1
|
Eladak S, Grisin T, Moison D, Guerquin MJ, N'Tumba-Byn T, Pozzi-Gaudin S, Benachi A, Livera G, Rouiller-Fabre V, Habert R. A new chapter in the bisphenol A story: bisphenol S and bisphenol F are not safe alternatives to this compound. Fertil Steril 2014; 103:11-21. [PMID: 25475787 DOI: 10.1016/j.fertnstert.2014.11.005] [Citation(s) in RCA: 452] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/04/2014] [Accepted: 11/05/2014] [Indexed: 10/24/2022]
Abstract
Bisphenol A (BPA) is a widely studied typical endocrine-disrupting chemical, and one of the major new issues is the safe replacement of this commonly used compound. Bisphenol S (BPS) and bisphenol F (BPF) are already or are planned to be used as BPA alternatives. With the use of a culture system that we developed (fetal testis assay [FeTA]), we previously showed that 10 nmol/L BPA reduces basal testosterone secretion of human fetal testis explants and that the susceptibility to BPA is at least 100-fold lower in rat and mouse fetal testes. Here, we show that addition of LH in the FeTA system considerably enhances BPA minimum effective concentration in mouse and human but not in rat fetal testes. Then, using the FeTA system without LH (the experimental conditions in which mouse and human fetal testes are most sensitive to BPA), we found that, as for BPA, 10 nmol/L BPS or BPF is sufficient to decrease basal testosterone secretion by human fetal testes with often nonmonotonic dose-response curves. In fetal mouse testes, the dose-response curves were mostly monotonic and the minimum effective concentrations were 1,000 nmol/L for BPA and BPF and 100 nmol/L for BPS. Finally, 10,000 nmol/L BPA, BPS, or BPF reduced Insl3 expression in cultured mouse fetal testes. This is the first report describing BPS and BPF adverse effects on a physiologic function in humans and rodents.
Collapse
|
Review |
11 |
452 |
2
|
|
Review |
24 |
194 |
3
|
Lambrot R, Muczynski V, Lécureuil C, Angenard G, Coffigny H, Pairault C, Moison D, Frydman R, Habert R, Rouiller-Fabre V. Phthalates impair germ cell development in the human fetal testis in vitro without change in testosterone production. ENVIRONMENTAL HEALTH PERSPECTIVES 2009; 117:32-7. [PMID: 19165384 PMCID: PMC2627862 DOI: 10.1289/ehp.11146] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Accepted: 09/08/2008] [Indexed: 05/04/2023]
Abstract
BACKGROUND Several studies have described an increasing frequency of male reproductive disorders, which may have a common origin in fetal life and which are hypothesized to be caused by endocrine disruptors. Phthalate esters represent a class of environmental endocrine-active chemicals known to disrupt development of the male reproductive tract by decreasing testosterone production in the fetal rat. OBJECTIVES Using the organ culture system we developed previously, we investigated the effects on the development of human fetal testis of one phthalate--mono-2-ethylhexyl phthalate (MEHP)--an industrial chemical found in many products, which has been incriminated as a disruptor of male reproductive function. METHODS Human fetal testes were recovered during the first trimester (7-12 weeks) of gestation, a critical period for testicular differentiation, and cultured for 3 days with or without MEHP in basal conditions or stimulated with luteinizing hormone (LH). RESULTS Whatever the dose, MEHP treatment had no effect on basal or LH-stimulated testosterone produced by the human fetal testis in vitro, although testosterone production can be modulated in our culture system. MEHP (10(-4) M) did not affect proliferation or apoptosis of Sertoli cells, but it reduced the mRNA expression of anti-Müllerian hormone. MEHP (10(-4) M) reduced the number of germ cells by increasing their apoptosis, measured by the detection of caspase-3-positive germ cells, without modification of their proliferation. CONCLUSIONS This is the first experimental demonstration that phthalates alter the development of the germ cell lineage in humans. However, in contrast to results observed in the rat, phthalates did not affect steroidogenesis.
Collapse
|
research-article |
16 |
137 |
4
|
Hussain R, Ghoumari AM, Bielecki B, Steibel J, Boehm N, Liere P, Macklin WB, Kumar N, Habert R, Mhaouty-Kodja S, Tronche F, Sitruk-Ware R, Schumacher M, Ghandour MS. The neural androgen receptor: a therapeutic target for myelin repair in chronic demyelination. ACTA ACUST UNITED AC 2013; 136:132-46. [PMID: 23365095 DOI: 10.1093/brain/aws284] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Myelin regeneration is a major therapeutic goal in demyelinating diseases, and the failure to remyelinate rapidly has profound consequences for the health of axons and for brain function. However, there is no efficient treatment for stimulating myelin repair, and current therapies are limited to anti-inflammatory agents. Males are less likely to develop multiple sclerosis than females, but often have a more severe disease course and reach disability milestones at an earlier age than females, and these observations have spurred interest in the potential protective effects of androgens. Here, we demonstrate that testosterone treatment efficiently stimulates the formation of new myelin and reverses myelin damage in chronic demyelinated brain lesions, resulting from the long-term administration of cuprizone, which is toxic for oligodendrocytes. In addition to the strong effect of testosterone on myelin repair, the number of activated astrocytes and microglial cells returned to low control levels, indicating a reduction of neuroinflammatory responses. We also identify the neural androgen receptor as a novel therapeutic target for myelin recovery. After the acute demyelination of cerebellar slices in organotypic culture, the remyelinating actions of testosterone could be mimicked by 5α-dihydrotestosterone, a metabolite that is not converted to oestrogens, and blocked by the androgen receptor antagonist flutamide. Testosterone treatment also failed to promote remyelination after chronic cuprizone-induced demyelination in mice with a non-functional androgen receptor. Importantly, testosterone did not stimulate the formation of new myelin sheaths after specific knockout of the androgen receptor in neurons and macroglial cells. Thus, the neural brain androgen receptor is required for the remyelination effect of testosterone, whereas the presence of the receptor in microglia and in peripheral tissues is not sufficient to enhance remyelination. The potent synthetic testosterone analogue 7α-methyl-19-nortestosterone, which has been developed for long-term male contraception and androgen replacement therapy in hypogonadal males and does not stimulate prostate growth, also efficiently promoted myelin repair. These data establish the efficacy of androgens as remyelinating agents and qualify the brain androgen receptor as a promising drug target for remyelination therapy, thus providing the preclinical rationale for a novel therapeutic use of androgens in males with multiple sclerosis.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
125 |
5
|
Delbès G, Levacher C, Habert R. Estrogen effects on fetal and neonatal testicular development. Reproduction 2006; 132:527-38. [PMID: 17008464 DOI: 10.1530/rep.1.01231] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In recent years, evidences have accumulated that exposure to environmental components with estrogenic activity causes reproductive disorders in human populations. Studies conducted over the past 50 years have clearly shown a continual decline in semen quality accompanied by an increase in male reproductive disorders during this period in industrial countries. As healthy gametes are a prerequisite for healthy children, such disorders are a significant problem not only for the current society, but also for future generations. These male reproductive disorders have been attributed to xenobiotics, and particularly to xenoestrogens, which have steadily increased in diversity and concentration in the environment and food. Epidemiological, clinical, and experimental studies have suggested that excessive exposure to estrogens and xenoestrogens during fetal and neonatal development may induce testicular developmental disorders, leading to alterations in the adult male fertility. Recently, we have clearly demonstrated that fetal and neonatal testes are very sensitive to estrogens, as the inactivation of estrogen receptor α increases steroidogenesis and the inactivation of estrogen receptor β enhances development of the germ cell lineage in the male.
Collapse
|
|
19 |
124 |
6
|
Livera G, Petre-Lazar B, Guerquin MJ, Trautmann E, Coffigny H, Habert R. p63 null mutation protects mouse oocytes from radio-induced apoptosis. Reproduction 2008; 135:3-12. [PMID: 18159078 DOI: 10.1530/rep-07-0054] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Female fertility in mammals is determined by the pool of primordial follicles and low doses of radiation induce a major loss of primordial follicles in the ovary. We investigated the expression of p53 and its homologues, p63 and p73, in the normal and irradiated neonatal ovary. p63 was the only member of the p53 family detected in oocyte nucleus. No p63 transcripts or protein were detected in the early foetal ovary. p63 production began in late pachytene-stage oocytes and peaked in diplotene oocytes in mice and humans. The production of p63 was correlated with meiotic DNA double-strand break repair. Only transactivation (TA) isoforms were present in the ovary, with TAp63 alpha by far the most abundant in terms of mRNA and protein levels. Complete p63 null mutation did not affect normal ovary development. Irradiation rapidly triggered p63 phosphorylation. p63 null mutation prevented the cleavage of caspases-9 and -3 and the follicle loss induced by ionising radiation. Thus, our results evidence that irradiation-induced depletion of the primordial follicle pool results from the activation of p63 in quiescent oocytes.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
123 |
7
|
Habert R, Picon R. Testosterone, dihydrotestosterone and estradiol-17 beta levels in maternal and fetal plasma and in fetal testes in the rat. JOURNAL OF STEROID BIOCHEMISTRY 1984; 21:193-8. [PMID: 6482429 DOI: 10.1016/0022-4731(84)90383-2] [Citation(s) in RCA: 112] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In Sherman rats testosterone, dihydrotestosterone (DHT) and estradiol-17 beta levels were measured in maternal and fetal plasma of both sexes during the last 5 days of gestation and in the fetal testes from day 14.5 of pregnancy using celite microcolumn chromatography and radioimmunoassay. All the plasma testosterone concentrations in males were at least 4 times higher than in their female littermates. In male fetuses, levels of plasma testosterone were maximum on day 18.5 (mean = 1.42 ng/ml) and declined thereafter (mean = 0.85 ng/ml on day 21.5). In female fetuses and in mothers, levels were consistently very low (mean less than 0.2 ng/ml). Plasma DHT titers in fetal plasma of the two sexes and in maternal plasma were consistently minute. Plasma estradiol-17 beta levels in fetuses did not differ between sexes; they were higher than maternal levels; there was a prepartum increase both in fetuses and their mothers. Testicular testosterone content became detectable on day 15.5, increased to reach a peak on day 18.5 (mean = 2.3 ng/testis) and remained at this plateau throughout the end of gestation. Intratesticular DHT and estradiol-17 beta were in minute concentrations. From these data we conclude that, in fetal rat, (1) DHT in genital tract is entirely formed in situ during masculinization, (2) among the three plasma steroids assayed, only testosterone can play a determining role in sexual differentiation.
Collapse
|
|
41 |
112 |
8
|
Livera G, Rouiller-Fabre V, Pairault C, Levacher C, Habert R. Regulation and perturbation of testicular functions by vitamin A. Reproduction 2002. [DOI: 10.1530/rep.0.1240173] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In addition to playing a fundamental role in very diverse processes such as vision and the growth and differentiation of numerous types of cell, vitamin A (retinol) and its principal biologically active derivative, retinoic acid, are clearly involved in the regulation of testicular functions in rodents. An excess of vitamin A leads to testicular lesions and spermatogenetic disorders, and a deficiency induces early cessation of spermatogenesis and adversely affects testosterone secretion. Furthermore, mice mutant for retinoic acid alpha receptors and retinoid X beta receptors are sterile. Retinoids appear to exert an action on the three main testicular types of cell (Sertoli, germinal and Leydig cells), as they act on the signalling pathways and Sertoli cell metabolism, and modify numerous factors secreted in Sertoli cells. Retinoids also appear to be necessary for the proliferation and differentiation of A spermatogonia, and for spermiogenesis. In addition, vitamin A deficiency leads to atrophy of the accessory sex organs after decreased testosterone production. Recent studies have shown that retinoids already affect these three types of cell in fetuses. Curiously, the effects of retinoids on fetal and adult testis seem opposed.
Collapse
|
|
23 |
110 |
9
|
Le Bouffant R, Guerquin MJ, Duquenne C, Frydman N, Coffigny H, Rouiller-Fabre V, Frydman R, Habert R, Livera G. Meiosis initiation in the human ovary requires intrinsic retinoic acid synthesis. Hum Reprod 2010; 25:2579-90. [DOI: 10.1093/humrep/deq195] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
|
15 |
93 |
10
|
Rouiller-Fabre V, Carmona S, Merhi RA, Cate R, Habert R, Vigier B. Effect of anti-Mullerian hormone on Sertoli and Leydig cell functions in fetal and immature rats. Endocrinology 1998; 139:1213-20. [PMID: 9492056 DOI: 10.1210/endo.139.3.5785] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Anti-Mullerian hormone (AMH) is mainly involved in the regression of Mullerian ducts in male fetuses, but it may have other functions linked to gonadal development. The present study examines the effect of AMH on steroidogenesis by Sertoli and Leydig cells in fetal and immature rats during the period where AMH is physiologically produced in the testis. The basal aromatase activity of Sertoli cells in primary culture was strongly stimulated (77-91%) by cAMP. AMH (35 nM) reduced cAMP-stimulated aromatase activity by 49-69% as early as fetal day 16 and until postnatal day 20. This effect was dose dependent and was seen after 48 h in culture. AMH also blocked the Sertoli cell aromatase activity stimulated by FSH, but LH did not stimulate this activity, confirming that the aromatase activity effectively resulted from Sertoli cells and not from contaminating Leydig cells. RT-PCR analysis showed that AMH reduced aromatase activity by decreasing the amount of aromatase messenger RNA. AMH also inhibited the LH-stimulated testosterone production by dispersed fetal Leydig cells in culture in a dose-dependent manner. The inhibitory effect of AMH did not depend on the fetal stage studied (16 or 20 days postconception) and resulted from a drop in the steroidogenic activity of each Leydig cell without affecting the number of 3beta-hydroxysteroid dehydrogenase-positive cells. These data provide the first evidence that AMH, like other members of the transforming growth factor-beta family, has an autocrine/paracrine effect on testicular steroidogenic function during the fetal and prepubertal periods.
Collapse
|
|
27 |
92 |
11
|
Delbès G, Levacher C, Pairault C, Racine C, Duquenne C, Krust A, Habert R. Estrogen receptor beta-mediated inhibition of male germ cell line development in mice by endogenous estrogens during perinatal life. Endocrinology 2004; 145:3395-403. [PMID: 15044378 DOI: 10.1210/en.2003-1479] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Epidemiological, clinical, and experimental studies have suggested that excessive exposure to estrogens during fetal/neonatal life can lead to reproductive disorders and sperm abnormalities in adulthood. However, it is unknown whether endogenous concentrations of estrogens affect the establishment of the male fetal germ cell lineage. We addressed this question by studying the testicular development of mice in which the estrogen receptor (ER) beta or the ERalpha gene was inactivated. The homozygous inactivation of ERbeta (ERbeta-/-) increased the number of gonocytes by 50% in 2- and 6-d-old neonates. The numbers of Sertoli and Leydig cells and the level of testicular testosterone production were unaffected, suggesting that estrogens act directly on the gonocytes. The increase in the number of gonocytes did not occur during fetal life but instead occurred just after birth, when gonocytes resumed mitosis and apoptosis. It seems to result from a decrease in the apoptosis rate evaluated by the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling method and cleaved caspase-3 immunohistochemical detection. Last, mice heterozygous for the ERbeta gene inactivation behaved similarly to their ERbeta-/- littermates in terms of the number of gonocytes, apoptosis, and mitosis, suggesting that these cells are highly sensitive to the binding of estrogens to ERbeta. ERalpha inactivation had no effect on the number of neonatal gonocytes and Sertoli cells. In conclusion, this study provides the first demonstration that endogenous estrogens can physiologically inhibit germ cell growth in the male. This finding may have important implications concerning the potential action of environmental estrogens.
Collapse
|
|
21 |
88 |
12
|
Delbès G, Levacher C, Duquenne C, Racine C, Pakarinen P, Habert R. Endogenous estrogens inhibit mouse fetal Leydig cell development via estrogen receptor alpha. Endocrinology 2005; 146:2454-61. [PMID: 15661855 DOI: 10.1210/en.2004-1540] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It is now accepted that estrogens play a role in male fertility and that exposure to exogenous estrogens during fetal/neonatal life can lead to reproductive disorders in the male. However, the estrogen receptor (ER)-mediated processes involved in the regulation of male reproduction during fetal and neonatal development are still largely unclear. We previously reported that ER beta deficiency affects gametogenesis in mice but changes neither the number nor the differentiated functions of fetal Leydig cells. We show here that ER alpha-deficient mice (ER alpha-/-) display higher levels of testicular testosterone secretion than wild-type mice from fetal d 13.5 onwards. This results from higher levels of steroidogenic activity per fetal Leydig cell, as indicated by the hypertrophy of these cells and the higher levels of mRNA for StAR, P450c17 and P450scc in the testis, for a similar number of Leydig cells. Because LH is not produced on fetal d 13.5 and because no change in plasma LH concentration was observed in 2-d-old ER alpha-deficient mice, LH is probably not involved in the effects of estrogens on testicular steroidogenesis in fetal and early neonatal Leydig cells. Furthermore, inactivation of ER beta did not change the effect of ER alpha inactivation on steroidogenesis. Lastly, in an organ culture system, 1 mum diethylstilbestrol decreased the testosterone secretion of wild-type fetal and neonatal testes but not of ER alpha-/- testes. Thus, this study shows that endogenous estrogens physiologically inhibit steroidogenesis via ER alpha by acting directly on the testis early in fetal and neonatal development.
Collapse
|
|
20 |
88 |
13
|
Trautmann E, Guerquin MJ, Duquenne C, Lahaye JB, Habert R, Livera G. Retinoic acid prevents germ cell mitotic arrest in mouse fetal testes. Cell Cycle 2014; 7:656-64. [DOI: 10.4161/cc.7.5.5482] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
|
11 |
86 |
14
|
Livera G, Rouiller-Fabre V, Durand P, Habert R. Multiple effects of retinoids on the development of Sertoli, germ, and Leydig cells of fetal and neonatal rat testis in culture. Biol Reprod 2000; 62:1303-14. [PMID: 10775181 DOI: 10.1095/biolreprod62.5.1303] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
We investigated the effect of retinoids on the development of Sertoli, germ, and Leydig cells using 3-day culture of testes from fetuses 14.5 and 18.5 days post-conception (dpc) and from neonates 3 days postpartum (dpp). Addition of 10(-6) M and 3.10(-8) M retinoic acid (RA) caused a dose-dependent disruption of the seminiferous cords in 14.5-day-old fetal testes, without any change in the 5-bromo-2'-deoxyuridine (BrdU) labeling index of the Sertoli cells. RA caused no disorganization of older testes, but it did cause hyperplasia of the Sertoli cells in 3-dpp testes. Fragmentation of the Sertoli cell DNA was not detected in control or RA-treated testes at any age studied. The cAMP produced in response to FSH was significantly decreased in RA-treated testes for all studied ages. Both 10(-6) M and 3.10(-8) M RA dramatically reduced the number of gonocytes per 14.5-dpc testis. This resulted from a high increase in apoptosis, which greatly exceeded the slight increase of mitosis. RA caused no change in the number of gonocytes in testes explanted on 18.5 dpc (the quiescent period), whereas it increased this number in testes explanted on 3 dpp (i.e., when gonocyte mitosis and apoptosis resume). Lastly, RA and retinol (RE) reduced both basal and acute LH-stimulated testosterone secretion by 14.5-dpc testis explants, without change in the number of 3beta-hydroxysteroid dehydrogenase-positive cells per testis. Retinoids had no effect on basal or LH-stimulated testosterone production by older testes. In conclusion, RE and RA are potential regulators of the development of the testis and act mainly negatively during fetal life and positively during the neonatal period on the parameters we have studied.
Collapse
|
|
25 |
83 |
15
|
Livera G, Delbes G, Pairault C, Rouiller-Fabre V, Habert R. Organotypic culture, a powerful model for studying rat and mouse fetal testis development. Cell Tissue Res 2006; 324:507-21. [PMID: 16520975 DOI: 10.1007/s00441-006-0167-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Accepted: 01/09/2006] [Indexed: 11/29/2022]
Abstract
The key role of the fetal testis in the masculinization of genital organs has been known for a long time. More recently, the observed increases in male reproductive disorders has been postulated to be the result of changes in fetal and neonatal testis development in response to increasing environmental pollution. However, few tools are available for studying fetal testis development and the effects of physiological or toxic substances. We have developed an organ culture system in which rat fetal testis is grown on a filter floating on a synthetic medium containing no serum, hormones or biological factors. In this study, we have compared the long-term morpho-functional development of the various testicular cell types in this system with that observed in vivo and have extended this system to the mouse. Rat Leydig, Sertoli and germ cells and macrophages develop normally over a period of 1-2 weeks in this system. Fewer cells are produced than in vivo but the level of differentiated function is similar. Germ cells, which are difficult to culture in vitro, resume mitosis after a quiescent period, at the same time as in vivo. Similar results have been obtained with mouse fetuses, except that Leydig cells dedifferentiate in vitro if the testis is explanted after 13.5 days post conception. Testicular architecture and intercellular communication are sufficiently preserved for the development of the main fetal and neonatal testicular cell types in vitro with no added factors. Our floating-filter organotypic culture system in synthetic medium therefore allows the morpho-functional development of somatic and germ cells in fetal testis explants taken at all developmental stages in rat and at early stages in mouse. This method is potentially useful for studies of the effects of various factors, and of xenobiotics, in particular.
Collapse
|
|
19 |
81 |
16
|
|
Review |
27 |
80 |
17
|
Lambrot R, Coffigny H, Pairault C, Donnadieu AC, Frydman R, Habert R, Rouiller-Fabre V. Use of organ culture to study the human fetal testis development: effect of retinoic acid. J Clin Endocrinol Metab 2006; 91:2696-703. [PMID: 16621909 DOI: 10.1210/jc.2005-2113] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT In human, the chronology of the testicular development has been extensively studied, but the factors implicated in the onset and the regulation of gametogenesis and steroidogenesis remain hardly known. OBJECTIVES To identify these factors, we developed an organ culture system for human fetal testes recovered during the first trimester (6-12 wk) of gestation. We first aimed at investigating the characteristics of this system by comparing the in vivo and in vitro gametogenesis and steroidogenesis. Second, we used organ culture to investigate the effect on the human testicular functions of retinoic acid (RA), previously described as a regulator of gonadal development in rodents. RESULTS Organ culture proved to be an efficient tool for studying the early development of the testicular functions. Indeed, this system was able to maintain satisfactory development of the germ cells and Leydig cells in the absence of any added factor. For older fetuses, the number of germ cells decreased in culture and the LH was necessary to maintain the steroidogenic activity. The addition of 10(-6) m RA decreased the total number of germ cells in the fetal testis at all studied stages. This resulted from an increase in apoptosis, which slightly exceeded the increase of proliferation. However, RA had a stimulatory effect on the steroidogenic function for the youngest fetuses over a short period of time by increasing the expression of P450 cholesterol side-chain cleavage, 17 alpha-hydroxylase/C17-20 lyase, and steroidogenic acute regulatory protein. CONCLUSIONS Thus, RA appears as a potential regulator of both gametogenesis and steroidogenesis in human fetal testis. Our organ culture is an interesting tool for studying the effects of various factors on the development of human fetal testis, in particular the effect of hormone-disrupting chemicals.
Collapse
|
|
19 |
75 |
18
|
Tartarin P, Moison D, Guibert E, Dupont J, Habert R, Rouiller-fabre V, Frydman N, Pozzi S, Frydman R, Lecureuil C, Froment P. Metformin exposure affects human and mouse fetal testicular cells. Hum Reprod 2012; 27:3304-14. [DOI: 10.1093/humrep/des264] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
|
13 |
75 |
19
|
N'Tumba-Byn T, Moison D, Lacroix M, Lecureuil C, Lesage L, Prud'homme SM, Pozzi-Gaudin S, Frydman R, Benachi A, Livera G, Rouiller-Fabre V, Habert R. Differential effects of bisphenol A and diethylstilbestrol on human, rat and mouse fetal leydig cell function. PLoS One 2012; 7:e51579. [PMID: 23284716 PMCID: PMC3524173 DOI: 10.1371/journal.pone.0051579] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 11/01/2012] [Indexed: 01/23/2023] Open
Abstract
Endocrine disruptors (ED) have been incriminated in the current increase of male reproductive alterations. Bisphenol A (BPA) is a widely used weak estrogenic environmental ED and it is debated whether BPA concentrations within the average internal exposure are toxic. In the present study we investigated the effects of 10(-12) to 10(-5) M BPA concentrations on fetal Leydig cell function, as fetal life is a critical period of sensitivity to ED effects on male reproductive function. To this aim, fetal testes from human at 6.5-10.5 gestational weeks (GW) or from rat and mouse at a comparable critical period of development (14.5 days post-coitum (dpc) for rat and 12.5 dpc for mouse) were explanted and cultured using our validated organotypic culture system in the presence or absence of BPA for 1-3 days. BPA concentrations as low as 10(-8) M reduced testosterone secretion by human testes from day 1 of culture onwards, but not by mouse and rat testes where concentrations equal to 10(-5) M BPA were required. Similarly, 10(-8) M BPA reduced INSL3 mRNA levels only in human cultured testes. On the contrary, 10(-5) and 10(-6) M diethylstilbestrol (DES), a classical estrogenic compound, affected testosterone secretion only in rat and mouse testis cultures, but not in human testis cultures. Lastly, contrarily to the DES effect, the negative effect of BPA on testosterone produced by the mouse fetal testis was maintained after invalidation of estrogen receptor α (ERα). In conclusion, these results evidenced i) a deleterious effect of BPA on fetal Leydig cells function in human for concentrations from 10(-8) M upwards, ii) species-specific differences raising concerns about extrapolation of data from rodent studies to human risk assessment, iii) a specific signaling pathway for BPA which differs from the DES one and which does not involve ERα.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
74 |
20
|
Beausoleil C, Emond C, Cravedi JP, Antignac JP, Applanat M, Appenzeller BR, Beaudouin R, Belzunces LP, Canivenc-Lavier MC, Chevalier N, Chevrier C, Elefant E, Eustache F, Habert R, Kolf-Clauw M, Le Magueresse-Battistoni B, Mhaouty-Kodja S, Minier C, Multigner L, Schroeder H, Thonneau P, Viguié C, Pouzaud F, Ormsby JN, Rousselle C, Verines-Jouin L, Pasquier E, Michel C. Regulatory identification of BPA as an endocrine disruptor: Context and methodology. Mol Cell Endocrinol 2018; 475:4-9. [PMID: 29426018 DOI: 10.1016/j.mce.2018.02.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 01/25/2018] [Accepted: 02/01/2018] [Indexed: 12/14/2022]
Abstract
BPA is one of the most investigated substances for its endocrine disruptor (ED) properties and it is at the same time in the center of many ED-related controversies. The analysis on how BPA fits to the regulatory identification as an ED is a challenge in terms of methodology. It is also a great opportunity to test the regulatory framework with a uniquely data-rich substance and learn valuable lessons for future cases. From this extensive database, it was considered important to engage in a detailed analysis so as to provide specific and strong evidences of ED while reflecting accurately the complexity of the response as well the multiplicity of adverse effects. An appropriate delineation of the scope of the analysis was therefore critical. Four effects namely, alterations of estrous cyclicity, mammary gland development, brain development and memory function, and metabolism, were considered to provide solid evidence of ED-mediated effects of BPA.
Collapse
|
Review |
7 |
74 |
21
|
Hanoux V, Pairault C, Bakalska M, Habert R, Livera G. Caspase-2 involvement during ionizing radiation-induced oocyte death in the mouse ovary. Cell Death Differ 2006; 14:671-81. [PMID: 17082817 DOI: 10.1038/sj.cdd.4402052] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In mammals, the pool of primordial follicles at birth is determinant for female fertility. Exposure to IR during oogonia proliferation and the diplotene stages of ovarian development induced the virtual disappearance of primordial follicles in the postnatal ovary, while half the follicular reserve remained present after irradiation during the zygotene/pachytene stages. This sensitivity difference was correlated with the level of caspase-2 expression evaluated by immunohistochemistry. At the diplotene stage, Western blot and caspase activity analysis revealed that caspase-2 was activated 2 h after irradiation and a significant increase in the number of oocytes expressing cleaved caspase-9 and -3 occurred 6 h after treatment. Inhibition of caspase-2 activity prevented the cleavage of caspase-9 and partially prevented the loss of oocytes in response to irradiation. Taken together, our results show that caspase-2-dependent activation of the mitochondrial apoptotic pathway is one of the mechanisms involved in the genotoxic stress-induced depletion of the primordial follicle pool.
Collapse
|
|
19 |
71 |
22
|
Olaso R, Pairault C, Boulogne B, Durand P, Habert R. Transforming growth factor beta1 and beta2 reduce the number of gonocytes by increasing apoptosis. Endocrinology 1998; 139:733-40. [PMID: 9449647 DOI: 10.1210/endo.139.2.5765] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Transforming growth factors beta1 and beta2 (TGFbetas) have recently been detected by immunohistochemistry in the fetal and neonatal rat testis, and the aim of the present study was to determine whether these factors can act as local regulators to control the number of gonocytes. Testes were kept in organ culture, and TGFbeta1 was found to have dose-dependent inhibitory effect on the number of gonocytes in testes explanted on fetal day 13.5. Either TGFbeta1 or beta2 at 10 ng/ml reduced the number of gonocytes by half after 2 days culture. TGFbetas did not decrease the BrdU labeling index of gonocytes or Sertoli cells, whereas these factors significantly increased the DNA fragmentation in gonocytes (TUNEL method). The other testicular cell types showed no positive TUNEL reaction. TGFbeta1 did not reduce the number of gonocytes in testes explanted on fetal day 17.5 (i.e. during the quiescent phase), but it did so in testes explanted on postnatal day 3 (i.e. stage of resumption of mitosis). To determine the potential cell type targets for TGFbetas, type I and type II TGFbeta receptors were immunolocalized in developing testis from fetal day 13.5 to postnatal day 3. Both receptors were present in the gonocytes throughout the whole period studied, and in the Leydig cells from fetal day 16.5 onward, but they were not detected in the Sertoli cells. Taken together, these results suggest that TGFbetas directly increase apoptosis in gonocytes without changing their mitotic activity during the developmental phases of proliferation.
Collapse
|
|
27 |
70 |
23
|
Angenard G, Muczynski V, Coffigny H, Pairault C, Duquenne C, Frydman R, Habert R, Rouiller-Fabre V, Livera G. Cadmium increases human fetal germ cell apoptosis. ENVIRONMENTAL HEALTH PERSPECTIVES 2010; 118:331-7. [PMID: 20064782 PMCID: PMC2854759 DOI: 10.1289/ehp.0900975] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 10/14/2009] [Indexed: 05/08/2023]
Abstract
BACKGROUND Cadmium (Cd) is a common environmental pollutant and a major constituent of tobacco smoke. Adverse effects of this heavy metal on reproductive function have been identified in adults; however, no studies have examined its effects on human reproductive organs during development. OBJECTIVES Using our previously developed organ culture system, we investigated the effects of cadmium chloride on human gonads at the beginning of fetal life, a critical stage in the development of reproductive function. METHODS Human fetal gonads were recovered during the first trimester (711 weeks postconception) and cultured with or without Cd. We used different concentrations of Cd and compared results with those obtained with mouse fetal gonads at similar stages. RESULTS Cd, at concentrations as low as 1 microM, significantly decreased the germ cell density in human fetal ovaries. This correlated with an increase in germ cell apoptosis, but there was no effect on proliferation. Similarly, in the human fetal testis, Cd (1 microM) reduced germ cell number without affecting testosterone secretion. In mouse fetal gonads, Cd increased only female germ cell apoptosis. CONCLUSIONS This is the first experimental demonstration that Cd, at low concentrations, alters the survival of male and female germ cells in humans. Considering data demonstrating extensive human exposure, we believe that current environmental levels of Cd could be deleterious to early gametogenesis.
Collapse
|
research-article |
15 |
70 |
24
|
Lassurguère J, Livera G, Habert R, Jégou B. Time- and dose-related effects of estradiol and diethylstilbestrol on the morphology and function of the fetal rat testis in culture. Toxicol Sci 2003; 73:160-9. [PMID: 12657744 DOI: 10.1093/toxsci/kfg065] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
UNLABELLED The mechanisms underlying the action of estrogens in the fetal testis are still largely obscure. In particular, whether this action is direct or indirect remains largely unexplored. This study was aimed at investigating the effect of estradiol (E2) and diethylstilbestrol (DES) on the testis from 14.5-day-old rat fetuses in culture, at concentrations ranging from 4 x 10(-10) M (Kd of E2 for the estrogen receptors [ER]: 1-4 x 10(-10) M) to 4 x 10(-6) M (concentration previously shown in the literature to affect in vitro gonocyte proliferation). Exposure to DES and E2 decreased gonocyte number, the effects of DES being much more drastic than those of E2. Gonocyte number decreased in a concentration-dependent manner (day 3: -5%, -16%, and -80% at 4 x 10(-10) M, 4 x 10(-8) M, and 4 x 10(-6)M of DES, respectively), as well as in a time-dependent manner (at 4 x 10(-6) M DES: -31% on day 1, -60% on day 2, and -80% on day 3). This was due to a decrease in the gonocyte mitotic index and a dramatic increase in apoptosis. Importantly, in the presence of the anti-estrogen ICI 182.780 (ICI), the effect of DES was abolished. Sertoli cell number subsequently decreased (day 3), although the rate of apoptosis did not increase. These changes were less dramatic than those observed with gonocytes and were due to a decrease in Sertoli cell proliferation, which was not antagonized by ICI. Addition of 4 x 10(-6) M DES had no effect on basal Sertoli cell cyclic adenosine 5'-monophosphate (cAMP) levels or on follicle-stimulating hormone (FSH)-stimulated cAMP production after adjustment for Sertoli cell number. Finally, estrogens reduced both Leydig cell number (-26% on day 3, 4 x 10(-6) M DES) and basal and luteinizing hormone (LH)-stimulated testosterone production. The latter effects were antagonized by ICI. IN CONCLUSION 1) E2 and DES induce alterations in the germ line and in somatic cells; 2) gonocyte alteration was the first event detected, and the action of estrogens at this level was mediated by ER, as is the case in Leydig cells; and 3) these data should help us to understand estrogen effects on the fetus and should be considered in the context of the debate on environmental estrogens.
Collapse
|
|
22 |
66 |
25
|
Lehraiki A, Racine C, Krust A, Habert R, Levacher C. Phthalates impair germ cell number in the mouse fetal testis by an androgen- and estrogen-independent mechanism. Toxicol Sci 2009; 111:372-82. [PMID: 19592451 PMCID: PMC2742583 DOI: 10.1093/toxsci/kfp153] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Data from experiments conducted almost exclusively in the rat have established that some phthalates have deleterious effects on the fetal testis probably due to their antiandrogenic and/or estrogenic effects, but their mechanisms of action remain unknown. A recent study reported that phthalates also have deleterious effects on human fetal testis with germ cell number, but not steroidogenesis altered. Therefore, we used organ culture of fetal testes at different stages of development to analyze the direct effects of phthalates on both steroidogenesis and gonocyte development and to determine if the effects of MEHP on these functions reported in the rat can be extended to other mammalian species. We defined specific periods of sensitivity of the fetal mouse testis to MEHP for these two functions and showed that the effects of phthalates on steroidogenesis vary with the developmental stage. Conversely, the strong deleterious effects of phthalates on germ cells were constantly present during the active phases of gonocyte development and thus share no relationship with the steroidogenic status. Moreover, all the effects of phthalates were unchanged in testes from mice deficient for estrogen (ERαKO or ERβKO) or androgen (Tfm) receptors. In conclusion, our results demonstrate that phthalates impair mouse fetal germ cell number similarly to other mammalian species, but are neither estrogenic nor antiandrogenic molecules because their effects do not involve, directly or indirectly, ER or AR.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
63 |