1
|
Chesneau M, Pallier A, Braza F, Lacombe G, Le Gallou S, Baron D, Giral M, Danger R, Guerif P, Aubert-Wastiaux H, Néel A, Michel L, Laplaud DA, Degauque N, Soulillou JP, Tarte K, Brouard S. Unique B cell differentiation profile in tolerant kidney transplant patients. Am J Transplant 2014; 14:144-55. [PMID: 24354874 DOI: 10.1111/ajt.12508] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 09/11/2013] [Accepted: 09/11/2013] [Indexed: 01/25/2023]
Abstract
Operationally tolerant patients (TOL) display a higher number of blood B cells and transcriptional B cell signature. As they rarely develop an allo-immune response, they could display an abnormal B cell differentiation. We used an in vitro culture system to explore T-dependent differentiation of B cells into plasma cells. B cell phenotype, apoptosis, proliferation, cytokine, immunoglobulin production and markers of differentiation were followed in blood of these patients. Tolerant recipients show a higher frequency of CD20(+) CD24(hi) CD38(hi) transitional and CD20(+) CD38(lo) CD24(lo) naïve B cells compared to patients with stable graft function, correlating with a decreased frequency of CD20(-) CD38(+) CD138(+) differentiated plasma cells, suggestive of abnormal B cell differentiation. B cells from TOL proliferate normally but produce more IL-10. In addition, B cells from tolerant recipients exhibit a defective expression of factors of the end step of differentiation into plasma cells and show a higher propensity for cell death apoptosis compared to patients with stable graft function. This in vitro profile is consistent with down-regulation of B cell differentiation genes and anti-apoptotic B cell genes in these patients in vivo. These data suggest that a balance between B cells producing IL-10 and a deficiency in plasma cells may encourage an environment favorable to the tolerance maintenance.
Collapse
|
|
11 |
117 |
2
|
Lozano JJ, Pallier A, Martinez-Llordella M, Danger R, López M, Giral M, Londoño MC, Rimola A, Soulillou JP, Brouard S, Sánchez-Fueyo A. Comparison of transcriptional and blood cell-phenotypic markers between operationally tolerant liver and kidney recipients. Am J Transplant 2011; 11:1916-26. [PMID: 21827613 DOI: 10.1111/j.1600-6143.2011.03638.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A proportion of transplant recipients can spontaneously accept their grafts in the absence of immunosuppression (operational tolerance). Previous studies identified blood transcriptional and cell-phenotypic markers characteristic of either liver or kidney tolerant recipients. However, the small number of patients analyzed and the use of different transcriptional platforms hampered data interpretation. In this study we directly compared samples from kidney and liver tolerant recipients in order to identify potential similarities in immune-related parameters. Liver and kidney tolerant recipients differed in blood expression and B-cell immunophenotypic patterns and no significant overlaps were detectable between them. Whereas some recipients coincided in specific NK-related transcripts, this observation was not reproducible in all cohorts analyzed. Our results reveal that certain immune features, but not others, are consistently present across all cohorts of operationally tolerant recipients. This provides a set of reproducible biomarkers that should be explored in future large-scale immunomonitoring trials.
Collapse
|
|
14 |
100 |
3
|
Danger R, Pallier A, Giral M, Martínez-Llordella M, Lozano JJ, Degauque N, Sanchez-Fueyo A, Soulillou JP, Brouard S. Upregulation of miR-142-3p in peripheral blood mononuclear cells of operationally tolerant patients with a renal transplant. J Am Soc Nephrol 2012; 23:597-606. [PMID: 22282590 DOI: 10.1681/asn.2011060543] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Achieving drug-free tolerance or successfully using only small doses of immunosuppression is a major goal in organ transplantation. To investigate the potential mechanisms by which some kidney transplant recipients can achieve operational tolerance, we compared the expression profiles of microRNA in peripheral blood mononuclear cells of operationally tolerant patients with those of stable patients treated with conventional immunosuppression. B cells from operationally tolerant patients overexpressed miR-142-3p. The expression of miR-142-3p was stable over time and was not modulated by immunosuppression. In Raji B cells, overexpression of miR-142-3p modulated nearly 1000 genes related to the immune response of B cells, including potential miR-142-3p targets and molecules previously identified in the blood of operationally tolerant patients. Furthermore, our results suggested that a negative feedback loop involving TGF-β signaling and miR-142-3p expression in B cells may contribute to the maintenance of tolerance. In summary, miR-142-3p expression in peripheral blood mononuclear cells correlates with operational tolerance. Whether upregulation of miR-142-3p modulates inflammatory responses to promote tolerance or is a result of this tolerance state requires further study.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
91 |
4
|
Belarif L, Danger R, Kermarrec L, Nerrière-Daguin V, Pengam S, Durand T, Mary C, Kerdreux E, Gauttier V, Kucik A, Thepenier V, Martin JC, Chang C, Rahman A, Guen NSL, Braudeau C, Abidi A, David G, Malard F, Takoudju C, Martinet B, Gérard N, Neveu I, Neunlist M, Coron E, MacDonald TT, Desreumaux P, Mai HL, Le Bas-Bernardet S, Mosnier JF, Merad M, Josien R, Brouard S, Soulillou JP, Blancho G, Bourreille A, Naveilhan P, Vanhove B, Poirier N. IL-7 receptor influences anti-TNF responsiveness and T cell gut homing in inflammatory bowel disease. J Clin Invest 2019; 129:1910-1925. [PMID: 30939120 DOI: 10.1172/jci121668] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 02/21/2019] [Indexed: 12/16/2022] Open
Abstract
It remains unknown what causes inflammatory bowel disease (IBD), including signaling networks perpetuating chronic gastrointestinal inflammation in Crohn's disease (CD) and ulcerative colitis (UC), in humans. According to an analysis of up to 500 patients with IBD and 100 controls, we report that key transcripts of the IL-7 receptor (IL-7R) pathway are accumulated in inflamed colon tissues of severe CD and UC patients not responding to either immunosuppressive/corticosteroid, anti-TNF, or anti-α4β7 therapies. High expression of both IL7R and IL-7R signaling signature in the colon before treatment is strongly associated with nonresponsiveness to anti-TNF therapy. While in mice IL-7 is known to play a role in systemic inflammation, we found that in humans IL-7 also controlled α4β7 integrin expression and imprinted gut-homing specificity on T cells. IL-7R blockade reduced human T cell homing to the gut and colonic inflammation in vivo in humanized mouse models, and altered effector T cells in colon explants from UC patients grown ex vivo. Our findings show that failure of current treatments for CD and UC is strongly associated with an overexpressed IL-7R signaling pathway and point to IL-7R as a relevant therapeutic target and potential biomarker to fill an unmet need in clinical IBD detection and treatment.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
86 |
5
|
Whitehouse G, Gray E, Mastoridis S, Merritt E, Kodela E, Yang JHM, Danger R, Mairal M, Christakoudi S, Lozano JJ, Macdougall IC, Tree TIM, Sanchez-Fueyo A, Martinez-Llordella M. IL-2 therapy restores regulatory T-cell dysfunction induced by calcineurin inhibitors. Proc Natl Acad Sci U S A 2017; 114:7083-7088. [PMID: 28584086 PMCID: PMC5502598 DOI: 10.1073/pnas.1620835114] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
CD4+CD25+FOXP3+ Tregs constitute a heterogeneous lymphocyte subpopulation essential for curtailing effector T cells and establishing peripheral tolerance. Calcineurin inhibitors (CNIs) are among the most effective agents in controlling effector T-cell responses in humans. However, CNIs also reduce the size of the Treg pool. The functional consequences of this negative effect and the mechanisms responsible remain to be elucidated. We report here that CNIs compromise the overall Treg immunoregulatory capacity to a greater extent than would be predicted by the reduction in the size of the Treg compartment, given that they selectively promote the apoptosis of the resting and activated Treg subsets that are known to display the most powerful suppressive function. These effects are caused by reduced access to IL-2, because Tregs remain capable of translocating NFAT even in the presence of high CNI levels. Exogenous IL-2 restores the phenotypic changes and overall gene-expression effects exerted by CNIs and can even promote Treg expansion by enhancing antiapoptotic Bcl-2 expression. In a skin transplant model, the addition of IL-2 synergizes with CNIs treatment, promoting intragraft accumulation of Tregs and prolonged allograft survival. Hence, the combination of IL-2 and CNIs constitutes an optimal immunomodulatory regimen that enhances the pool of suppressive Treg subsets while effectively controlling cytopathic T cells.
Collapse
|
|
8 |
86 |
6
|
Brouard S, Pallier A, Renaudin K, Foucher Y, Danger R, Devys A, Cesbron A, Guillot-Guegen C, Ashton-Chess J, Le Roux S, Harb J, Roussey G, Subra JF, Villemain F, Legendre C, Bemelman FJ, Orlando G, Garnier A, Jambon H, Le Monies De Sagazan H, Braun L, Noël C, Pillebout E, Moal MC, Cantarell C, Hoitsma A, Ranbant M, Testa A, Soulillou JP, Giral M. The natural history of clinical operational tolerance after kidney transplantation through twenty-seven cases. Am J Transplant 2012; 12:3296-307. [PMID: 22974211 DOI: 10.1111/j.1600-6143.2012.04249.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We report here on a European cohort of 27 kidney transplant recipients displaying operational tolerance, compared to two cohorts of matched kidney transplant recipients under immunosuppression and patients who stopped immunosuppressive drugs and presented with rejection. We report that a lower proportion of operationally tolerant patients received induction therapy (52% without induction therapy vs. 78.3%[p = 0.0455] and 96.7%[p = 0.0001], respectively), a difference likely due to the higher proportion (18.5%) of HLA matched recipients in the tolerant cohort. These patients were also significantly older at the time of transplantation (p = 0.0211) and immunosuppression withdrawal (p = 0.0002) than recipients who rejected their graft after weaning. Finally, these patients were at lower risk of infectious disease. Among the 27 patients defined as operationally tolerant at the time of inclusion, 19 still display stable graft function (mean 9 ± 4 years after transplantation) whereas 30% presented slow deterioration of graft function. Six of these patients tested positive for pre-graft anti-HLA antibodies. Biopsy histology studies revealed an active immunologically driven mechanism for half of them, associated with DSA in the absence of C4d. This study suggests that operational tolerance can persist as a robust phenomenon, although eventual graft loss does occur in some patients, particularly in the setting of donor-specific alloantibody.
Collapse
|
Comparative Study |
13 |
85 |
7
|
Thibault-Espitia A, Foucher Y, Danger R, Migone T, Pallier A, Castagnet S, G-Gueguen C, Devys A, C-Gautier A, Giral M, Soulillou JP, Brouard S. BAFF and BAFF-R levels are associated with risk of long-term kidney graft dysfunction and development of donor-specific antibodies. Am J Transplant 2012; 12:2754-62. [PMID: 22883025 DOI: 10.1111/j.1600-6143.2012.04194.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
There are lines of evidence that B cells may play a role in transplantation. B cell activating factor, BAFF, is a homotrimer that has been shown to play a role in B cell survival, maturation and activation. To date, little is known of the role of BAFF and its receptors in transplantation. We analyzed the level of BAFF mRNA and its soluble protein, as well as transcripts coding for its receptors, BAFF-R, TACI and BCMA, in the blood of 143 patients with stable kidney transplant function 5 years or more posttransplantation. Three endpoints were analyzed: the time to renal dysfunction, the time to appearance of anti-HLA antibodies and the time to development of donor-specific antibodies. We established threshold values for BAFF and BAFF-R and showed that (1) stable patients with high BAFF-R levels had a higher risk of developing graft dysfunction, (2) patients with lower levels of BAFF transcripts or a higher level of soluble BAFF had a significantly higher risk of developing donor-specific antibodies. These data suggest that BAFF constitutes a risk factor for renal graft dysfunction and development of donor-specific antibodies. They also suggest that agents targeting BAFF-R interactions may offer new therapeutic opportunities in transplantation.
Collapse
|
|
13 |
68 |
8
|
Danger R, Paul C, Giral M, Lavault A, Foucher Y, Degauque N, Pallier A, Durand M, Castagnet S, Duong Van Huyen JP, Delahousse M, Renaudin K, Soulillou JP, Brouard S. Expression of miR-142-5p in peripheral blood mononuclear cells from renal transplant patients with chronic antibody-mediated rejection. PLoS One 2013; 8:e60702. [PMID: 23577151 PMCID: PMC3618046 DOI: 10.1371/journal.pone.0060702] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 03/01/2013] [Indexed: 12/22/2022] Open
Abstract
In renal transplantation, the unresponsiveness of patients undergoing chronic antibody mediated rejection (CAMR) to classical treatment stress on the need for accurate biomarkers to improve its diagnosis. We aim to determine whether microRNA expression patterns may be associated with a diagnosis of CAMR. We performed expression profiling of miRNAs in peripheral blood mononuclear cells (PBMC) of kidney transplant recipients with CAMR or stable graft function. Among 257 expressed miRNAs, 10 miRNAs associated with CAMR were selected. Among them, miR-142-5p was increased in PBMC and biopsies of patients with CAMR as well as in a rodent model of CAMR. The lack of modulation of miR-142-5p in PBMC of patients with renal failure, suggests that its over-expression in CAMR was associated with immunological disorders rather than renal dysfunction. A ROC curve analysis performed on independent samples showed that miR-142-5p is a potential biomarker of CAMR allowing a very good discrimination of the patients with CAMR (AUC = 0.74; p = 0.0056). Moreover, its expression was decreased in PHA-activated blood cells and was not modulated in PBMC from patients with acute rejection, excluding a non-specific T cell activation expression. The absence of modulation of this miRNA in immunosuppressed patients suggests that its expression was not influenced by treatment. Finally, the analysis of miR-142-5p predicted targets under-expressed in CAMR PBMC in a published microarray dataset revealed an enrichment of immune-related genes. Altogether, these data suggest that miR-142-5p could be used as a biomarker in CAMR and these finding may improve our understanding of chronic rejection mechanisms.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
68 |
9
|
Yap M, Boeffard F, Clave E, Pallier A, Danger R, Giral M, Dantal J, Foucher Y, Guillot-Gueguen C, Toubert A, Soulillou JP, Brouard S, Degauque N. Expansion of highly differentiated cytotoxic terminally differentiated effector memory CD8+ T cells in a subset of clinically stable kidney transplant recipients: a potential marker for late graft dysfunction. J Am Soc Nephrol 2014; 25:1856-68. [PMID: 24652799 DOI: 10.1681/asn.2013080848] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Despite the effectiveness of immunosuppressive drugs, kidney transplant recipients still face late graft dysfunction. Thus, it is necessary to identify biomarkers to detect the first pathologic events and guide therapeutic target development. Previously, we identified differences in the T-cell receptor Vβ repertoire in patients with stable graft function. In this prospective study, we assessed the long-term effect of CD8(+) T-cell differentiation and function in 131 patients who had stable graft function. In 45 of 131 patients, a restriction of TCR Vβ diversity was detected and associated with the expansion of terminally differentiated effector memory (TEMRA; CD45RA(+)CCR7(-)CD27(-)CD28(-)) CD8(+) T cells expressing high levels of perforin, granzyme B, and T-bet. This phenotype positively correlated with the level of CD57 and the ability of CD8(+) T cells to secrete TNF-α and IFN-γ. Finally, 47 of 131 patients experienced kidney dysfunction during the median 15-year follow-up period. Using a Cox regression model, we found a 2-fold higher risk (P=0.06) of long-term graft dysfunction in patients who had increased levels of differentiated TEMRA CD8(+) T cells at inclusion. Collectively, these results suggest that monitoring the phenotype and function of circulating CD8(+) T cells may improve the early identification of at-risk patients.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
68 |
10
|
Taubert R, Danger R, Londoño MC, Christakoudi S, Martinez-Picola M, Rimola A, Manns MP, Sánchez-Fueyo A, Jaeckel E. Hepatic Infiltrates in Operational Tolerant Patients After Liver Transplantation Show Enrichment of Regulatory T Cells Before Proinflammatory Genes Are Downregulated. Am J Transplant 2016; 16:1285-93. [PMID: 26603835 DOI: 10.1111/ajt.13617] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 09/02/2015] [Accepted: 09/26/2015] [Indexed: 01/25/2023]
Abstract
Immunosuppression can be discontinued from selected and stable patients after liver transplantation resulting in spontaneous operational tolerance (SOT), although the underlying mechanisms remain elusive. Thus, we analyzed serial liver biopsy specimens from adult liver recipients enrolled in a prospective multicenter immunosuppression withdrawal trial that used immunophenotyping and transcriptional profiling. Liver specimens were collected before the initiation of weaning, at the time of rejection, or at 1 and 3 years after complete drug discontinuation. Unexpectedly, the tolerated grafts developed portal tract expansion with increased T cell infiltration after immunosuppression withdrawal. This was associated with transient and preferential accumulation of CD4(+) FOXP3(+) cells and a trend toward upregulation of immune activation and regulatory genes, without signs of rejection. At the same time, no markers of endothelial damage or activation were noted. Portal infiltrates persisted at 3 years but were characterized by decreased expression of genes associated with chronic immunological damage. Further, SOT was not associated with a progressive liver fibrosis up to 5 years. These data suggest that SOT involves several mechanisms: a long-lasting local immune cell persistence with a transient regulatory T cells accumulation followed by a downregulation of immune-activated genes over years. These results have important implications for designs and follow-up of weaning trials.
Collapse
|
|
9 |
63 |
11
|
Jacquemont L, Tilly G, Yap M, Doan-Ngoc TM, Danger R, Guérif P, Delbos F, Martinet B, Giral M, Foucher Y, Brouard S, Degauque N. Terminally Differentiated Effector Memory CD8 + T Cells Identify Kidney Transplant Recipients at High Risk of Graft Failure. J Am Soc Nephrol 2020; 31:876-891. [PMID: 32165419 DOI: 10.1681/asn.2019080847] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/16/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Identifying biomarkers to predict kidney transplant failure and to define new therapeutic targets requires more comprehensive understanding of the immune response to chronic allogeneic stimulation. METHODS We investigated the frequency and function of CD8+ T cell subsets-including effector memory (EM) and terminally differentiated EM (TEMRA) CD8+ T cells-in blood samples from 284 kidney transplant recipients recruited 1 year post-transplant and followed for a median of 8.3 years. We also analyzed CD8+ T cell reactivity to donor-specific PBMCs in 24 patients who had received living-donor kidney transplants. RESULTS Increased frequency of circulating TEMRA CD8+ T cells at 1 year post-transplant associated with increased risk of graft failure during follow-up. This association remained after adjustment for a previously reported composite of eight clinical variables, the Kidney Transplant Failure Score. In contrast, increased frequency of EM CD8+ T cells associated with reduced risk of graft failure. A distinct TEMRA CD8+ T cell subpopulation was identified that was characterized by expression of FcγRIIIA (CD16) and by high levels of proinflammatory cytokine secretion and cytotoxic activity. Although donor-specific stimulation induced a similar rapid, early response in EM and TEMRA CD8+ T cells, CD16 engagement resulted in selective activation of TEMRA CD8+ T cells, which mediated antibody-dependent cytotoxicity. CONCLUSIONS At 1 year post-transplant, the composition of memory CD8+ T cell subsets in blood improved prediction of 8-year kidney transplant failure compared with a clinical-variables score alone. A subpopulation of TEMRA CD8+ T cells displays a novel dual mechanism of activation mediated by engagement of the T-cell receptor or of CD16. These findings suggest that TEMRA CD8+ T cells play a pivotal role in humoral and cellular rejection and reveal the potential value of memory CD8+ T cell monitoring for predicting risk of kidney transplant failure.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
55 |
12
|
Belarif L, Mary C, Jacquemont L, Mai HL, Danger R, Hervouet J, Minault D, Thepenier V, Nerrière-Daguin V, Nguyen E, Pengam S, Largy E, Delobel A, Martinet B, Le Bas-Bernardet S, Brouard S, Soulillou JP, Degauque N, Blancho G, Vanhove B, Poirier N. IL-7 receptor blockade blunts antigen-specific memory T cell responses and chronic inflammation in primates. Nat Commun 2018; 9:4483. [PMID: 30367166 PMCID: PMC6203796 DOI: 10.1038/s41467-018-06804-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 09/26/2018] [Indexed: 01/01/2023] Open
Abstract
Targeting the expansion of pathogenic memory immune cells is a promising therapeutic strategy to prevent chronic autoimmune attacks. Here we investigate the therapeutic efficacy and mechanism of new anti-human IL-7Rα monoclonal antibodies (mAb) in non-human primates and show that, depending on the target epitope, a single injection of antagonistic anti-IL-7Rα mAbs induces a long-term control of skin inflammation despite repeated antigen challenges in presensitized monkeys. No modification in T cell numbers, phenotype, function or metabolism is observed in the peripheral blood or in response to polyclonal stimulation ex vivo. However, long-term in vivo hyporesponsiveness is associated with a significant decrease in the frequency of antigen-specific T cells producing IFN-γ upon antigen restimulation ex vivo. These findings indicate that chronic antigen-specific memory T cell responses can be controlled by anti-IL-7Rα mAbs, promoting and maintaining remission in T-cell mediated chronic inflammatory diseases.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
53 |
13
|
Chenouard A, Chesneau M, Bui Nguyen L, Le Bot S, Cadoux M, Dugast E, Paul C, Malard-Castagnet S, Ville S, Guérif P, Soulillou JP, Degauque N, Danger R, Giral M, Brouard S. Renal Operational Tolerance Is Associated With a Defect of Blood Tfh Cells That Exhibit Impaired B Cell Help. Am J Transplant 2017; 17:1490-1501. [PMID: 27888555 DOI: 10.1111/ajt.14142] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/20/2016] [Accepted: 11/22/2016] [Indexed: 01/25/2023]
Abstract
Renal operationally tolerant patients (TOL) display a defect in B cell differentiation, with a deficiency in plasma cells. Recently described, T follicular helper (Tfh) cells play a critical role in B cell differentiation. We analyzed blood Tfh subsets in TOL and transplanted patients with stable graft function under immunosuppression (STA). We observed a reduced proportion of blood activated and highly functional Tfh subsets in TOL, without affecting Tfh absolute numbers. Functionally, Tfh cells from TOL displayed a modified gene expression profile, failed to produce interleukin-21, and were unable to induce IgG production by naive B cells. This Tfh defect is linked to a low incidence of postgraft de novo donor-specific antibody (dnDSA) immunization, suggesting that the lack of Tfh cells in TOL may induce a protolerogenic environment with reduced risk of developing dnDSA. Finally, we showed that elevated Tfh in STA precedes the occurrence of dnDSA during an alloresponse. These data provide new insights into the mechanisms of antibody response in operational tolerance. Disrupted homeostasis and impaired Tfh function in TOL could lead to a reduced risk of developing dnDSA and suggest a predictive role of blood Tfh cells on the occurrence of dnDSA in transplant recipients.
Collapse
|
|
8 |
46 |
14
|
Gauttier V, Pengam S, Durand J, Biteau K, Mary C, Morello A, Néel M, Porto G, Teppaz G, Thepenier V, Danger R, Vince N, Wilhelm E, Girault I, Abes R, Ruiz C, Trilleaud C, Ralph K, Trombetta ES, Garcia A, Vignard V, Martinet B, Glémain A, Bruneau S, Haspot F, Dehmani S, Duplouye P, Miyasaka M, Labarrière N, Laplaud D, Le Bas-Bernardet S, Blanquart C, Catros V, Gouraud PA, Archambeaud I, Aublé H, Metairie S, Mosnier JF, Costantini D, Blancho G, Conchon S, Vanhove B, Poirier N. Selective SIRPα blockade reverses tumor T cell exclusion and overcomes cancer immunotherapy resistance. J Clin Invest 2021; 130:6109-6123. [PMID: 33074246 DOI: 10.1172/jci135528] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 08/06/2020] [Indexed: 12/12/2022] Open
Abstract
T cell exclusion causes resistance to cancer immunotherapies via immune checkpoint blockade (ICB). Myeloid cells contribute to resistance by expressing signal regulatory protein-α (SIRPα), an inhibitory membrane receptor that interacts with ubiquitous receptor CD47 to control macrophage phagocytosis in the tumor microenvironment. Although CD47/SIRPα-targeting drugs have been assessed in preclinical models, the therapeutic benefit of selectively blocking SIRPα, and not SIRPγ/CD47, in humans remains unknown. We report a potent synergy between selective SIRPα blockade and ICB in increasing memory T cell responses and reverting exclusion in syngeneic and orthotopic tumor models. Selective SIRPα blockade stimulated tumor nest T cell recruitment by restoring murine and human macrophage chemokine secretion and increased anti-tumor T cell responses by promoting tumor-antigen crosspresentation by dendritic cells. However, nonselective SIRPα/SIRPγ blockade targeting CD47 impaired human T cell activation, proliferation, and endothelial transmigration. Selective SIRPα inhibition opens an attractive avenue to overcoming ICB resistance in patients with elevated myeloid cell infiltration in solid tumors.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
46 |
15
|
Londoño MC, Danger R, Giral M, Soulillou JP, Sánchez-Fueyo A, Brouard S. A need for biomarkers of operational tolerance in liver and kidney transplantation. Am J Transplant 2012; 12:1370-7. [PMID: 22486792 DOI: 10.1111/j.1600-6143.2012.04035.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Both kidney and particularly liver recipients can occasionally discontinue all immunosuppressive drugs without undergoing rejection. These patients, who maintain stable graft function off immunosuppressive drugs without clinically significant detrimental immune responses and/or immune deficits, are conventionally termed operationally tolerant and offer a unique paradigm of tolerance in humans. The immune characterization of operationally tolerant transplant recipients has recently received substantial attention. Operationally tolerant patients might exhibit a signature of tolerance that could potentially be useful to select recipients amenable to drug minimization or withdrawal. Furthermore, elucidation of the molecular pathways associated with the operational tolerance phenotype could provide novel targets for therapy. Particular emphasis has been placed on the use of blood samples and high-throughput transcriptional profiling techniques. In liver transplantation, natural killer related transcripts seem to be the most robust markers of operational tolerance, whereas enrichment in B cell-related gene expression markers has been consistently found in blood samples from operationally tolerant kidney recipients, suggesting that different mechanisms operate in the two situations. In this minireview, we summarize the main achievements of recently published reports focused on the identification of transcriptional markers of operational tolerance, we highlight their mechanistic and clinical implications and describe their methodological limitations.
Collapse
|
Review |
13 |
44 |
16
|
Chopard A, Lecunff M, Danger R, Lamirault G, Bihouee A, Teusan R, Jasmin BJ, Marini JF, Leger JJ. Large-scale mRNA analysis of female skeletal muscles during 60 days of bed rest with and without exercise or dietary protein supplementation as countermeasures. Physiol Genomics 2009; 38:291-302. [PMID: 19470803 DOI: 10.1152/physiolgenomics.00036.2009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Microgravity has a dramatic impact on human physiology, illustrated in particular, with skeletal muscle impairment. A thorough understanding of the mechanisms leading to loss of muscle mass and structural disorders is necessary for defining efficient clinical and spaceflight countermeasures. We investigated the effects of long-term bed rest on the transcriptome of soleus (SOL) and vastus lateralis (VL) muscles in healthy women (BRC group, n = 8), and the potential beneficial impact of protein supplementation (BRN group, n = 8) and of a combined resistance and aerobic training (BRE group, n = 8). Gene expression profiles were obtained using a customized microarray containing 6,681 muscles-relevant genes. A two-class statistical analysis was applied on 2,103 genes with consolidated expression in BRC, BRN, and BRE groups. We identified 472 and 207 mRNAs whose expression was modified in SOL and VL from BRC group, respectively. Further clustering analysis, identifying relevant biological mechanisms and pathways, reported five main subclusters. Three are composed of upregulated mRNAs involved mainly in nucleic acid and protein metabolism, and two made up of downregulated transcripts encoding components involved in energy metabolism. Exercise countermeasure demonstrated drastic compensatory effects, decreasing the number of differentially expressed mRNAs by 89 and 96% in SOL and VL, respectively. In contrast, nutrition countermeasure had moderate effects and decreased the number of differentially-expressed transcripts by 40 and 25% in SOL and VL. Together, these data present a systematic, global and comprehensive view of the adaptive response of female muscle to long-term atrophy.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
43 |
17
|
Tissot A, Danger R, Claustre J, Magnan A, Brouard S. Early Identification of Chronic Lung Allograft Dysfunction: The Need of Biomarkers. Front Immunol 2019; 10:1681. [PMID: 31379869 PMCID: PMC6650588 DOI: 10.3389/fimmu.2019.01681] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/04/2019] [Indexed: 01/12/2023] Open
Abstract
A growing number of patients with end-stage lung disease have benefited from lung transplantation (LT). Improvements in organ procurement, surgical techniques and intensive care management have greatly increased short-term graft survival. However, long-term outcomes remain limited, mainly due to the onset of chronic lung allograft dysfunction (CLAD), whose diagnosis is based on permanent loss of lung function after the development of irreversible lung lesions. CLAD is associated with high mortality and morbidity, and its exact physiopathology is still only partially understood. Many researchers and clinicians have searched for CLAD biomarkers to improve diagnosis, to refine the phenotypes associated with differential prognosis and to identify early biological processes that lead to CLAD to enable an early intervention that could modify the inevitable degradation of respiratory function. Donor-specific antibodies are currently the only biomarkers used in routine clinical practice, and their significance for accurately predicting CLAD is still debated. We describe here significant studies that have highlighted potential candidates for reliable and non-invasive biomarkers of CLAD in the fields of imaging and functional monitoring, humoral immunity, cell-mediated immunity, allograft injury, airway remodeling and gene expression. Such biomarkers would improve CLAD prediction and allow differential LT management regarding CLAD risk.
Collapse
|
Review |
6 |
40 |
18
|
Danger R, Braza F, Giral M, Soulillou JP, Brouard S. MicroRNAs, Major Players in B Cells Homeostasis and Function. Front Immunol 2014; 5:98. [PMID: 24653724 PMCID: PMC3949129 DOI: 10.3389/fimmu.2014.00098] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 02/24/2014] [Indexed: 01/04/2023] Open
Abstract
As a main actor in humoral immunity, B cells participate in various antibody-related disorders. However, a deeper understanding of B-cell differentiation and function is needed in order to decipher their immune-modulatory roles, notably with the recent highlighting of regulatory B cells. microRNAs (miRNAs), key factors in various biological and pathological processes, have been shown to be essential for B-cell homeostasis, and therefore understanding their participation in B-cell biology could help identify biomarkers and contribute toward curing B-cell-related immune disorders. This review aims to report studies casting light on the roles played by miRNAs in B-cell lineage and function and B-cell-related immune pathologies.
Collapse
|
Review |
11 |
39 |
19
|
Bonaccorsi-Riani E, Danger R, Lozano JJ, Martinez-Picola M, Kodela E, Mas-Malavila R, Bruguera M, Collins HL, Hider RC, Martinez-Llordella M, Sanchez-Fueyo A. Iron Deficiency Impairs Intra-Hepatic Lymphocyte Mediated Immune Response. PLoS One 2015; 10:e0136106. [PMID: 26287688 PMCID: PMC4542211 DOI: 10.1371/journal.pone.0136106] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/29/2015] [Indexed: 12/15/2022] Open
Abstract
Hepatic expression of iron homeostasis genes and serum iron parameters predict the success of immunosuppression withdrawal following clinical liver transplantation, a phenomenon known as spontaneous operational tolerance. In experimental animal models, spontaneous liver allograft tolerance is established through a process that requires intra-hepatic lymphocyte activation and deletion. Our aim was to determine if changes in systemic iron status regulate intra-hepatic lymphocyte responses. We used a murine model of lymphocyte-mediated acute liver inflammation induced by Concanavalin A (ConA) injection employing mice fed with an iron-deficient (IrDef) or an iron-balanced diet (IrRepl). While the mild iron deficiency induced by the IrDef diet did not significantly modify the steady state immune cell repertoire and systemic cytokine levels, it significantly dampened inflammatory liver damage after ConA challenge. These findings were associated with a marked decrease in T cell and NKT cell activation following ConA injection in IrDef mice. The decreased liver injury observed in IrDef mice was independent from changes in the gut microflora, and was replicated employing an iron specific chelator that did not modify intra-hepatic hepcidin secretion. Furthermore, low-dose iron chelation markedly impaired the activation of isolated T cells in vitro. All together, these results suggest that small changes in iron homeostasis can have a major effect in the regulation of intra-hepatic lymphocyte mediated responses.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
32 |
20
|
Mai HL, Boeffard F, Longis J, Danger R, Martinet B, Haspot F, Vanhove B, Brouard S, Soulillou JP. IL-7 receptor blockade following T cell depletion promotes long-term allograft survival. J Clin Invest 2014; 124:1723-33. [PMID: 24569454 DOI: 10.1172/jci66287] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 12/20/2013] [Indexed: 01/09/2023] Open
Abstract
T cell depletion is commonly used in organ transplantation for immunosuppression; however, a restoration of T cell homeostasis following depletion leads to increased memory T cells, which may promote transplant rejection. The cytokine IL-7 is important for controlling lymphopoiesis under both normal and lymphopenic conditions. Here, we investigated whether blocking IL-7 signaling with a mAb that targets IL-7 receptor α (IL-7Rα) alone or following T cell depletion confers an advantage for allograft survival in murine transplant models. We found that IL-7R blockade alone induced indefinite pancreatic islet allograft survival if anti-IL-7R treatment was started 3 weeks before graft. IL-7R blockade following anti-CD4- and anti-CD8-mediated T cell depletion markedly prolonged skin allograft survival. Furthermore, IL-7 inhibition in combination with T cell depletion synergized with either CTLA-4Ig administration or suboptimal doses of tacrolimus to induce long-term skin graft acceptance in this stringent transplant model. Together, these therapies inhibited T cell reconstitution, decreased memory T cell numbers, increased the relative frequency of Tregs, and abrogated both cellular and humoral alloimmune responses. Our data suggest that IL-7R blockade following T cell depletion has potential as a robust, immunosuppressive therapy in transplantation.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
31 |
21
|
Pain M, Royer PJ, Loy J, Girardeau A, Tissot A, Lacoste P, Roux A, Reynaud-Gaubert M, Kessler R, Mussot S, Dromer C, Brugière O, Mornex JF, Guillemain R, Dahan M, Knoop C, Botturi K, Pison C, Danger R, Brouard S, Magnan A. T Cells Promote Bronchial Epithelial Cell Secretion of Matrix Metalloproteinase-9 via a C-C Chemokine Receptor Type 2 Pathway: Implications for Chronic Lung Allograft Dysfunction. Am J Transplant 2017; 17:1502-1514. [PMID: 27982503 DOI: 10.1111/ajt.14166] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 11/30/2016] [Accepted: 12/04/2016] [Indexed: 01/25/2023]
Abstract
Chronic lung allograft dysfunction (CLAD) is the major limitation of long-term survival after lung transplantation. CLAD manifests as bronchiolitis obliterans syndrome (BOS) or restrictive allograft syndrome (RAS). Alloimmune reactions and epithelial-to-mesenchymal transition have been suggested in BOS. However, little is known regarding the role of allogenicity in epithelial cell differentiation. Primary human bronchial epithelial cells (BECs) were treated with activated T cells in the presence or absence of transforming growth factor (TGF)-β. The expression of epithelial and mesenchymal markers was investigated. The secretion of inflammatory cytokines and matrix metalloproteinase (MMP)-9 was measured in culture supernatants and in plasma from lung transplant recipients (LTRs): 49 stable, 29 with BOS, and 16 with RAS. We demonstrated that C-C motif chemokine 2 secreted by T cells supports TGF-β-induced MMP-9 production by BECs after binding to C-C chemokine receptor type 2. Longitudinal investigation in LTRs revealed a rise in plasma MMP-9 before CLAD onset. Multivariate analysis showed that plasma MMP-9 was independently associated with BOS (odds ratio [OR] = 6.19, p = 0.002) or RAS (OR = 3.9, p = 0.024) and predicted the occurrence of CLAD 12 months before the functional diagnosis. Thus, immune cells support airway remodeling through the production of MMP-9. Plasma MMP-9 is a potential predictive biomarker of CLAD.
Collapse
|
|
8 |
30 |
22
|
Danger R, Chesneau M, Paul C, Guérif P, Durand M, Newell KA, Kanaparthi S, Turka LA, Soulillou JP, Houlgatte R, Giral M, Ramstein G, Brouard S. A composite score associated with spontaneous operational tolerance in kidney transplant recipients. Kidney Int 2017; 91:1473-1481. [PMID: 28242033 PMCID: PMC5432017 DOI: 10.1016/j.kint.2016.12.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 11/29/2016] [Accepted: 12/22/2016] [Indexed: 11/16/2022]
Abstract
New challenges in renal transplantation include using biological information to devise a useful clinical test for discerning high- and low-risk patients for individual therapy and ascertaining the best combination and appropriate dosages of drugs. Based on a 20-gene signature from a microarray meta-analysis performed on 46 operationally tolerant patients and 266 renal transplant recipients with stable function, we applied the sparse Bolasso methodology to identify a minimal and robust combination of six genes and two demographic parameters associated with operational tolerance. This composite score of operational tolerance discriminated operationally tolerant patients with an area under the curve of 0.97 (95% confidence interval 0.94-1.00). The score was not influenced by immunosuppressive treatment, center of origin, donor type, or post-transplant lymphoproliferative disorder history of the patients. This composite score of operational tolerance was significantly associated with both de novo anti-HLA antibodies and tolerance loss. It was validated by quantitative polymerase chain reaction using independent samples and demonstrated specificity toward a model of tolerance induction. Thus, our score would allow clinicians to improve follow-up of patients, paving the way for individual therapy.
Collapse
|
Validation Study |
8 |
29 |
23
|
Danger R, Chesneau M, Delbos F, Le Bot S, Kerleau C, Chenouard A, Ville S, Degauque N, Conchon S, Cesbron A, Giral M, Brouard S. CXCR5 +PD1 +ICOS + Circulating T Follicular Helpers Are Associated With de novo Donor-Specific Antibodies After Renal Transplantation. Front Immunol 2019; 10:2071. [PMID: 31552030 PMCID: PMC6746839 DOI: 10.3389/fimmu.2019.02071] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/16/2019] [Indexed: 12/21/2022] Open
Abstract
Donor-specific anti-HLA antibodies (DSAs) are a major risk factor associated with renal allograft outcomes. As a trigger of B cell antibody production, T follicular helper cells (Tfhs) promote DSA appearance. Herein, we evaluated whether circulating Tfhs (cTfhs) are associated with the genesis of antibody-mediated rejection. We measured cTfh levels on the day of transplantation and 1 year after transplantation in blood from a prospective cohort of 237 renal transplantation patients without DSA during the first year post-transplantation. Total cTfhs were characterized as CD4+CD45RA−CXCR5+, and the three following subsets of activated cTfh were analyzed: CXCR5+PD1+, CXCR5+PD1+ICOS+, an CXCR5+PD1+CXCR3−. Immunizing events (previous blood transfusion and/or pregnancy) and the presence of class II anti-HLA antibodies were associated with increased frequencies of activated CXCR5+PD1+, CXCR5+PD1+ICOS+, and CXCR5+PD1+CXCR3− cTfh subsets. In addition, ATG-depleting induction and calcineurin inhibitor treatments were associated with a relative increase of activated cTfh subsets frequencies at 1 year post-transplantation. In multivariate survival analysis, we reported that a decrease in activated CXCR5+PD1+ICOS+ at 1 year after transplantation in the blood of DSA-free patients was significantly associated with the risk of developing de novo DSA after the first year (p = 0.018, HR = 0.39), independently of HLA mismatches (p = 0.003, HR = 3.79). These results highlight the importance of monitoring activated Tfhs in patients early after transplantation and show that current treatments cannot provide early, efficient prevention of Tfh activation and migration. These findings indicate the need to develop innovative treatments to specifically target Tfhs to prevent DSA appearance in renal transplantation.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
27 |
24
|
Trilleaud C, Gauttier V, Biteau K, Girault I, Belarif L, Mary C, Pengam S, Teppaz G, Thepenier V, Danger R, Robert-Siegwald G, Néel M, Bruneau S, Glémain A, Néel A, Poupon A, Mosnier JF, Chêne G, Dubourdeau M, Blancho G, Vanhove B, Poirier N. Agonist anti-ChemR23 mAb reduces tissue neutrophil accumulation and triggers chronic inflammation resolution. SCIENCE ADVANCES 2021; 7:eabd1453. [PMID: 33811066 PMCID: PMC11057782 DOI: 10.1126/sciadv.abd1453] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
Resolution of inflammation is elicited by proresolving lipids, which activate GPCRs to induce neutrophil apoptosis, reduce neutrophil tissue recruitment, and promote macrophage efferocytosis. Transcriptional analyses in up to 300 patients with Inflammatory Bowel Disease (IBD) identified potential therapeutic targets mediating chronic inflammation. We found that ChemR23, a GPCR targeted by resolvin E1, is overexpressed in inflamed colon tissues of severe IBD patients unresponsive to anti-TNFα or anti-α4β7 therapies and associated with significant mucosal neutrophil accumulation. We also identified an anti-ChemR23 agonist antibody that induces receptor signaling, promotes macrophage efferocytosis, and reduces neutrophil apoptosis at the site of inflammation. This ChemR23 mAb accelerated acute inflammation resolution and triggered resolution in ongoing chronic colitis models, with a significant decrease in tissue lesions, fibrosis and inflammation-driven tumors. Our findings suggest that failure of current IBD therapies may be associated with neutrophil infiltration and that ChemR23 is a promising therapeutic target for chronic inflammation.
Collapse
|
research-article |
4 |
27 |
25
|
Racapé M, Duong Van Huyen JP, Danger R, Giral M, Bleicher F, Foucher Y, Pallier A, Pilet P, Tafelmeyer P, Ashton-Chess J, Dugast E, Pettré S, Charreau B, Soulillou JP, Brouard S. The involvement of SMILE/TMTC3 in endoplasmic reticulum stress response. PLoS One 2011; 6:e19321. [PMID: 21603654 PMCID: PMC3095597 DOI: 10.1371/journal.pone.0019321] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Accepted: 03/31/2011] [Indexed: 01/08/2023] Open
Abstract
Background Thestate of operational tolerance has been detected sporadically in some renal transplanted patients that stopped immunosuppressive drugs, demonstrating that allograft tolerance might exist in humans. Several years ago, a study by Brouard et al. identified a molecular signature of several genes that were significantly differentially expressed in the blood of such patients compared with patients with other clinical situations. The aim of the present study is to analyze the role of one of these molecules over-expressed in the blood of operationally tolerant patients, SMILE or TMTC3, a protein whose function is still unknown. Methodology/Principal Findings We first confirmed that SMILE mRNA is differentially expressed in the blood of operationally tolerant patients with drug-free long term graft function compared to stable and rejecting patients. Using a yeast two-hybrid approach and a colocalization study by confocal microscopy we furthermore report an interaction of SMILE with PDIA3, a molecule resident in the endoplasmic reticulum (ER). In accordance with this observation, SMILE silencing in HeLa cells correlated with the modulation of several transcripts involved in proteolysis and a decrease in proteasome activity. Finally, SMILE silencing increased HeLa cell sensitivity to the proteasome inhibitor Bortezomib, a drug that induces ER stress via protein overload, and increased transcript expression of a stress response protein, XBP-1, in HeLa cells and keratinocytes. Conclusion/Significance In this study we showed that SMILE is involved in the endoplasmic reticulum stress response, by modulating proteasome activity and XBP-1 transcript expression. This function of SMILE may influence immune cell behavior in the context of transplantation, and the analysis of endoplasmic reticulum stress in transplantation may reveal new pathways of regulation in long-term graft acceptance thereby increasing our understanding of tolerance.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
26 |