1
|
Rodriguez S, Abundis C, Boccalatte F, Mehrotra P, Chiang MY, Yui MA, Wang L, Zhang H, Zollman A, Bonfim-Silva R, Kloetgen A, Palmer J, Sandusky G, Wunderlich M, Kaplan MH, Mulloy JC, Marcucci G, Aifantis I, Cardoso AA, Carlesso N. Therapeutic targeting of the E3 ubiquitin ligase SKP2 in T-ALL. Leukemia 2019; 34:1241-1252. [PMID: 31772299 PMCID: PMC7192844 DOI: 10.1038/s41375-019-0653-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 10/18/2019] [Accepted: 11/13/2019] [Indexed: 12/15/2022]
Abstract
Timed degradation of the cyclin-dependent kinase inhibitor p27Kip1 by the E3 ubiquitin ligase F-box protein SKP2 is critical for T-cell progression into cell cycle, coordinating proliferation and differentiation processes. SKP2 expression is regulated by mitogenic stimuli and by Notch signaling, a key pathway in T-cell development and in T-cell acute lymphoblastic leukemia (T-ALL); however, it is not known whether SKP2 plays a role in the development of T-ALL. Here, we determined that SKP2 function is relevant for T-ALL leukemogenesis, whereas is dispensable for T-cell development. Targeted inhibition of SKP2 by genetic deletion or pharmacological blockade markedly inhibited proliferation of human T-ALL cells in vitro and antagonized disease in vivo in murine and xenograft leukemia models, with little effect on normal tissues. We also demonstrate a novel feed forward feedback loop by which Notch and IL-7 signaling cooperatively converge on SKP2 induction and cell cycle activation. These studies show that the Notch/SKP2/p27Kip1 pathway plays a unique role in T-ALL development and provide a proof-of-concept for the use of SKP2 as a new therapeutic target in T-cell acute lymphoblastic leukemia (T-ALL).
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
29 |
2
|
Rios DLS, D'Onofrio LO, Cerqueira CCS, Bonfim-Silva R, Carvalho HG, Santos-Filho A, Galvão-Castro B. Paraoxonase 1 gene polymorphisms in angiographically assessed coronary artery disease: evidence for gender interaction among Brazilians. ACTA ACUST UNITED AC 2007; 45:874-8. [PMID: 17617030 DOI: 10.1515/cclm.2007.136] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractClin Chem Lab Med 2007;45:874–8.
Collapse
|
|
18 |
21 |
3
|
Bonfim-Silva R, Ferreira Melo FU, Thomé CH, Abraham KJ, De Souza FAL, Ramalho FS, Machado HR, De Oliveira RS, Cardoso AA, Covas DT, Fontes AM. Functional analysis of HOXA10 and HOXB4 in human medulloblastoma cell lines. Int J Oncol 2017; 51:1929-1940. [PMID: 29039487 DOI: 10.3892/ijo.2017.4151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 09/28/2017] [Indexed: 11/06/2022] Open
Abstract
Medulloblastoma (MB) is a malignant childhood brain tumor which at molecular level is classified into at least four major subtypes: WNT, SHH, group C and group D differing in response to treatment. Previous studies have associated changes in expression levels and activation of certain HOX genes with MB development. In the present study, we investigate the role of HOX genes in two attributes acquired by tumor cells: migration and proliferation potential, as well as, in vivo tumorigenic potential. We analyzed UW402, UW473, DAOY and ONS-76 human pediatric MB cell lines and cerebellum primary cultures. Two-color microarray-based gene expression analysis was used to identify differentially expressed HOX genes. Among the various HOX genes significantly overexpressed in DAOY and ONS-76 cell lines compared to UW402 and UW473 cell lines, HOXA10 and HOXB4 were selected for further analysis. The expression levels of these HOX genes were validated by real-time PCR. A mouse model was used to study the effect of the HOXA10 and HOXB4 genes on the in vivo tumorigenic potential and the in vitro proliferative and migration potential of MB cell lines. Our results show that the inhibition of HOXA10 in DAOY cell line led to increased in vitro cell migration while in vitro cell proliferation or in vivo tumorigenic potential were unaffected. We also observed that induced expression of HOXB4 in the UW473 cell line significantly reduced in vitro cell proliferation and migration capability of UW473 cells with no effect on the in vivo tumorigenicity. This suggests that HOXA10 plays a role in migration events and the HOXB4 gene is involved in proliferation and migration processes of medulloblastoma cells, however, it appears that these genes are not essential for the tumorigenic process of these cells.
Collapse
|
Journal Article |
8 |
8 |
4
|
Fontes AM, Kashima S, Bonfim-Silva R, Azevedo R, Abraham KJ, Albuquerque SRL, Bordin JO, Júnior DML, Covas DT. Association between Knops blood group polymorphisms and susceptibility to malaria in an endemic area of the Brazilian Amazon. Genet Mol Biol 2011; 34:539-45. [PMID: 22215954 PMCID: PMC3229105 DOI: 10.1590/s1415-47572011005000051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 07/14/2011] [Indexed: 11/25/2022] Open
Abstract
Complement receptor 1 (CR1) gene polymorphisms that are associated with Knops blood group antigens may influence the binding of Plasmodium parasites to erythrocytes, thereby affecting susceptibility to malaria. The aim of this study was to evaluate the genotype and allele and haplotype frequencies of single-nucleotide polymorphisms (SNPs) of Knops blood group antigens and examine their association with susceptibility to malaria in an endemic area of Brazil. One hundred and twenty-six individuals from the Brazilian Amazon were studied. The CR1-genomic fragment was amplified by PCR and six SNPs and haplotypes were identified after DNA sequence analysis. Allele and haplotype frequencies revealed that the Kn(b) allele and H8 haplotype were possibly associated with susceptibility to Plasmodium falciparum. The odds ratios were reasonably high, suggesting a potentially important association between two Knops blood antigens (Kn(b) and KAM(+)) that confer susceptibility to P. falciparum in individuals from the Brazilian Amazon.
Collapse
|
research-article |
14 |
7 |
5
|
Bonfim-Silva R, Salomão KB, Pimentel TVCDA, Menezes CCBDO, Palma PVB, Fontes AM. Biological characterization of the UW402, UW473, ONS-76 and DAOY pediatric medulloblastoma cell lines. Cytotechnology 2019; 71:893-903. [PMID: 31346954 PMCID: PMC6787134 DOI: 10.1007/s10616-019-00332-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 07/19/2019] [Indexed: 12/15/2022] Open
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor in children. Recent advances in molecular technologies allowed to classify MB in 4 major molecular subgroups: WNT, SHH, Group 3 and Group 4. In cancer research, cancer cell lines are important for examining and manipulating molecular and cellular process. However, it is important to know the characteristics of each cancer cell line prior to use, because there are some differences among them, even if they originate from the same cancer type. This study aimed to evaluate the similarities and differences among four human medulloblastoma cell lines, UW402, UW473, DAOY and ONS-76. The medulloblastoma cell lines were analyzed for (1) cell morphology, (2) immunophenotyping by flow cytometry for some specifics surface proteins, (3) expression level of adhesion molecules by RT-qPCR, (4) proliferative potential, (5) cell migration, and (6) in vivo tumorigenic potential. It was observed a relationship between cell growth and CDH1 (E-chaderin) adhesion molecule expression and all MB cell lines showed higher levels of CDH2 (N-chaderin) when compared to other adhesion molecule. ONS-76 showed higher gene expression of CDH5 (VE-chaderin) and higher percentage of CD144/VE-chaderin positive cells when compared to other MB cell lines. All MB cell lines showed low percentage of CD34, CD45, CD31, CD133 positive cells and high percentage of CD44, CD105, CD106 and CD29 positive cells. The DAOY cell line showed the highest migration potential, the ONS-76 cell line showed the highest proliferative potential and only DAOY and ONS-76 cell lines showed tumorigenic potential in vivo. MB cell lines showed functional and molecular differences among them, which it should be considered by the researchers in choosing the most suitable cellular model according to the study proposal.
Collapse
|
research-article |
6 |
7 |
6
|
Bezerra Salomão K, Cruzeiro GAV, Bonfim-Silva R, Geron L, Ramalho F, Pinto Saggioro F, Serafini LN, Antunes Moreno D, de Paula Queiroz RG, Dos Santos Aguiar S, Cardinalli I, Yunes JA, Brandalise SR, Brassesco MS, Scrideli CA, Gonzaga Tone L. Reduced hydroxymethylation characterizes medulloblastoma while TET and IDH genes are differentially expressed within molecular subgroups. J Neurooncol 2018; 139:33-42. [PMID: 29582271 DOI: 10.1007/s11060-018-2845-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/17/2018] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Medulloblastoma (MB) is an embryonal tumour that originates from genetic deregulation of cerebellar developmental pathways and is classified into 4 molecular subgroups: SHH, WNT, group 3, and group 4. Hydroxymethylation levels progressively increases during cerebellum development suggesting a possibility of deregulation in MB pathogenesis. The aim of this study was to investigate global hydroxymethylation levels and changes in TET and IDH gene expression in MB samples compared to control cerebellum samples. METHODS The methods utilized were qRT-PCR for gene expression, dot-blot and immunohistochemistry for global hydroxymethylation levels and sequencing for the investigation of IDH mutations. RESULTS Our results show that global hydroxymethylation level was decreased in MB, and low 5hmC level was associated with the presence of metastasis. TET1 expression levels were decreased in the WNT subgroup, while TET3 expression levels were decreased in the SHH subgroup. Reduced TET3 expression levels were associated with the presence of events such as relapse and death. Higher expression of IDH1 was observed in MB group 3 samples, whereas no mutations were detected in exon 4 of IDH1 and IDH2. CONCLUSION These findings suggest that reduction of global hydroxymethylation levels, an epigenetic event, may be important for MB development and/or maintenance, representing a possible target in this tumour and indicating a possible interaction of TET and IDH genes with the developmental pathways specifically activated in the MB subgroups. These genes could be specific targets and markers for each subgroup.
Collapse
|
Journal Article |
7 |
6 |
7
|
Gattás D, Neto FSL, Freitas-Lima P, Bonfim-Silva R, de Almeida SM, de Assis Cirino ML, Tiezzi DG, Tirapelli LF, Velasco TR, Sakamoto AC, Matias CM, Jr CGC, Tirapelli DPDC. MicroRNAs miR-629-3p, miR-1202 and miR-1225-5p as potential diagnostic and surgery outcome biomarkers for mesial temporal lobe epilepsy with hippocampal sclerosis. Neurochirurgie 2022; 68:583-588. [PMID: 35700789 DOI: 10.1016/j.neuchi.2022.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/30/2022] [Accepted: 06/04/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Mesial temporal lobe epilepsy (MTLE) is a symptomatic epilepsy syndrome clinically characterized by high prevalence, pharmacoresistance, good surgical prognosis and hippocampal sclerosis (HS); however, no singular criteria can be considered sufficient for the MTLE-HS diagnosis. MicroRNAs (miRNAs) are small non-coding molecules that act as important gene-expression regulators at post-transcriptional level. Evidences on the involvement of miRNAs in epilepsy pathogenesis as well as their potential to be employed as biomarkers claim for investigations on miRNAs' applicability as epilepsy diagnosis and prognosis biomarkers. Consequently, the present study aimed to evaluate the applicability of three specific miRNAs as biomarkers of diagnosis and surgical outcomes in adult patients with MTLE-HS. METHOD Hippocampus, amygdala and blood samples from 20 patients with MTLE-HS were analyzed, 10 with favorable surgical prognosis (Engel I) and 10 with unfavorable surgical prognosis (Engel III-IV). For the control groups, hippocampus and amygdala from necropsy and blood samples from healthy individuals were adopted. The miRNAs expression analysis was performed using Real-Time Quantitative Polymerase Chain Reaction for miRNAs highlighted from microarray as being involved in GABAergic neurotransmission. RESULTS The miRNAs miR-629-3p, miR-1202 and miR-1225-5p were found to be hyperexpressed in MTLE-HS patients' blood. CONCLUSIONS Our data suggest the existence of three circulating miRNAs (miR-629-3p, miR-1202 and miR-1225-5p) that could possibly act as additional tools in the set of factors that contribute to MTLE-HS diagnose.
Collapse
|
|
3 |
4 |
8
|
Bonfim-Silva R, Pimentel TVCA, Valera ET, Scrideli CA, Ramalho FS, Machado HR, Covas DT, Fontes AM. Gene expression profile of long non-coding RNA EVF-2 in medulloblastoma cell lines and tissue samples. BMC Proc 2013. [PMCID: PMC3624149 DOI: 10.1186/1753-6561-7-s2-p61] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
|
12 |
2 |
9
|
Martins-da-Silva A, Baroni M, Salomão KB, das Chagas PF, Bonfim-Silva R, Geron L, Cruzeiro GAV, da Silva WA, Corrêa CAP, Carlotti CG, de Paula Queiroz RG, Marie SKN, Brandalise SR, Yunes JA, Scrideli CA, Valera ET, Tone LG. Clinical Prognostic Implications of Wnt Hub Genes Expression in Medulloblastoma. Cell Mol Neurobiol 2023; 43:813-826. [PMID: 35366170 PMCID: PMC11415171 DOI: 10.1007/s10571-022-01217-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 03/22/2022] [Indexed: 11/03/2022]
Abstract
Medulloblastoma is the most common type of pediatric malignant primary brain tumor, and about one-third of patients die due to disease recurrence and most survivors suffer from long-term side effects. MB is clinically, genetically, and epigenetically heterogeneous and subdivided into at least four molecular subgroups: WNT, SHH, Group 3, and Group 4. We evaluated common differentially expressed genes between a Brazilian RNA-seq GSE181293 dataset and microarray GSE85217 dataset cohort of pediatric MB samples using bioinformatics methodology in order to identify hub genes of the molecular subgroups based on PPI network construction, survival and functional analysis. The main finding was the identification of five hub genes from the WNT subgroup that are tumor suppressors, and whose lower expression is related to a worse prognosis for MB patients. Furthermore, the common genes correlated with the five tumor suppressors participate in important pathways and processes for tumor initiation and progression, as well as development and differentiation, and some of them control cell stemness and pluripotency. These genes have not yet been studied within the context of MB, representing new important elements for investigation in the search for therapeutic targets, prognostic markers or for understanding of MB biology.
Collapse
|
research-article |
2 |
|
10
|
Bonfim-Silva R, Viani de Andrade P, Scrideli CA, Tone LG, Gilberto Carlotti Júnior C. PO-165 Effect of notch pathway and Skp2 inhibition in cell viability/proliferation of medulloblastoma cells. ESMO Open 2018. [DOI: 10.1136/esmoopen-2018-eacr25.687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
|
7 |
|
11
|
Fontes AM, Bonfim-Silva R, Souza LEB, Melo FUF, Oliveira VC, Magalhaes DAR, Cardoso AA, Rahal P, Covas DT. Abstract LB-304: Bone marrow-derived endothelial cells migrate to tumor sites and contribute to functional tumor vasculature. Cancer Res 2011. [DOI: 10.1158/1538-7445.am2011-lb-304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Tumor expansion is dependent on neovascularization, a process that requires sustained new vessel formation. Although the critical role of angiogenesis by endothelial sprouting in this process, controversy still prevails on the whether vasculogenesis, involving bone marrow (BM)-derived endothelial cells, does contribute to this process. The objective of this study was to investigate the contributions of BM-derived endothelial cells to tumor vasculature, in a melanoma model using chimeric GFP mice. Methodology: First, wild-type C57BL/6 mice were was exposed to a single dose of 10 Gy X-irradition and rescued by transplantation of BM cells from C57BL/6-GFP mice. At d30 post-transplant, the animals received a subcutaneous infusion of melanoma cells stably transfected with the luciferase gene (B16/F10-Luc+). After 20 days, the tumors were harvested, and tumor stroma characterized using flow cytometry, bioluminescence-based image processing and confocal microscopy, to define the specific contribution of BM-derived cells. Results: Mice transplanted with donor GFP+ cells showed significant BM chimerism (90.9 ± 0.87%) demonstrating successful engraftment of donor BM stem/progenitor cells. Analyses of tumor specimens showed the presence of donor cells in the tumor sites (3.5±1.7%) in all animals, showing that BM-derived cells were effectively recruited to the developing melanoma. Interestingly, these cells represent endothelial cells (CD31+ cells; mean=X%) and myeloid-lineage cells (CD11b+ cells; mean=80%), but also tumor-infiltrating lymphocytes (CD8+ T cells, mean = 13.31; CD4+ T-cells, mean=2.1). Examination of the tumor endothelium by confocal microscopy clearly showed the presence of donor CD31/GFP cells in the vessel wall, namely in vessels lacking other mural components (as pericytes). Conclusions: Taken together, this study demonstrates that BM-derived cells are actively recruited to tumor sites, contributing to the tumor stroma and the formation of blood vessels in the developing tumor. We are performing studies to elucidate the molecular mechanisms involved in mobilization of of BM-derived precursor cells to the tumor microenvironment, and whether disruption of this vasculogeneic process significant impairs tumor development.
Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 102nd Annual Meeting of the American Association for Cancer Research; 2011 Apr 2-6; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2011;71(8 Suppl):Abstract nr LB-304. doi:10.1158/1538-7445.AM2011-LB-304
Collapse
|
|
14 |
|