1
|
Serruys PW, Onuma Y, Ormiston JA, de Bruyne B, Regar E, Dudek D, Thuesen L, Smits PC, Chevalier B, McClean D, Koolen J, Windecker S, Whitbourn R, Meredith I, Dorange C, Veldhof S, Miquel-Hebert K, Rapoza R, García-García HM. Evaluation of the second generation of a bioresorbable everolimus drug-eluting vascular scaffold for treatment of de novo coronary artery stenosis: six-month clinical and imaging outcomes. Circulation 2010; 122:2301-12. [PMID: 21098436 DOI: 10.1161/circulationaha.110.970772] [Citation(s) in RCA: 278] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The first generation of the bioresorbable everolimus drug-eluting vascular scaffold showed signs of shrinkage at 6 months, which largely contributed to late luminal loss. Nevertheless, late luminal loss was less than that observed with bare metal stents. To maintain the mechanical integrity of the device up to 6 months, the scaffold design and manufacturing process of its polymer were modified. METHODS AND RESULTS Quantitative coronary angiography, intravascular ultrasound with analysis of radiofrequency backscattering, and as an optional assessment, optical coherence tomography (OCT) were performed at baseline and at a 6-month follow-up. Forty-five patients successfully received a single bioresorbable everolimus drug-eluting vascular scaffold. One patient had postprocedural release of myocardial enzyme without Q-wave occurrence; 1 patient with OCT-diagnosed disruption of the scaffold caused by excessive postdilatation was treated 1 month later with a metallic drug-eluting stent. At follow-up, 3 patients declined recatheterization, 42 patients had quantitative coronary angiography, 37 had quantitative intravascular ultrasound, and 25 had OCT. Quantitative coronary angiography disclosed 1 edge restenosis (1 of 42; in-segment binary restenosis, 2.4%). At variance with the ultrasonic changes seen with the first generation of bioresorbable everolimus drug-eluting vascular scaffold at 6 months, the backscattering of the polymeric struts did not decrease over time, the scaffold area was reduced by only 2.0% with intravascular ultrasound, and no change was noted with OCT. On an intention-to-treat basis, the late lumen loss amounted to 0.19±0.18 mm with a limited relative decrease in minimal luminal area of 5.4% on intravascular ultrasound. OCT showed at follow-up that 96.8% of the struts were covered and that malapposition of at least 1 strut, initially observed in 12 scaffolds, was detected at follow-up in only 3 scaffolds. Mean neointimal growth measured by OCT between and on top of the polymeric struts equaled 1.25 mm(2), or 16.6% of the scaffold area. CONCLUSION Modified manufacturing process of the polymer and geometric changes in the polymeric platform have substantially improved the medium-term performance of this new generation of drug-eluting scaffold to become comparable to those of current drug eluting stents. CLINICAL TRIAL REGISTRATION URL: http://clinicaltrials.gov. Unique identifier: NCT00856856.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
278 |
2
|
Onuma Y, Serruys PW, Perkins LEL, Okamura T, Gonzalo N, García-García HM, Regar E, Kamberi M, Powers JC, Rapoza R, van Beusekom H, van der Giessen W, Virmani R. Intracoronary optical coherence tomography and histology at 1 month and 2, 3, and 4 years after implantation of everolimus-eluting bioresorbable vascular scaffolds in a porcine coronary artery model: an attempt to decipher the human optical coherence tomography images in the ABSORB trial. Circulation 2010; 122:2288-300. [PMID: 20975003 DOI: 10.1161/circulationaha.109.921528] [Citation(s) in RCA: 257] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND With the use of optical coherence tomography (OCT), alterations of the reflectance characteristics of everolimus-eluting bioresorbable vascular scaffold (BVS) struts have been reported in humans. In the absence of histology, the interpretation of the appearances of the struts by OCT remains speculative. We therefore report OCT findings with corresponding histology in the porcine coronary artery model immediately after and at 28 days and 2, 3, and 4 years after BVS implantation. METHODS AND RESULTS Thirty-five polymeric BVS (3.0×12.0 mm) were singly implanted in the main coronary arteries of 17 pigs that underwent OCT and were then euthanized immediately (n=2), at 28 days (n=2), at 2 years (n=3), at 3 years (n=5), or at 4 years (n=5) after implantation. All BVS-implanted arteries in these animals were evaluated by histology except for 5 arteries examined at 2 years with gel permeation chromatography to assess the biodegradation of the polymeric device. Fourteen arteries with BVS from an additional 6 pigs were examined by gel permeation chromatography at 1 (n=1), 1.5 (n=2), and 3 (n=2) years. Corresponding OCT and histology images were selected with the distal and proximal radiopaque markers used as landmarks. At 28 days, by OCT, 82% of struts showed sharply defined, bright reflection borders, best described as a box-shaped appearance. Histologically, all struts appeared intact with no evidence of resorption. At 2 years, by OCT, 60±20 struts were discernible per BVS with 80.4% of the strut sites as a box-shaped appearance. Despite their defined appearance by OCT, by histology, these structures appeared to be composed of proteoglycan, with polymeric material being at such low level as to be no longer quantifiable by chromatography. At 3 years, by OCT, recognizable struts decreased to 28±9 struts per BVS: 43.7% showed dissolved black box; 34.8%, dissolved bright box; 16.1%, open box; and 5.4%, preserved box appearance. Histology shows that connective tissue cells within a proteoglycan-rich matrix replaced the areas previously occupied by the polymeric struts and coalesced into the arterial wall. At 4 years, by OCT, 10±6 struts were recognizable as either dissolved black or dissolved bright box. In histology, these struts are minimally discernible as foci of low-cellular-density connective tissue. Relative to the prediction of histological type by OCT appearance, the preserved box appearance of OCT corresponds well with 2-year histology (86.4%), whereas the dissolved bright and black box appearances correspond to 3-year histology (88.0% and 90.7%, respectively). Struts indiscernible by OCT correspond to the integrated strut footprints seen at 4 years (100%). CONCLUSIONS Struts that are still discernible by OCT at 2 years are compatible with largely bioresorbed struts, as demonstrated by histological and gel permeation chromatography analysis. At 3 and 4 years, both OCT and histology confirm complete integration of the struts into the arterial wall.
Collapse
|
Journal Article |
15 |
257 |
3
|
Serruys PW, Onuma Y, Garcia-Garcia HM, Muramatsu T, van Geuns RJ, de Bruyne B, Dudek D, Thuesen L, Smits PC, Chevalier B, McClean D, Koolen J, Windecker S, Whitbourn R, Meredith I, Dorange C, Veldhof S, Hebert KM, Rapoza R, Ormiston JA. Dynamics of vessel wall changes following the implantation of the absorb everolimus-eluting bioresorbable vascular scaffold: a multi-imaging modality study at 6, 12, 24 and 36 months. EUROINTERVENTION 2014; 9:1271-84. [PMID: 24291783 DOI: 10.4244/eijv9i11a217] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
AIMS To assess observations with multimodality imaging of the Absorb bioresorbable everolimus-eluting vascular scaffold performed in two consecutive cohorts of patients who were serially investigated either at 6 and 24 months or at 12 and 36 months. METHODS AND RESULTS In the ABSORB multicentre single-arm trial, 45 patients (cohort B1) and 56 patients (cohort B2) underwent serial invasive imaging, specifically quantitative coronary angiography (QCA), intravascular ultrasound (IVUS), radiofrequency backscattering (IVUS-VH) and optical coherence tomography (OCT). Between one and three years, late luminal loss remained unchanged (6 months: 0.19 mm, 1 year: 0.27 mm, 2 years: 0.27 mm, 3 years: 0.29 mm) and the in-segment angiographic restenosis rate for the entire cohort B (n=101) at three years was 6%. On IVUS, mean lumen, scaffold, plaque and vessel area showed enlargement up to two years. Mean lumen and scaffold area remained stable between two and three years whereas significant reduction in plaque behind the struts occurred with a trend toward adaptive restrictive remodelling of EEM. Hyperechogenicity of the vessel wall, a surrogate of the bioresorption process, decreased from 23.1% to 10.4% with a reduction of radiofrequency backscattering for dense calcium and necrotic core. At three years, the count of strut cores detected on OCT increased significantly, probably reflecting the dismantling of the scaffold; 98% of struts were covered. In the entire cohort B (n=101), the three-year major adverse cardiac event rate was 10.0% without any scaffold thrombosis. CONCLUSIONS The current investigation demonstrated the dynamics of vessel wall changes after implantation of a bioresorbable scaffold, resulting at three years in stable luminal dimensions, a low restenosis rate and a low clinical major adverse cardiac events rate. CLINICAL TRIAL REGISTRATION INFORMATION http://www.clinicaltrials.gov/ct2/show/NCT00856856.
Collapse
|
Multicenter Study |
11 |
192 |
4
|
Ormiston JA, Serruys PW, Onuma Y, van Geuns RJ, de Bruyne B, Dudek D, Thuesen L, Smits PC, Chevalier B, McClean D, Koolen J, Windecker S, Whitbourn R, Meredith I, Dorange C, Veldhof S, Hebert KM, Rapoza R, Garcia-Garcia HM. First serial assessment at 6 months and 2 years of the second generation of absorb everolimus-eluting bioresorbable vascular scaffold: a multi-imaging modality study. Circ Cardiovasc Interv 2012; 5:620-32. [PMID: 23048057 DOI: 10.1161/circinterventions.112.971549] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Nonserial observations have shown this bioresorbable scaffold to have no signs of area reduction at 6 months and recovery of vasomotion at 1 year. Serial observations at 6 months and 2 years have to confirm the absence of late restenosis or unfavorable imaging outcomes. METHODS AND RESULTS The ABSORB trial is a multicenter single-arm trial assessing the safety and performance of an everolimus-eluting bioresorbable vascular scaffold. Forty-five patients underwent serial invasive imaging, such as quantitative coronary angiography, intravascular ultrasound, and optical coherence tomography at 6 and 24 months of follow-up. From 6 to 24 months, late luminal loss increased from 0.16±0.18 to 0.27±0.20 mm on quantitative coronary angiography, with an increase in neointima of 0.68±0.43 mm(2) on optical coherence tomography and 0.17±0.26 mm(2) on intravascular ultrasound. Struts still recognizable on optical coherence tomography at 2 years showed 99% of neointimal coverage with optical and ultrasonic signs of bioresorption accompanied by increase in mean scaffold area compared with baseline (0.54±1.09 mm(2) on intravascular ultrasound, P=0.003 and 0.77±1.33 m(2) on optical coherence tomography, P=0.016). Two-year major adverse cardiac event rate was 6.8% without any scaffold thrombosis. CONCLUSIONS This serial analysis of the second generation of the everolimus-eluting bioresorbable vascular scaffold confirmed, at medium term, the safety and efficacy of the new device. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT00856856.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
169 |
5
|
Oberhauser J, Hossainy S, Rapoza R. Design principles and performance of bioresorbable polymeric coronary scaffolds. EUROINTERVENTION 2009; 5 Suppl F:F15-22. [DOI: 10.4244/eijv5ifa3] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
|
16 |
130 |
6
|
Brugaletta S, Heo JH, Garcia-Garcia HM, Farooq V, van Geuns RJ, de Bruyne B, Dudek D, Smits PC, Koolen J, McClean D, Dorange C, Veldhof S, Rapoza R, Onuma Y, Bruining N, Ormiston JA, Serruys PW. Endothelial-dependent vasomotion in a coronary segment treated by ABSORB everolimus-eluting bioresorbable vascular scaffold system is related to plaque composition at the time of bioresorption of the polymer: indirect finding of vascular reparative therapy? Eur Heart J 2012; 33:1325-33. [PMID: 22507972 DOI: 10.1093/eurheartj/ehr466] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
AIMS To analyse the vasoreactivity of a coronary segment, previously scaffolded by the ABSORB bioresorbable vascular scaffold (BVS) device, in relationship to its intravascular ultrasound-virtual histology (IVUS-VH) composition and reduction in greyscale echogenicity of the struts. Coronary segments, transiently scaffolded by a polymeric device, may in the long-term recover a normal vasomotor tone. Recovery of a normal endothelial-dependent vasomotion may be enabled by scaffold bioresorption, composition of the underlying tissue, or a combination of both mechanisms. METHODS AND RESULTS All patients from the ABSORB Cohort A and B trials, who underwent a vasomotion test and IVUS-VH investigation at 12 and 24 months, were included. Acetylcholine (Ach) and nitroglycerin were used to test either the endothelial-dependent or -independent vasomotion of the treated segment. Changes in polymeric strut echogenicity-a surrogate for bioresorption-IVUS-VH composition of the tissue underneath the scaffold and their relationship with the pharmacologically induced vasomotion were all evaluated. Overall, 26 patients underwent the vasomotion test (18 at 12 and 8 at 24 months). Vasodilatory response to Ach was quantitatively associated with larger reductions over time in polymeric strut echogenicity (y= -0.159x- 6.85; r= -0.781, P< 0.001). Scaffolded segments with vasoconstriction to Ach had larger vessel areas (14.37 ± 2.50 vs. 11.85 ± 2.54 mm(2), P= 0.030), larger plaque burden (57.31 ± 5.96 vs. 49.09 ± 9.10%, P= 0.018), and larger necrotic core (NC) areas [1.39 (+1.14, +1.74) vs. 0.78 mm(2) (+0.20, +0.98), P= 0.006] compared with those with vasodilation. CONCLUSION Vasodilatory response to Ach, in coronary segments scaffolded by the ABSORB BVS device, is associated with a reduction in echogenicity of the scaffold over time, and a low amount of NC. In particular, the latter finding resembles the behaviour of a native coronary artery not caged by an intracoronary device.
Collapse
|
Journal Article |
13 |
124 |
7
|
Onuma Y, Sotomi Y, Shiomi H, Ozaki Y, Namiki A, Yasuda S, Ueno T, Ando K, Furuya J, Igarashi K, Kozuma K, Tanabe K, Kusano H, Rapoza R, Popma J, Stone G, Simonton C, Serruys P, Kimura T. Two-year clinical, angiographic, and serial optical coherence tomographic follow-up after implantation of an everolimus-eluting bioresorbable scaffold and an everolimus-eluting metallic stent: insights from the randomised ABSORB Japan trial. EUROINTERVENTION 2016; 12:1090-1101. [DOI: 10.4244/eijy16m09_01] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
|
9 |
116 |
8
|
Brugaletta S, Radu MD, Garcia-Garcia HM, Heo JH, Farooq V, Girasis C, van Geuns RJ, Thuesen L, McClean D, Chevalier B, Windecker S, Koolen J, Rapoza R, Miquel-Hebert K, Ormiston J, Serruys PW. Circumferential evaluation of the neointima by optical coherence tomography after ABSORB bioresorbable vascular scaffold implantation: can the scaffold cap the plaque? Atherosclerosis 2012; 221:106-12. [PMID: 22209268 DOI: 10.1016/j.atherosclerosis.2011.12.008] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 12/03/2011] [Accepted: 12/05/2011] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To quantify the circumferential healing process at 6 and 12 months following scaffold implantation. BACKGROUND The healing process following stent implantation consists of tissue growing on the top of and in the space between each strut. With the ABSORB bioresorbable vascular scaffold (BVS), the outer circumference of the scaffold is detectable by optical coherence tomography (OCT), allowing a more accurate and complete evaluation of the intra-scaffold neointima. METHODS A total of 58 patients (59 lesions), who received an ABSORB BVS 1.1 implantation and a subsequent OCT investigation at 6 (n=28 patients/lesions) or 12 (n=30 patients with 31 lesions) months follow-up were included in the analysis. The thickness of the neointima was calculated circumferentially in the area between the abluminal side of the scaffold and the lumen by means of an automated detection algorithm. The symmetry of the neointima thickness in each cross section was evaluated as the ratio between minimum and maximum thickness. RESULTS The neointima area was not different between 6 and 12 months follow-up (1.57±0.42 mm(2) vs. 1.64±0.77 mm(2); p=0.691). No difference was also found in the mean thickness of the neointima (median [IQR]) between the two follow-up time points (210 μm [180-260]) vs. 220 μm [150-260]; p=0.904). However, the symmetry of the neointima thickness was higher at 12 than at 6 months follow-up (0.23 [0.13-0.28] vs. 0.16 [0.08-0.21], p=0.019). CONCLUSIONS A circumferential evaluation of the healing process following ABSORB implantation is feasible, showing the formation of a neointima layer, that resembles a thick fibrous cap, known for its contribution to plaque stability.
Collapse
|
Multicenter Study |
13 |
102 |
9
|
Onuma Y, Serruys P, Ormiston J, Regar E, Webster M, Thuesen L, Dudek D, Veldhof S, Rapoza R. Three-year results of clinical follow-up after a bioresorbable everolimus-eluting scaffold in patients with de novo coronary artery disease: the ABSORB trial. EUROINTERVENTION 2010; 6:447-53. [DOI: 10.4244/eij30v6i4a76] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
|
15 |
98 |
10
|
Ali Z, Landmesser U, Karimi Galougahi K, Maehara A, Matsumura M, Shlofmitz R, Guagliumi G, Price M, Hill J, Akasaka T, Prati F, Bezerra H, Wijns W, Mintz G, Ben-Yehuda O, McGreevy R, Zhang Z, Rapoza R, West N, Stone G. Optical coherence tomography-guided coronary stent implantation compared to angiography: a multicentre randomised trial in PCI - design and rationale of ILUMIEN IV: OPTIMAL PCI. EUROINTERVENTION 2021; 16:1092-1099. [PMID: 32863246 PMCID: PMC9725042 DOI: 10.4244/eij-d-20-00501] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
AIMS Randomised trials have demonstrated improvement in clinical outcomes with intravascular ultrasound (IVUS)-guided percutaneous coronary intervention (PCI) compared with angiography-guided PCI. The ILUMIEN III trial demonstrated non-inferiority of an optical coherence tomography (OCT)- versus IVUS-guided PCI strategy in achieving similar post-PCI lumen dimensions. ILUMIEN IV is a large-scale, multicentre, randomised trial designed to demonstrate the superiority of OCT- versus angiography-guided stent implantation in patients with high-risk clinical characteristics (diabetes) and/or complex angiographic lesions in achieving larger post-PCI lumen dimensions and improving clinical outcomes. METHODS AND RESULTS ILUMIEN IV is a prospective, single-blind clinical investigation that will randomise between 2,490 and 3,656 patients using an adaptive design to OCT-guided versus angiography-guided coronary stent implantation in a 1:1 ratio. The primary endpoints are: (1) post-PCI minimal stent area assessed by OCT in each randomised arm, and (2) target vessel failure, the composite of cardiac death, target vessel myocardial infarction, or ischaemia-driven target vessel revascularisation. Clinical follow-up will continue for up to two years. The trial is currently enrolling, and the principal results are expected in 2022. CONCLUSIONS The large-scale ILUMIEN IV randomised controlled trial will evaluate the effectiveness of OCT-guided versus angiography-guided PCI in improving post-PCI lumen dimensions and clinical outcomes in patients with diabetes and/or with complex coronary lesions. TRIAL REGISTRATION NCT03507777.
Collapse
|
research-article |
4 |
85 |
11
|
Bourantas CV, Papafaklis MI, Kotsia A, Farooq V, Muramatsu T, Gomez-Lara J, Zhang YJ, Iqbal J, Kalatzis FG, Naka KK, Fotiadis DI, Dorange C, Wang J, Rapoza R, Garcia-Garcia HM, Onuma Y, Michalis LK, Serruys PW. Effect of the endothelial shear stress patterns on neointimal proliferation following drug-eluting bioresorbable vascular scaffold implantation: an optical coherence tomography study. JACC Cardiovasc Interv 2014; 7:315-324. [PMID: 24529931 DOI: 10.1016/j.jcin.2013.05.034] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/26/2013] [Accepted: 05/09/2013] [Indexed: 10/25/2022]
Abstract
OBJECTIVES This study sought to investigate the effect of endothelial shear stress (ESS) on neointimal formation following an Absorb bioresorbable vascular scaffold (BVS) (Abbott Vascular, Santa Clara, California) implantation. BACKGROUND Cumulative evidence, derived from intravascular ultrasound-based studies, has demonstrated a strong association between local ESS patterns and neointimal formation in bare-metal stents, whereas in drug-eluting stents, there are contradictory data about the effect of ESS on the vessel wall healing process. The effect of ESS on neointimal development following a bioresorbable scaffold implantation remains unclear. METHODS Twelve patients with an obstructive lesion in a relatively straight arterial segment, who were treated with an Absorb BVS and had serial optical coherence tomographic examination at baseline and 1-year follow-up, were included in the current analysis. The optical coherence tomographic data acquired at follow-up were used to reconstruct the scaffolded segment. Blood flow simulation was performed on the luminal surface at baseline defined by the Absorb BVS struts, and the computed ESS was related to the neointima thickness measured at 1-year follow-up. RESULTS At baseline, the scaffolded segments were exposed to a predominantly low ESS environment (61% of the measured ESS was <1 Pa). At follow-up, the mean neointima thickness was 113 ± 45 μm, whereas the percentage scaffold volume obstruction was 13.1 ± 6.6%. A statistically significant inverse correlation was noted between baseline logarithmic transformed ESS and neointima thickness at 1-year follow-up in all studied segments (correlation coefficient range -0.140 to -0.662). Mixed linear regression analysis between baseline logarithmic transformed ESS and neointima thickness at follow-up yielded a slope of -31 μm/ln(Pa) and a y-intercept of 99 μm. CONCLUSIONS The hemodynamic microenvironment appears to regulate neointimal response following an Absorb BVS implantation. These findings underline the role of the ESS patterns on vessel wall healing and should be taken into consideration in the design of bioresorbable devices.
Collapse
|
Clinical Trial |
11 |
68 |
12
|
Okamura T, Garg S, Gutiérrez-Chico J, Shin ES, Onuma Y, García-García H, Rapoza R, Sudhir K, Regar E, Serruys P. In vivo evaluation of stent strut distribution patterns in the bioabsorbable everolimus-eluting device: an OCT ad hoc analysis of the revision 1.0 and revision 1.1 stent design in the ABSORB clinical trial. EUROINTERVENTION 2010. [DOI: 10.4244/eijv5i8a157] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
|
15 |
60 |
13
|
Ali Z, Karimi Galougahi K, Maehara A, Shlofmitz R, Fabbiocchi F, Guagliumi G, Alfonso F, Akasaka T, Matsumura M, Mintz G, Ben-Yehuda O, Zhang Z, Rapoza R, West N, Stone G. Outcomes of optical coherence tomography compared with intravascular ultrasound and with angiography to guide coronary stent implantation: one-year results from the ILUMIEN III: OPTIMIZE PCI trial. EUROINTERVENTION 2021; 16:1085-1091. [PMID: 32540793 PMCID: PMC9724851 DOI: 10.4244/eij-d-20-00498] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
AIMS In the ILUMIEN III trial, among 450 randomised patients with non-complex lesions undergoing percutaneous coronary intervention (PCI), optical coherence tomography (OCT) guidance led to greater stent expansion than angiography guidance, similar minimal stent area compared to both intravascular ultrasound (IVUS) guidance and angiography guidance, and lower rates of uncorrected dissection and malapposition than both IVUS guidance and angiography guidance. Whether these differences impact on clinical outcomes is unknown. The aim of the present study was to report the 12-month clinical follow-up data from the ILUMIEN III study. METHODS AND RESULTS OCT-guided PCI, using an external elastic lamina-based protocol, was compared to operator-directed IVUS-guided or angiography-guided PCI. Target lesion failure (TLF) and major adverse cardiovascular events (MACE) at 12 months were adjudicated by a blinded clinical events committee. There were no significant differences in the rates of TLF (2.0% OCT, 3.7% IVUS, 1.4% angiography), MACE (9.8% OCT, 9.1% IVUS, 7.9% angiography), or any of the individual components of these outcomes among the groups. No independent predictors of 12-month stent-related clinical events were identified from final OCT. CONCLUSIONS In this underpowered study, OCT-guided PCI of non-complex lesions did not show a statistical difference in clinical outcomes at 12 months compared with IVUS or angiography guidance. An appropriately powered trial, including only complex patients and lesions, is underway to substantiate the potential clinical benefit of OCT-guided PCI. TRIAL REGISTRATION NCT02471586.
Collapse
|
research-article |
4 |
59 |
14
|
Brugaletta S, Gogas BD, Garcia-Garcia HM, Farooq V, Girasis C, Heo JH, van Geuns RJ, de Bruyne B, Dudek D, Koolen J, Smits P, Veldhof S, Rapoza R, Onuma Y, Ormiston J, Serruys PW. Vascular compliance changes of the coronary vessel wall after bioresorbable vascular scaffold implantation in the treated and adjacent segments. Circ J 2012; 76:1616-23. [PMID: 22531596 DOI: 10.1253/circj.cj-11-1416] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Implantation of a metallic prosthesis creates local stiffness with a subsequent mismatch in the compliance of the vessel wall, disturbances in flow and heterogeneous distribution of wall shear stress. Polymeric bioresorbable ABSORB scaffolds have less stiffness than metallic platform stents. We sought to analyze the mismatch in vascular compliance after ABSORB implantation and its long-term resolution with bioresorption. METHODS AND RESULTS A total of 83 patients from the ABSORB trials underwent palpography investigations (30 and 53 patients from ABSORB Cohorts A and B, respectively) to measure the compliance of the scaffolded and adjacent segments at various time points (from pre-implantation up to 24 months). The mean of the maximum strain values was calculated per segment by utilizing the Rotterdam Classification (ROC) score and expressed as ROC/mm. Scaffold implantation lead to a significant decrease in vascular compliance (median [IQR]) at the scaffolded segment (from 0.37 [0.24-0.45] to 0.14 [0.09-0.23], P<0.001) with mismatch in compliance in a paired analysis between the scaffolded and adjacent segments (proximal: 0.23 [0.12-0.34], scaffold: 0.12 [0.07-0.19], distal: 0.15 [0.05-0.26], P=0.042). This reported compliance mismatch disappears at short- and mid-term follow-up. CONCLUSIONS The ABSORB scaffold decreases vascular compliance at the site of scaffold implantation. A compliance mismatch is evident immediately post-implantation and in contrast to metallic stents disappears in the mid-term, likely leading to a normalization of the rheological behavior of the scaffolded segment.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
52 |
15
|
Gomez-Lara J, Radu M, Brugaletta S, Farooq V, Diletti R, Onuma Y, Windecker S, Thuesen L, McClean D, Koolen J, Whitbourn R, Dudek D, Smits PC, Regar E, Veldhof S, Rapoza R, Ormiston JA, Garcia-Garcia HM, Serruys PW. Serial Analysis of the Malapposed and Uncovered Struts of the New Generation of Everolimus-Eluting Bioresorbable Scaffold With Optical Coherence Tomography. JACC Cardiovasc Interv 2011; 4:992-1001. [DOI: 10.1016/j.jcin.2011.03.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 03/18/2011] [Accepted: 03/28/2011] [Indexed: 10/17/2022]
|
|
14 |
51 |
16
|
Gomez-Lara J, Diletti R, Brugaletta S, Onuma Y, Farooq V, Thuesen L, McClean D, Koolen J, Ormiston JA, Windecker S, Whitbourn R, Dudek D, Dorange C, Veldhof S, Rapoza R, Regar E, Garcia-Garcia HM, Serruys PW. Angiographic maximal luminal diameter and appropriate deployment of the everolimus-eluting bioresorbable vascular scaffold as assessed by optical coherence tomography: an ABSORB cohort B trial sub-study. EUROINTERVENTION 2012; 8:214-24. [PMID: 22030265 DOI: 10.4244/eijv8i2a35] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
AIMS Bioresorbable vascular scaffolds (BVS) present different mechanical properties as compared to metallic platform stents. Therefore, the standard procedural technique to achieve appropriate deployment may differ. METHODS AND RESULTS Fifty-two lesions treated with a 3 x 18 mm BVS were imaged with optical coherence tomography (OCT) post-implantation and screened for parameters suggesting non-optimal deployment. These included minimal scaffold area (minSA)<5 mm², residual area stenosis (RAS)>20%, edge dissections, incomplete scaffold/strut apposition (ISA)>5% and scaffold pattern irregularities. The angiographic proximal and distal maximal lumen diameters (DMAX) were measured by quantitative coronary angiography. Based on the DMAX values, the population was divided into three groups: DMAX <2.5 mm (n=13), DMAX between 2.5-3.3 mm (n=30) and DMAX >3.3 mm (n=9). All three groups presented with similar pre-implantation angiographic characteristics except for the vessel size and were treated with similar balloon/artery ratios. The group with a DMAX <2.5 mm presented with a higher percentage of lesions with minSA <5 mm² (30.8% vs. 10.0% vs. 0%; p=0.08) and edge dissections (61.5% vs. 33.3% vs. 11.1%; p=0.05). Lesions with >5% of ISA were significantly higher in the group with DMAX >3.3 mm (7.7% vs. 36.7% vs. 66.7%; p=0.02). RAS >20% was similar between all groups (46.2 vs. 53.3 vs. 77.8%; p=0.47) and scaffold pattern irregularities were only documented in three cases. CONCLUSIONS BVS implantation guided with quantitative angiography may improve the OCT findings of optimal deployment. The clinical significance of these angiographic and OCT findings warranted long term follow-up of larger cohort of patients.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
46 |
17
|
Gomez-Lara J, Brugaletta S, Diletti R, Garg S, Onuma Y, Gogas BD, van Geuns RJ, Dorange C, Veldhof S, Rapoza R, Whitbourn R, Windecker S, Garcia-Garcia HM, Regar E, Serruys PW. A comparative assessment by optical coherence tomography of the performance of the first and second generation of the everolimus-eluting bioresorbable vascular scaffolds. Eur Heart J 2010; 32:294-304. [PMID: 21123276 DOI: 10.1093/eurheartj/ehq458] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
|
15 |
46 |
18
|
Gomez-Lara J, Brugaletta S, Farooq V, Onuma Y, Diletti R, Windecker S, Thuesen L, McClean D, Koolen J, Whitbourn R, Dudek D, Smits PC, Chevalier B, Regar E, Veldhof S, Rapoza R, Ormiston JA, Garcia-Garcia HM, Serruys PW. Head-to-Head Comparison of the Neointimal Response Between Metallic and Bioresorbable Everolimus-Eluting Scaffolds Using Optical Coherence Tomography. JACC Cardiovasc Interv 2011; 4:1271-80. [DOI: 10.1016/j.jcin.2011.08.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 08/16/2011] [Accepted: 08/26/2011] [Indexed: 10/14/2022]
|
|
14 |
44 |
19
|
Gogas BD, Serruys PW, Diletti R, Farooq V, Brugaletta S, Radu MD, Heo JH, Onuma Y, van Geuns RJM, Regar E, De Bruyne B, Chevalier B, Thuesen L, Smits PC, Dudek D, Koolen J, Windecker S, Whitbourn R, Miquel-Hebert K, Dorange C, Rapoza R, Garcia-Garcia HM, McClean D, Ormiston JA. Vascular Response of the Segments Adjacent to the Proximal and Distal Edges of the ABSORB Everolimus-Eluting Bioresorbable Vascular Scaffold: 6-Month and 1-Year Follow-Up Assessment. JACC Cardiovasc Interv 2012; 5:656-65. [DOI: 10.1016/j.jcin.2012.02.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 01/09/2012] [Accepted: 02/14/2012] [Indexed: 11/26/2022]
|
|
13 |
33 |
20
|
Bourantas CV, Serruys PW, Nakatani S, Zhang YJ, Farooq V, Diletti R, Ligthart J, Sheehy A, van Geuns RJM, McClean D, Chevalier B, Windecker S, Koolen J, Ormiston J, Whitbourn R, Rapoza R, Veldhof S, Onuma Y, Garcia-Garcia HM. Bioresorbable vascular scaffold treatment induces the formation of neointimal cap that seals the underlying plaque without compromising the luminal dimensions: a concept based on serial optical coherence tomography data. EUROINTERVENTION 2015; 11:746-56. [DOI: 10.4244/eijy14m10_06] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
|
10 |
32 |
21
|
Gomez-Lara J, Brugaletta S, Farooq V, van Geuns RJ, De Bruyne B, Windecker S, McClean D, Thuesen L, Dudek D, Koolen J, Whitbourn R, Smits PC, Chevalier B, Morel MA, Dorange C, Veldhof S, Rapoza R, Garcia-Garcia HM, Ormiston JA, Serruys PW. Angiographic Geometric Changes of the Lumen Arterial Wall After Bioresorbable Vascular Scaffolds and Metallic Platform Stents at 1-Year Follow-Up. JACC Cardiovasc Interv 2011; 4:789-99. [DOI: 10.1016/j.jcin.2011.04.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 03/29/2011] [Accepted: 04/11/2011] [Indexed: 10/18/2022]
|
|
14 |
31 |
22
|
Bourantas CV, Farooq V, Zhang Y, Muramatsu T, Gogas BD, Thuesen L, McClean D, Chevalier B, Windecker S, Koolen J, Ormiston J, Whitbourn R, Dorange C, Rapoza R, Onuma Y, Garcia-Garcia HM, Serruys PW. Circumferential distribution of the neointima at six-month and two-year follow-up after a bioresorbable vascular scaffold implantation: a substudy of the ABSORB Cohort B Clinical Trial. EUROINTERVENTION 2015; 10:1299-306. [DOI: 10.4244/eijy14m04_11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
|
10 |
19 |
23
|
Gogas BD, Benham JJ, Hsu S, Sheehy A, Lefer DJ, Goodchild TT, Polhemus DJ, Bouchi YH, Hung OY, Yoo SY, Joshi U, Giddens DP, Veneziani A, Quyyumi A, Rapoza R, King SB, Samady H. Vasomotor Function Comparative Assessment at 1 and 2 Years Following Implantation of the Absorb Everolimus-Eluting Bioresorbable Vascular Scaffold and the Xience V Everolimus-Eluting Metallic Stent in Porcine Coronary Arteries. JACC Cardiovasc Interv 2016; 9:728-41. [DOI: 10.1016/j.jcin.2015.12.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/01/2015] [Accepted: 12/11/2015] [Indexed: 10/22/2022]
|
|
9 |
19 |
24
|
Vorpahl M, Nakano M, Perkins LEL, Otsuka F, Jones R, Acampado E, Lane JP, Rapoza R, Kolodgie FD, Virmani R. Vascular healing and integration of a fully bioresorbable everolimus-eluting scaffold in a rabbit iliac arterial model. EUROINTERVENTION 2014; 10:833-841. [DOI: 10.4244/eijv10i7a143] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
|
11 |
19 |
25
|
Nakatani S, Ishibashi Y, Sotomi Y, Perkins L, Eggermont J, Grundeken MJ, Dijkstra J, Rapoza R, Virmani R, Serruys PW, Onuma Y. Bioresorption and Vessel Wall Integration of a Fully Bioresorbable Polymeric Everolimus-Eluting Scaffold. JACC Cardiovasc Interv 2016; 9:838-851. [DOI: 10.1016/j.jcin.2016.01.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 01/15/2016] [Indexed: 10/21/2022]
|
|
9 |
18 |