only 5 to 6% of the expected H(2)-CO(2)-dependent methanogenesis in these ecosystems. Our results are in general agreement with the results reported previously and are used to support the conclusion that most of the H(2)-dependent methanogenesis in these ecosystems occurs as a consequence of direct interspecies H(2) transfer between juxtapositioned microbial associations within flocs or consortia.
Collapse
|
Journal Article |
15 |
187 |
7
|
Lueders T, Chin KJ, Conrad R, Friedrich M. Molecular analyses of methyl-coenzyme M reductase alpha-subunit (mcrA) genes in rice field soil and enrichment cultures reveal the methanogenic phenotype of a novel archaeal lineage. Environ Microbiol 2001; 3:194-204. [PMID: 11321536 DOI: 10.1046/j.1462-2920.2001.00179.x] [Citation(s) in RCA: 186] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The diversity of methanogen-specific methyl-coenzyme M reductase alpha-subunit (mcrA/mrtA) genes in Italian rice field soil was analysed using a combination of molecular techniques and enrichment cultures. From 75 mcrA/mrtA clones retrieved from rice field soil, 52 were related to members of the Methanosarcinaceae, Methanosaetaceae and Methanobacteriaceae. However, 19 and four clones formed two novel clusters of deeply branching mcrA sequences, respectively, which could not be affiliated to known methanogens. A new methanogen-specific fingerprinting assay based on terminal restriction fragment length polymorphism (T-RFLP) analysis of fluorescently labelled polymerase chain reaction (PCR) products allowed us to distinguish all environmental mcrA/mrtA sequences via group-specific Sau96I restriction sites. Even genes for the isoenzyme methyl-coenzyme M reductase two (mrtA) of Methanobacteriaceae present in rice field soil were represented by a unique 470 bp terminal restriction fragment (T-RF). Both cloning and T-RFLP analysis indicated a significant representation of novel environmental mcrA sequences in rice field soil (238 bp T-RF). To identify these mcrA sequences, methanogenic enrichment cultures with rice field soil as inoculum were established with H2/CO2 as substrates at a temperature of 50 degrees C, and these were monitored using molecular tools. In subsequent transfers of these enrichment cultures, cloning and T-RFLP analysis detected predominantly SSU rRNA genes of rice cluster I (RC-I), an uncultivated euryarchaeotal lineage discovered previously in anoxic rice field soil. In parallel, both mcrA cloning and T-RFLP analyses of the enrichment culture identified the more frequent cluster of novel environmental mcrA sequences as belonging to members of RC-I. Thus, we could demonstrate the genotype and phenotype of RC-I Archaea by the presence of a catabolic gene in a methanogenic enrichment culture before the isolation of pure cultures.
Collapse
|
|
24 |
186 |
8
|
Henckel T, Jäckel U, Schnell S, Conrad R. Molecular analyses of novel methanotrophic communities in forest soil that oxidize atmospheric methane. Appl Environ Microbiol 2000; 66:1801-8. [PMID: 10788342 PMCID: PMC101415 DOI: 10.1128/aem.66.5.1801-1808.2000] [Citation(s) in RCA: 167] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Forest and other upland soils are important sinks for atmospheric CH(4), consuming 20 to 60 Tg of CH(4) per year. Consumption of atmospheric CH(4) by soil is a microbiological process. However, little is known about the methanotrophic bacterial community in forest soils. We measured vertical profiles of atmospheric CH(4) oxidation rates in a German forest soil and characterized the methanotrophic populations by PCR and denaturing gradient gel electrophoresis (DGGE) with primer sets targeting the pmoA gene, coding for the alpha subunit of the particulate methane monooxygenase, and the small-subunit rRNA gene (SSU rDNA) of all life. The forest soil was a sink for atmospheric CH(4) in situ and in vitro at all times. In winter, atmospheric CH(4) was oxidized in a well-defined subsurface soil layer (6 to 14 cm deep), whereas in summer, the complete soil core was active (0 cm to 26 cm deep). The content of total extractable DNA was about 10-fold higher in summer than in winter. It decreased with soil depth (0 to 28 cm deep) from about 40 to 1 microg DNA per g (dry weight) of soil. The PCR product concentration of SSU rDNA of all life was constant both in winter and in summer. However, the PCR product concentration of pmoA changed with depth and season. pmoA was detected only in soil layers with active CH(4) oxidation, i.e., 6 to 16 cm deep in winter and throughout the soil core in summer. The same methanotrophic populations were present in winter and summer. Layers with high CH(4) consumption rates also exhibited more bands of pmoA in DGGE, indicating that high CH(4) oxidation activity was positively correlated with the number of methanotrophic populations present. The pmoA sequences derived from excised DGGE bands were only distantly related to those of known methanotrophs, indicating the existence of unknown methanotrophs involved in atmospheric CH(4) consumption.
Collapse
|
research-article |
25 |
167 |
9
|
Kotsyurbenko OR, Friedrich MW, Simankova MV, Nozhevnikova AN, Golyshin PN, Timmis KN, Conrad R. shift from acetoclastic to H2-dependent methanogenesis in a west Siberian peat bog at low pH values and isolation of an acidophilic Methanobacterium strain. Appl Environ Microbiol 2007; 73:2344-8. [PMID: 17277200 PMCID: PMC1855669 DOI: 10.1128/aem.02413-06] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methane production and archaeal community composition were studied in samples from an acidic peat bog incubated at different temperatures and pH values. H(2)-dependent methanogenesis increased strongly at the lowest pH, 3.8, and Methanobacteriaceae became important except for Methanomicrobiaceae and Methanosarcinaceae. An acidophilic and psychrotolerant Methanobacterium sp. was isolated using H(2)-plus-CO(2)-supplemented medium at pH 4.5.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
160 |
10
|
Conrad R, Bak F, Seitz H, Thebrath B, Mayer H, Schütz H. Hydrogen turnover by psychrotrophic homoacetogenic and mesophilic methanogenic bacteria in anoxic paddy soil and lake sediment. FEMS Microbiol Lett 1989. [DOI: 10.1111/j.1574-6968.1989.tb03382.x] [Citation(s) in RCA: 150] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
|
36 |
150 |
11
|
Dunfield PF, Liesack W, Henckel T, Knowles R, Conrad R. High-affinity methane oxidation by a soil enrichment culture containing a type II methanotroph. Appl Environ Microbiol 1999; 65:1009-14. [PMID: 10049856 PMCID: PMC91137 DOI: 10.1128/aem.65.3.1009-1014.1999] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methanotrophic bacteria in an organic soil were enriched on gaseous mixing ratios of <275 parts per million of volume (ppmv) of methane (CH4). After 4 years of growth and periodic dilution (>10(20) times the initial soil inoculum), a mixed culture was obtained which displayed an apparent half-saturation constant [Km(app)] for CH4 of 56 to 186 nM (40 to 132 ppmv). This value was the same as that measured in the soil itself and about 1 order of magnitude lower than reported values for pure cultures of methane oxidizers. However, the Km(app) increased when the culture was transferred to higher mixing ratios of CH4 (1,000 ppmv, or 1%). Denaturing gradient gel electrophoresis of the enrichment grown on <275 ppmv of CH4 revealed a single gene product of pmoA, which codes for a subunit of particulate methane monooxygenase. This suggested that only one methanotroph species was present. This organism was isolated from a sample of the enrichment culture grown on 1% CH4 and phylogenetically positioned based on its 16S rRNA, pmoA, and mxaF gene sequences as a type II strain of the Methylocystis/Methylosinus group. A coculture of this strain with a Variovorax sp., when grown on <275 ppmv of CH4, had a Km(app) (129 to 188 nM) similar to that of the initial enrichment culture. The data suggest that the affinity of methanotrophic bacteria for CH4 varies with growth conditions and that the oxidation of atmospheric CH4 observed in this soil is carried out by type II methanotrophic bacteria which are similar to characterized species.
Collapse
|
research-article |
26 |
143 |
12
|
Gsell W, Conrad R, Hickethier M, Sofic E, Frölich L, Wichart I, Jellinger K, Moll G, Ransmayr G, Beckmann H. Decreased catalase activity but unchanged superoxide dismutase activity in brains of patients with dementia of Alzheimer type. J Neurochem 1995; 64:1216-23. [PMID: 7861154 DOI: 10.1046/j.1471-4159.1995.64031216.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
"Oxidative stress" may be of significance in the etiopathogenesis of dementia of Alzheimer type (DAT). Therefore, we measured activities of the enzymes superoxide dismutase (SOD) and catalase (CAT), which detoxicate reactive oxygen species. Enzyme activities were measured postmortem in basal ganglia, cortical, and limbic brain regions of patients with DAT and age-matched controls. SOD activity increased with age in basal nucleus of Meynert. However, there was no significant difference in SOD activity between DAT and controls. CAT activity was independent of age and postmortem time. There were significant reductions in CAT activity in parietotemporal cortex, basal ganglia, and amygdala in DAT compared with controls (p < 0.05 to 0.01). Our findings are in line with the assumption that reactive oxygen species could contribute to the pathogenesis of DAT. Absence of these changes in basal nucleus of Meynert might reflect retrograde degeneration of cholinergic fibers.
Collapse
|
|
30 |
128 |
13
|
Henckel T, Roslev P, Conrad R. Effects of O2 and CH4 on presence and activity of the indigenous methanotrophic community in rice field soil. Environ Microbiol 2000; 2:666-79. [PMID: 11214799 DOI: 10.1046/j.1462-2920.2000.00149.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The activity and distribution of methanotrophs in soil depend on the availability of CH4 and O2. Therefore, we investigated the activity and structure of the methanotrophic community in rice field soil under four factorial combinations of high and low CH4 and O2 concentrations. The methanotrophic population structure was resolved by denaturant gradient gel electrophoresis (DGGE) with different PCR primer sets targeting the 16S rRNA gene, and two functional genes coding for key enzymes in methanotrophs, i.e. the particulate methane monooxygenase (pmoA) and the methanol dehydrogenase (mxaF). Changes in the biomass of type I and II methanotrophic bacteria in the rice soil were determined by analysis of phospholipid-ester-linked fatty acid (PLFA) biomarkers. The relative contribution of type I and II methanotrophs to the measured methane oxidation activity was determined by labelling of soil samples with 14CH4 followed by analysis of [14C]-PLFAs. CH4 oxidation was repressed by high O2 (20.5%), and enhanced by low O2 (1%). Depending on the CH4 and O2 mixing ratios, different methanotrophic communities developed with a higher diversity at low than at high CH4 concentration as revealed by PCR-DGGE. However, a prevalence of type I or II populations was not detected. The [14C]-PLFA fingerprints, on the other hand, revealed that CH4 oxidation activity was dominated by type I methanotrophs in incubations with low CH4 mixing ratios (1000 p.p.m.v.) and during initiation of CH4 consumption regardless of O2 or CH4 mixing ratio. At high methane mixing ratios (10 000 p.p.m.v.), type I and II methanotrophs contributed equally to the measured CH4 metabolism. Collectively, type I methanotrophs responded fast and with pronounced shifts in population structure and dominated the activity under all four gas mixtures. Type II methanotrophs, on the other hand, although apparently more abundant, always present and showing a largely stable population structure, became active later and contributed to CH4 oxidation activity mainly under high CH4 mixing ratios.
Collapse
|
|
25 |
127 |
14
|
|
|
54 |
126 |
15
|
|
|
60 |
125 |
16
|
Nüsslein B, Chin KJ, Eckert W, Conrad R. Evidence for anaerobic syntrophic acetate oxidation during methane production in the profundal sediment of subtropical Lake Kinneret (Israel). Environ Microbiol 2001; 3:460-70. [PMID: 11553236 DOI: 10.1046/j.1462-2920.2001.00215.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Methane production was measured in samples of the profundal sediment from Lake Kinneret. Production rates of CH(4) were higher at 30 degrees C than at the in situ temperature of 15 degrees C and were higher in the top 5 cm layer than below. Turnover of [2-(14)C]-acetate resulted in the production of (14)CH(4) and (14)CO(2) with turnover times of < 42 min. However, < 30% of the added radioactivity was converted to gaseous products, indicating that only part of the acetate pool was microbially available. The calculated acetate turnover rates were sufficient to account for total CH(4) production, indicating that CH(4) was produced exclusively from acetate. This conclusion was confirmed by inhibition of methanogens with chloroform, which resulted in an almost stoichiometric accumulation of acetate. However, a large percentage (30-60%) of [2-(14)C]-acetate was converted to (14)CO(2), despite lack of reducible sulphate or other oxidants in the sediment. Anoxic preincubation of the sediment did not result in reduced production of (14)CO(2). Therefore, part of the acetate must have been oxidized rather than methanogenically cleaved. Conversion of [(14)C]-bicarbonate to (14)CH(4) indicated that 30-50% of total CH(4) production originated from reduction of CO(2). To reconcile the relatively high contribution of H(2)/CO(2)-dependent methanogenesis with the relatively high oxidative conversion of acetate, we assume that part of the acetate was used syntrophically by consortia of acetate-oxidizing bacteria and H(2)/CO(2)-using methanogens. This conclusion is supported by favourable thermodynamic conditions for syntrophic acetate oxidation under in situ conditions and complete inhibition of [2-(14)C]-acetate turnover at high H(2) partial pressures. Further evidence to support this conclusion comes from the analysis of the structure of the archaeal community. Terminal restriction fragment length polymorphism (T-RFLP) and partial sequence analysis of the SSU rRNA genes amplified from DNA extracts of the sediment showed Methanomicrobiaceae as the dominant methanogenic group, whereas acetoclastic methanogens could not be detected.
Collapse
|
|
24 |
115 |
17
|
Conrad R, Klose M. Anaerobic conversion of carbon dioxide to methane, acetate and propionate on washed rice roots. FEMS Microbiol Ecol 1999; 30:147-155. [PMID: 10508939 DOI: 10.1111/j.1574-6941.1999.tb00643.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Washed excised roots of rice (Oryza sativa) produced H(2), CH(4), acetate, propionate and butyrate when incubated under anoxic conditions. Acetate production was most pronounced with a maximum rate (mean+/-standard error; four different root preparations) of 3.4+/-0.6 µmol h(-1) g-dry weight(-1) roots, compared to 0.45+/-0.13, 0.06+/-0.03, and 0.04+/-0.01 µmol h(-1) g-dw(-1) for propionate, butyrate and CH(4)1 kPa after one day of incubation. Then it decreased and reached more or less constant concentrations of about 50-80 Pa after about 7-8 days. Hydrogen partial pressures were always high enough to allow exergonic methanogenesis (DeltaG=-67 to -98 kJ mol(-1) CH(4)) and exergonic homoacetogenesis (DeltaG=-18 to -48 kJ mol(-1) acetate) from H(2) plus CO(2). Radioactive bicarbonate/CO(2) was incorporated into CH(4), acetate and propionate. The specific radioactivities of the products indicated that CH(4) was exclusively produced from H(2)/CO(2) confirming a previous study. The contribution of CO(2) to the production of acetate and propionate was 32-39% and 42-61%, respectively, assuming that each carbon atom was equally labeled. Propionate also became radioactively labeled, when the roots were incubated with either [1-(14)C]acetate or [2-(14)C]acetate accounting for 60-76% of total propionate production. Reductive formation of propionate was thermodynamically favorable both from H(2) plus acetate plus CO(2) (DeltaG=-15 to -38 kJ mol(-1) propionate) and from H(2) plus CO(2) (DeltaG=-34 to -85 kJ mol(-1) propionate). A substantial fraction of propionate was apparently reductively formed from acetate and/or CO(2). In conclusion, our results demonstrate an intensive anaerobic dark metabolism of CO(2) on washed rice roots with reduction of CO(2) contributing significantly to the production of acetate, propionate and CH(4). The CO(2) reduction seemed to be driven by decay and fermentation of root material.
Collapse
|
|
26 |
114 |
18
|
Conrad R, Seiler W, Bunse G. Factors influencing the loss of fertilizer nitrogen into the atmosphere as N2O. ACTA ACUST UNITED AC 1983. [DOI: 10.1029/jc088ic11p06709] [Citation(s) in RCA: 114] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
|
42 |
114 |
19
|
Fey A, Conrad R. Effect of temperature on carbon and electron flow and on the archaeal community in methanogenic rice field soil. Appl Environ Microbiol 2000; 66:4790-7. [PMID: 11055925 PMCID: PMC92381 DOI: 10.1128/aem.66.11.4790-4797.2000] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Temperature is an important factor controlling CH(4) production in anoxic rice soils. Soil slurries, prepared from Italian rice field soil, were incubated anaerobically in the dark at six temperatures of between 10 to 37 degrees C or in a temperature gradient block covering the same temperature range at intervals of 1 degrees C. Methane production reached quasi-steady state after 60 to 90 days. Steady-state CH(4) production rates increased with temperature, with an apparent activation energy of 61 kJ mol(-1). Steady-state partial pressures of the methanogenic precursor H(2) also increased with increasing temperature from <0.5 to 3.5 Pa, so that the Gibbs free energy change of H(2) plus CO(2)-dependent methanogenesis was kept at -20 to -25 kJ mol of CH(4)(-1) over the whole temperature range. Steady-state concentrations of the methanogenic precursor acetate, on the other hand, increased with decreasing temperature from <5 to 50 microM. Simultaneously, the relative contribution of H(2) as methanogenic precursor decreased, as determined by the conversion of radioactive bicarbonate to (14)CH(4), so that the carbon and electron flow to CH(4) was increasingly dominated by acetate, indicating that psychrotolerant homoacetogenesis was important. The relative composition of the archaeal community was determined by terminal restriction fragment length polymorphism (T-RFLP) analysis of the 16S rRNA genes (16S rDNA). T-RFLP analysis differentiated the archaeal Methanobacteriaceae, Methanomicrobiaceae, Methanosaetaceae, Methanosarcinaceae, and Rice clusters I, III, IV, V, and VI, which were all present in the rice field soil incubated at different temperatures. The 16S rRNA genes of Rice cluster I and Methanosaetaceae were the most frequent methanogenic groups. The relative abundance of Rice cluster I decreased with temperature. The substrates used by this microbial cluster, and thus its function in the microbial community, are unknown. The relative abundance of acetoclastic methanogens, on the other hand, was consistent with their physiology and the acetate concentrations observed at the different temperatures, i.e., the high-acetate-requiring Methanosarcinaceae decreased and the more modest Methanosaetaceae increased with increasing temperature. Our results demonstrate that temperature not only affected the activity but also changed the structure and the function (carbon and electron flow) of a complex methanogenic system.
Collapse
|
research-article |
25 |
112 |
20
|
Conrad R, Seiler W, Bunse G, Giehl H. Carbon monoxide in seawater (Atlantic Ocean). ACTA ACUST UNITED AC 1982. [DOI: 10.1029/jc087ic11p08839] [Citation(s) in RCA: 111] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
|
43 |
111 |
21
|
Thöne J, Ellrichmann G, Seubert S, Peruga I, Lee DH, Conrad R, Hayardeny L, Comi G, Wiese S, Linker RA, Gold R. Modulation of autoimmune demyelination by laquinimod via induction of brain-derived neurotrophic factor. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 180:267-74. [PMID: 22152994 DOI: 10.1016/j.ajpath.2011.09.037] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 09/11/2011] [Accepted: 09/20/2011] [Indexed: 11/26/2022]
Abstract
Laquinimod is a promising, orally available compound that has been successfully evaluated in placebo-controlled phase II/III studies of relapsing-remitting multiple sclerosis (MS). Studies are ongoing to further define laquinimod's modulatory mechanisms. Analyses in the animal model of experimental autoimmune encephalomyelitis (EAE) demonstrate that laquinimod reduces infiltration of leukocytes into the central nervous system, induces a Th1 to Th2/3 shift, and suppresses Th17 responses. To evaluate the potential neuroprotective capacity of laquinimod via modulation of brain-derived neurotrophic factor (BDNF), we analyzed the expression of BDNF in blood samples from 203 MS patients treated with laquinimod. Furthermore, we investigated the effect of laquinimod in EAE using a conditional BDNF knockout strain lacking BDNF expression in myeloid cells and T cells (LLF mice). Treatment with laquinimod resulted in a significant and persistent increase in BDNF serum levels of MS patients when compared to baseline and placebo-treated patients. LLF mice treated with laquinimod display a more severe EAE disease course in comparison to wild-type mice. Furthermore, laquinimod-treated wild-type monocytes secreted an anti-inflammatory cytokine pattern in comparison to untreated wild-type monocytes and treated LLF monocytes. Adoptive transfer of laquinimod stimulated monocytes into mice with EAE ameliorated the disease course. Consistent with immunomodulatory properties, laquinimod skewed monocytes toward a regulatory phenotype and also acted via modulation of BDNF, which may contribute to neuroprotection in MS patients.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
108 |
22
|
Conrad R, Schink B, Phelps T. Thermodynamics of H2-consuming and H2-producing metabolic reactions in diverse methanogenic environments under in situ conditions. FEMS Microbiol Lett 1986. [DOI: 10.1111/j.1574-6968.1986.tb01748.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
|
39 |
107 |
23
|
Scholten JC, Conrad R. Energetics of syntrophic propionate oxidation in defined batch and chemostat cocultures. Appl Environ Microbiol 2000; 66:2934-42. [PMID: 10877789 PMCID: PMC92094 DOI: 10.1128/aem.66.7.2934-2942.2000] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2000] [Accepted: 05/08/2000] [Indexed: 11/20/2022] Open
Abstract
Propionate consumption was studied in syntrophic batch and chemostat cocultures of Syntrophobacter fumaroxidans and Methanospirillum hungatei. The Gibbs free energy available for the H(2)-consuming methanogens was <-20 kJ mol of CH(4)(-1) and thus allowed the synthesis of 1/3 mol of ATP per reaction. The Gibbs free energy available for the propionate oxidizer, on the other hand, was usually >-10 kJ mol of propionate(-1). Nevertheless, the syntrophic coculture grew in the chemostat at steady-state rates of 0.04 to 0. 07 day(-1) and produced maximum biomass yields of 2.6 g mol of propionate(-1) and 7.6 g mol of CH(4)(-1) for S. fumaroxidans and M. hungatei, respectively. The energy efficiency for syntrophic growth of S. fumaroxidans, i.e., the biomass produced per unit of available Gibbs free energy was comparable to a theoretical growth yield of 5 to 12 g mol of ATP(-1). However, a lower growth efficiency was observed when sulfate served as an additional electron acceptor, suggesting inefficient energy conservation in the presence of sulfate. The maintenance Gibbs free energy determined from the maintenance coefficient of syntrophically grown S. fumaroxidans was surprisingly low (0.14 kJ h(-1) mol of biomass C(-1)) compared to the theoretical value. On the other hand, the Gibbs free-energy dissipation per mole of biomass C produced was much higher than expected. We conclude that the small Gibbs free energy available in many methanogenic environments is sufficient for syntrophic propionate oxidizers to survive on a Gibbs free energy that is much lower than that theoretically predicted.
Collapse
|
research-article |
25 |
102 |
24
|
|
|
36 |
100 |
25
|
Kreft B, Strunk H, Flacke S, Wolff M, Conrad R, Gieseke J, Pauleit D, Bachmann R, Hirner A, Schild HH. Detection of thrombosis in the portal venous system: comparison of contrast-enhanced MR angiography with intraarterial digital subtraction angiography. Radiology 2000; 216:86-92. [PMID: 10887231 DOI: 10.1148/radiology.216.1.r00jl2386] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE To determine whether intraarterial digital subtraction angiography (DSA) can be replaced by contrast material-enhanced magnetic resonance (MR) angiography in the assessment of patency or thrombosis of the portal venous system in patients with portal hypertension. MATERIALS AND METHODS Thirty-six patients with portal hypertension underwent contrast-enhanced MR angiography and intraarterial DSA for assessment of the portal venous system. The images were evaluated for vessel patency or thrombosis of the portal, splenic, or superior mesenteric vein. RESULTS Of the 101 vessels evaluated, 42 were thrombosed. Overall sensitivity, specificity, and accuracy for the detection of thrombosis were 100%, 98%, and 99%, respectively, for MR angiography and 91%, 100%, and 96%, respectively, for DSA; differences between the imaging methods were not statistically significant. Only in four patients with six vessels (6%) were there discordant findings between MR angiography and DSA. CONCLUSION Noninvasive contrast-enhanced MR angiography has the potential to replace intraarterial DSA as the standard method to assess the whole portal venous system.
Collapse
|
Comparative Study |
25 |
95 |