1
|
Bedoya CL, Brockerhoff EG, Kirkendall LR, Hofstetter RW, Nelson XJ. Body size and sequence of host colonisation predict the presence of acoustic signalling in beetles. Sci Rep 2024; 14:15532. [PMID: 38969671 PMCID: PMC11226610 DOI: 10.1038/s41598-024-66108-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024] Open
Abstract
Acoustic communication is widespread in beetles, is often sexually dimorphic, and plays a significant role in behaviours such as premating recognition, courtship, and copulation. However, the factors that determine the presence or absence of acoustic signalling in a given species remain unclear. We examined acoustic communication in bark beetles (Scolytinae) and pinhole borers (Platypodinae), which are two speciose groups with widespread sound production capabilities. We show that body size along with the sequence of host colonisation predict the presence of acoustic communication, and report, for the first time in the animal kingdom, a size limit-1.9 mm-below which acoustic signalling ceases to be present.
Collapse
|
2
|
Uhey DA, Hofstetter RW, Earl S, Holden J, Sprague T, Rowe H. Living on the edge: The sensitivity of arthropods to development and climate along an urban-wildland interface in the Sonoran Desert of central Arizona. PLoS One 2024; 19:e0297227. [PMID: 38635739 PMCID: PMC11025936 DOI: 10.1371/journal.pone.0297227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/29/2023] [Indexed: 04/20/2024] Open
Abstract
Preservation of undeveloped land near urban areas is a common conservation practice. However, ecological processes may still be affected by adjacent anthropogenic activities. Ground-dwelling arthropods are a diverse group of organisms that are critical to ecological processes such as nutrient cycling, which are sensitive to anthropogenic activities. Here, we study arthropod dynamics in a preserve located in a heavily urbanized part of the Sonoran Desert, Arizona, U.S.. We compared arthropod biodiversity and community composition at ten locations, four paired sites representing the urban edge and one pair in the Preserve interior. In total, we captured and identified 25,477 arthropod individuals belonging to 287 lowest practical taxa (LPT) over eight years of sampling. This included 192 LPTs shared between interior and edge sites, with 44 LPTs occurring exclusively in interior sites and 48 LPTs occurring exclusively in edge sites. We found two site pairs had higher arthropod richness on the preserve interior, but results for evenness were mixed among site pairs. Compositionally, the interior and edge sites were more than 40% dissimilar, driven by species turnover. Importantly, we found that some differences were only apparent seasonally; for example edge sites had more fire ants than interior sites only during the summer. We also found that temperature and precipitation were strong predictors of arthropod composition. Our study highlights that climate can interact with urban edge effects on arthropod biodiversity.
Collapse
|
3
|
Crouch CD, Hofstetter RW, Grady AM, Edwards NNS, Waring KM. Oystershell scale (Hemiptera: Diaspididae) population growth, spread, and phenology on aspen in Arizona, USA. ENVIRONMENTAL ENTOMOLOGY 2024; 53:293-304. [PMID: 38306466 DOI: 10.1093/ee/nvae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/26/2023] [Accepted: 01/19/2024] [Indexed: 02/04/2024]
Abstract
Oystershell scale (OSS; Lepidosaphes ulmi L.) is an invasive insect that threatens sustainability of aspen (Populus tremuloides Michx.) in the southwestern United States. OSS invasions have created challenges for land managers tasked with maintaining healthy aspen ecosystems for the ecological, economic, and aesthetic benefits they provide. Active management is required to suppress OSS populations and mitigate damage to aspen ecosystems, but before management strategies can be implemented, critical knowledge gaps about OSS biology and ecology must be filled. This study sought to fill these gaps by addressing 3 questions: (i) What is the short-term rate of aspen mortality in OSS-infested stands in northern Arizona, USA? (ii) What are the short-term rates of OSS population growth on trees and OSS spread among trees in aspen stands? (iii) What is the phenology of OSS on aspen and does climate influence phenology? We observed high levels of aspen mortality (annual mortality rate = 10.4%) and found that OSS spread rapidly within stands (annual spread rate = 10-12.3%). We found first, second, and young third instars throughout the year and observed 2 waves of first instars (i.e., crawlers), one throughout the summer and a second in mid-winter. The first wave appeared to be driven by warming seasonal temperatures, but the cause of the second wave is unknown and might represent a second generation. We provide recommendations for future OSS research, including suggestions for more precise quantification of OSS phenology, and discuss how our results can inform management of OSS and invaded aspen ecosystems.
Collapse
|
4
|
Uhey DA, Vissa S, Haubensak KA, Ballard AD, Aguilar MB, Hofstetter RW. Increased cover of native and exotic plants on the rims of harvester ant (Hymenoptera: Formicidae) nests under grazing and drought. ENVIRONMENTAL ENTOMOLOGY 2024; 53:180-187. [PMID: 38037177 DOI: 10.1093/ee/nvad113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/04/2023] [Accepted: 11/14/2023] [Indexed: 12/02/2023]
Abstract
Harvester ants create habitats along nest rims, which some plants use as refugia. These refugia can enhance ecosystem stability to disturbances like drought and grazing, but their potential role in invasion ecology is not yet tested. Here we examine the effects of drought and grazing on nest-rim refugia of 2 harvester ant species: Pogonomyrmex occidentals and P. rugosus. We selected 4 rangeland sites with high harvester ant nest densities in northern Arizona, USA, with pre-existing grazing exclosures adjacent to heavily grazed habitat. Our objective was to determine whether nest refugia were used by native or exotic plant species for each site and scenario of drought and grazing. We measured vegetation cover on nest surfaces, on nest rims, and at 3 distances (3, 5, and 10 m) from nests. At each site, we sampled 2 treatments (grazed/excluded) during 2 seasons (drought/monsoon). We found that nest rims increased vegetation cover compared with background levels at all sites and in almost all scenarios of treatment and season, indicating that nest rims provide important refugia for plants from drought and cattle grazing. In some cases, plants enhanced on nest rims were native grasses such as blue gramma (Bouteloua gracilis) or forbs such as sunflowers (Helianthus petiolaris). However, nest rims at all sites enhanced exotic species, particularly Russian thistle (Salsola tragus), purslane (Portulaca oleracea), and bull thistle (Cirsium vulgare). These results suggest that harvester ants play important roles in invasion ecology and restoration. We discuss potential mechanisms for why certain plant species use nest-rim refugia and how harvester ant nests contribute to plant community dynamics.
Collapse
|
5
|
Hofstetter RW, Raffa KF, Halevy M. Oviposition behavior of the quasi-gregarious parasitoid, Ooencyrtus kuvanae (Hymenoptera: Encyrtidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2024; 24:18. [PMID: 38417130 PMCID: PMC10901542 DOI: 10.1093/jisesa/ieae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/30/2024] [Accepted: 02/14/2024] [Indexed: 03/01/2024]
Abstract
The parasitoid wasp, Ooencyrtus kuvanae (Howard) (Hymenoptera: Encyrtidae), is a natural enemy of the spongy moth, a significant forest pest in North America. We investigated the oviposition behavior of O. kuvanae females on spongy moth egg masses by (i) presenting female parasitoids with a single spongy moth egg mass that was replaced every day, 2nd day, 4th day, 8th day, or 16th day (which is the total length of the oviposition period) and (ii) presenting female parasitoids with 1, 2, 4, or 8 egg masses at a time. Offspring developmental length ranged from 18 to 24 days. On average, male offspring exhibited faster developmental times, emerging approximately 1 day ahead of females. The amount of time that adult females spent on an egg mass affected the number of parasitized eggs. Specifically, more offspring emerged in the 4-, 8-, and 16-day treatments than in scenarios involving daily or every second-day egg mass replacement. The percentage of male offspring decreased as the number of egg masses presented to females increased. Interestingly, the total number of female offspring remained constant, but the number of male offspring decreased with an increase in the number of egg masses and time spent by the parent within a patch. The observed sexual dimorphism in development time, the influence of resource availability on offspring sex ratios, and flexible oviposition patterns illustrate the adaptability of O. kuvanae in response to varying conditions. These insights have implications for our understanding of parasitoid-host interactions and their potential role in biological control strategies.
Collapse
|
6
|
Liu Z, Xing L, Huang W, Liu B, Wan F, Raffa KF, Hofstetter RW, Qian W, Sun J. Chromosome-level genome assembly and population genomic analyses provide insights into adaptive evolution of the red turpentine beetle, Dendroctonus valens. BMC Biol 2022; 20:190. [PMID: 36002826 PMCID: PMC9400205 DOI: 10.1186/s12915-022-01388-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 08/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Biological invasions are responsible for substantial environmental and economic losses. The red turpentine beetle (RTB), Dendroctonus valens LeConte, is an important invasive bark beetle from North America that has caused substantial tree mortality in China. The lack of a high-quality reference genome seriously limits deciphering the extent to which genetic adaptions resulted in a secondary pest becoming so destructive in its invaded area. RESULTS Here, we present a 322.41 Mb chromosome-scale reference genome of RTB, of which 98% of assembled sequences are anchored onto fourteen linkage groups including the X chromosome with a N50 size of 24.36 Mb, which is significantly greater than other Coleoptera species. Repetitive sequences make up 45.22% of the genome, which is higher than four other Coleoptera species, i.e., Mountain pine beetle Dendroctonus ponderosae, red flour beetle Tribolium castaneum, blister beetle Hycleus cichorii, and Colorado potato beetle Leptinotarsa decemlineata. We identify rapidly expanded gene families and positively selected genes in RTB, which may be responsible for its rapid environmental adaptation. Population genetic structure of RTB was revealed by genome resequencing of geographic populations in native and invaded regions, suggesting substantial divergence of the North American population and illustrates the possible invasion and spread route in China. Selective sweep analysis highlighted the enhanced ability of Chinese populations in environmental adaptation. CONCLUSIONS Overall, our high-quality reference genome represents an important resource for genomics study of invasive bark beetles, which will facilitate the functional study and decipher mechanism underlying invasion success of RTB by integrating the Pinus tabuliformis genome.
Collapse
|
7
|
Uhey DA, Bowker MA, Haubensak KA, Auty D, Vissa S, Hofstetter RW. Habitat Type Affects Elevational Patterns in Ground-dwelling Arthropod Communities. JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:9. [PMID: 35983692 PMCID: PMC11639851 DOI: 10.1093/jisesa/ieac046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Indexed: 06/15/2023]
Abstract
Understanding factors that drive biodiversity distributions is central in ecology and critical to conservation. Elevational gradients are useful for studying the effects of climate on biodiversity but it can be difficult to disentangle climate effects from resource differences among habitat types. Here we compare elevational patterns and influences of environmental variables on ground-dwelling arthropods in open- and forested-habitats. We examine these comparisons in three arthropod functional groups (detritivores, predators, and herbivores) and two taxonomic groups (beetles and arachnids). We sampled twelve sites spanning 1,132 m elevation and four life zones, collecting 4,834 individual ground arthropods identified to 123 taxa. Elevation was a strong predicator for arthropod composition, however, patterns differed among functional and taxonomic groups and individual species between open- and forested-habitats. Beetles, arachnids, and predators decreased with elevation in open habitats but increased in forests showing a significant interaction between habitat type and elevation. Detritivores and herbivores showed no elevational patterns. We found 11 arthropod taxa with linear elevational patterns, seven that peaked in abundance at high elevations, and four taxa at low elevations. We also found eight taxa with parabolic elevational patterns that peaked in abundance at mid-elevations. We found that vegetation composition and productivity had stronger explanatory power for arthropod composition in forested habitats, while ground cover was a stronger predictor in open habitats. Temperature and precipitation were important in both habitats. Our findings demonstrate that relationships between animal diversity and elevation can be mediated by habitat type, suggesting that physiological restraints and resource limitations work differently between habitat types.
Collapse
|
8
|
Soderberg DN, Mock KE, Hofstetter RW, Bentz BJ. Translocation experiment reveals capacity for mountain pine beetle persistence under climate warming. ECOL MONOGR 2020. [DOI: 10.1002/ecm.1437] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Hofstetter RW, Copp BE, Lukic I. Acoustic noise of refrigerators promote increased growth rate of the gray mold
Botrytis cinerea. J Food Saf 2020. [DOI: 10.1111/jfs.12856] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Uhey DA, Hofstetter RW, Remke M, Vissa S, Haubensak KA. Climate and vegetation structure shape ant communities along elevational gradients on the Colorado Plateau. Ecol Evol 2020; 10:8313-8322. [PMID: 32788981 PMCID: PMC7417256 DOI: 10.1002/ece3.6538] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/28/2020] [Accepted: 05/31/2020] [Indexed: 11/09/2022] Open
Abstract
Terrestrial animal communities are largely shaped by vegetation and climate. With climate also shaping vegetation, can we attribute animal patterns solely to climate? Our study observes ant community changes along climatic gradients (i.e., elevational gradients) within different habitat types (i.e., open and forest) on the Colorado Plateau in the southwestern United States. We sampled ants and vegetation along two elevational gradients spanning 1,132 m with average annual temperature and precipitation differences of 5.7°C and 645mm, respectively. We used regression analyses and structural equation modeling to compare the explanatory powers and effect sizes of climate and vegetation variables on ants. Climate variables had the strongest correlations and the largest effect sizes on ant communities, while vegetation composition, richness, and primary productivity had relatively small effects. Precipitation was the strongest predictor for most ant community metrics. Ant richness and abundance had a negative relationship with precipitation in forested habitats, and positive in open habitats. Our results show strong direct climate effects on ants with little or no effects of vegetation composition or primary productivity, but contrasting patterns between vegetation type (i.e., forested vs. open) with precipitation. This indicates vegetation structure can modulate climate responses of ant communities. Our study demonstrates climate-animal relationships may vary among vegetation types which can impact both findings from elevational studies and how communities will react to changes in climate.
Collapse
|
11
|
Bedoya CL, Hofstetter RW, Nelson XJ, Hayes M, Miller DR, Brockerhoff EG. Sound production in bark and ambrosia beetles. BIOACOUSTICS 2019. [DOI: 10.1080/09524622.2019.1686424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Biedermann PH, Müller J, Grégoire JC, Gruppe A, Hagge J, Hammerbacher A, Hofstetter RW, Kandasamy D, Kolarik M, Kostovcik M, Krokene P, Sallé A, Six DL, Turrini T, Vanderpool D, Wingfield MJ, Bässler C. Bark Beetle Population Dynamics in the Anthropocene: Challenges and Solutions. Trends Ecol Evol 2019; 34:914-924. [DOI: 10.1016/j.tree.2019.06.002] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 05/15/2019] [Accepted: 06/03/2019] [Indexed: 01/03/2023]
|
13
|
Bedoya CL, Nelson XJ, Hayes M, Hofstetter RW, Atkinson TH, Brockerhoff EG. First report of luminous stimuli eliciting sound production in weevils. Naturwissenschaften 2019; 106:17. [PMID: 31020391 DOI: 10.1007/s00114-019-1619-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 11/26/2022]
Abstract
Light-based stimuli elicited acoustic responses in male Hylesinus aculeatus Say (Curculionidae: Scolytinae: Hylesinina) instantaneously, with 100% reliability. Stridulations were elicited with a white light beam in a dark environment and recorded with an ultrasonic microphone. Acoustic responses were consistent, and, when compared with sounds produced under stressful conditions (i.e. physical stimulation), no significant differences were found. Hylesinus aculeatus possess an elytro-tergal stridulatory organ and acoustic communication is only present in males. This is also the first report of acoustic communication for this species. Instantaneous light-elicited acoustic communication has potential applications in the development of electronic traps and real-time acoustic detection and identification of beetles, border biosecurity, and noise-reduction in acoustic data collection.
Collapse
|
14
|
Davis TS, Stewart JE, Mann A, Bradley C, Hofstetter RW. Evidence for multiple ecological roles of Leptographium abietinum, a symbiotic fungus associated with the North American spruce beetle. FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2018.04.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
15
|
Vissa S, Hofstetter RW, Bonifácio L, Khaustov A, Knee W, Uhey DA. Phoretic mite communities associated with bark beetles in the maritime and stone pine forests of Setúbal, Portugal. EXPERIMENTAL & APPLIED ACAROLOGY 2019; 77:117-131. [PMID: 30810852 DOI: 10.1007/s10493-019-00348-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/20/2019] [Indexed: 06/09/2023]
Abstract
The phoretic mite communities of prominent bark beetle pests associated with pine stands of southern Portugal were sampled to determine whether they vary across bark beetle species and stand type. Bark beetles were sampled for mites from two primary (aggressive) bark beetle species (Ips sexdentatus and Orthotomicus erosus) and the most common secondary species (Hylurgus ligniperda) in maritime pine (Pinus pinaster) and stone pine (Pinus pinea) in the Setúbal province of Portugal. Twelve mite species, spanning diverse ecological roles, are found associated with these bark beetle systems. The relative abundances of the 12 species that make up the phoretic mite communities of maritime and stone pine varied significantly between host beetle species as well as between stand type, indicating that the phoretic host and dominant tree type are important drivers of mite community composition. The functional roles of these mites are outlined and their ecological significance in pine forest ecosystems is discussed.
Collapse
|
16
|
Kraberger S, Hofstetter RW, Potter KA, Farkas K, Varsani A. Genomoviruses associated with mountain and western pine beetles. Virus Res 2018; 256:17-20. [DOI: 10.1016/j.virusres.2018.07.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/23/2018] [Accepted: 07/26/2018] [Indexed: 11/30/2022]
|
17
|
Jaffe BD, Ketterer ME, Hofstetter RW. Terrestrial Invertebrate Arsenic Accumulation Associated With an Arsenic Hyperaccumulating Fern, Pteris vittata (Polypodiales: Pteridaceae). ENVIRONMENTAL ENTOMOLOGY 2016; 45:1306-1315. [PMID: 27516432 DOI: 10.1093/ee/nvw096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/13/2016] [Indexed: 06/06/2023]
Abstract
Arsenic (As) can play an important role in the contamination of soils, waters, and air. The toxicity of As to most organisms is well established, but little is known about the interactions between environmental As and terrestrial invertebrates and the fate of As through trophic levels. Pteris vittata L. (Polypodiales: Pteridaceae), a fern that hyperaccumulates arsenic, serves as a potential mechanism to facilitate interactions between environmental arsenic and other biota. We compared invertebrate arsenic concentrations (hereafter as [As]) and bioaccumulation factors associated with soil and fern [As] to elucidate relationships between invertebrate and environmental As exposure. We collected invertebrates in pitfall traps from field sites associated with P. vittata, and identified them to order for whole body arsenic analysis and subsequently family for classification into functional feeding groups. We found that overall [As] in invertebrates increased with soil [As], but not with fern [As]. The absence of a relationship between fern [As] and invertebrate [As] may indicate invertebrates are avoiding the fern. Individual taxonomic groups significantly differed in whole body [As], and individual taxa also varied in their relationship between whole body [As] relative to soil and fern [As]. Overall invertebrate abundance decreased as invertebrate [As] load increased but varied across taxa. One particular herbivore, Callopistria floridensis (Florida fern caterpillar), associated with relatively low environmental As exposure contained over 4,000 mg kg-1 As. Our results show that As bioaccumulates into higher trophic levels and invertebrate body [As] covary with exposure to naturally occurring environmental [As] associated with P. vittata.
Collapse
|
18
|
Pureswaran DS, Hofstetter RW, Sullivan BT, Grady AM, Brownie C. Erratum to: Western Pine Beetle Populations in Arizona and California Differ in the Composition of Their Aggregation Pheromones. J Chem Ecol 2016; 42:552. [PMID: 27271254 DOI: 10.1007/s10886-016-0710-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Pureswaran DS, Hofstetter RW, Sullivan BT, Potter KA. The Role of Multimodal Signals in Species Recognition Between Tree-Killing Bark Beetles in a Narrow Sympatric Zone. ENVIRONMENTAL ENTOMOLOGY 2016; 45:582-591. [PMID: 27034446 DOI: 10.1093/ee/nvw022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 02/29/2016] [Indexed: 06/05/2023]
Abstract
When related species coexist, selection pressure should favor evolution of species recognition mechanisms to prevent interspecific pairing and wasteful reproductive encounters. We investigated the potential role of pheromone and acoustic signals in species recognition between two species of tree-killing bark beetles, the southern pine beetle, Dendroctonus frontalis Zimmermann, and the western pine beetle, Dendroctonus brevicomis LeConte, in a narrow zone of sympatry, using reciprocal pairing experiments. Given the choice of adjacent con- or heterospecific female gallery entrance in a log, at least 85% of walking males chose the entrance of the conspecific, and half the males that initially entered heterospecific galleries re-emerged and entered the conspecific gallery within 15 min. Waveform analysis of female acoustic "chirps" indicated interspecific differences in chirp timing. Males may use information from female acoustic signals to decide whether to enter or remain in the gallery. Individuals in forced heterospecific pairings (produced by confinement of a heterospecific male within the female entrance) did not differ in pheromone production from individuals of conspecific pairs. However, due to the absence of the right species of male, galleries with heterospecific pairs released an abnormal pheromone blend that lacked at least one key component of the aggregation pheromone of either species. The complete aggregation pheromone (i.e., the pheromone blend from entrances with pairs) does not appear to deter interspecific encounters or confer premating reproductive isolation per se; however, it may confer selective pressure for the maintenance of other reproductive isolation mechanisms.
Collapse
|
20
|
Pureswaran DS, Hofstetter RW, Sullivan BT, Grady AM, Brownie C. Western Pine Beetle Populations in Arizona and California Differ in the Composition of Their Aggregation Pheromones. J Chem Ecol 2016; 42:404-13. [PMID: 27125814 DOI: 10.1007/s10886-016-0696-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/29/2016] [Accepted: 04/10/2016] [Indexed: 10/21/2022]
Abstract
We compared pheromone production and response for populations of western pine beetle, Dendroctonus brevicomis LeConte, from sites in northern Arizona and northern California. Volatiles were collected from individuals of both sexes that had mined as a pair in a Pinus ponderosa log for 1 d, and they were subsequently analyzed by gas chromatography coupled to mass-spectrometry. Principal component analysis of quantities of Dendroctonus pheromone components indicated strong site-associated clustering of blend composition for females but not males. Much of the clustering in females evidently was due to differences in the production of endo- and exo-brevicomin, which occurred in average ratios of 0.1:1 and 19:1 for populations in the California and Arizona sites, respectively. In the California site, exo- was better than endo-brevicomin in enhancing trap catches of both sexes to lures containing the host-tree odor α-pinene and the male-produced aggregation pheromone component frontalin. In an identical test in the Arizona site, endo- was a better adjuvant than exo-brevicomin for male attraction, whereas females did not show a significant preference. At neither location were the isomers antagonistic to one another in activity. Thus, one aggregation pheromone has apparently diverged between these populations, concurrent with published evidence that D. brevicomis on either side of the Great Basin are genetically distinct and are possibly different species. Furthermore, production of and response to the isomers of brevicomin by flying Dendroctonus frontalis Zimmermann in the Arizona site were similar to those of sympatric D. brevicomis. This interspecific signal overlap is likely sustainable since joint species mass-attacks may assist both species in overcoming host defenses, thereby increasing host availability.
Collapse
|
21
|
Miller DR, Allison JD, Crowe CM, Dickinson DM, Eglitis A, Hofstetter RW, Munson AS, Poland TM, Reid LS, Steed BE, Sweeney JD. Pine Sawyers (Coleoptera: Cerambycidae) Attracted to α-Pinene, Monochamol, and Ipsenol in North America. JOURNAL OF ECONOMIC ENTOMOLOGY 2016; 109:1205-1214. [PMID: 27106224 DOI: 10.1093/jee/tow071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/11/2016] [Indexed: 06/05/2023]
Abstract
Detection tools are needed for Monochamus species (Coleoptera: Cerambycidae) because they are known to introduce pine wilt disease by vectoring nematodes in Asia, Europe, and North America. In 2012-2014, we examined the effects of the semiochemicals monochamol and ipsenol on the flight responses of the sawyer beetles Monochamus carolinensis (Olivier), Monochamus clamator (LeConte), Monochamus mutator LeConte, Monochamus notatus (Drury), Monochamus obtusus Casey, Monochamus scutellatus (Say), and Monochamus titillator (F.) complex (Coleoptera: Cerambycidae) to traps baited with α-pinene. Experiments were set in pine forests in New Brunswick and Ontario (Canada), and Arizona, Georgia, Michigan, Montana, Oregon, South Carolina, Utah, and Washington (United States). In brief, 40 traps were placed in 10 blocks of 4 traps per block per location. Traps were baited with: 1) α-pinene; 2) α-pinene + monochamol; 3) α-pinene + ipsenol; and 4) α-pinene + monochamol + ipsenol. Monochamol increased catches of six species and one species complex of Monochamus with an additive effect of ipsenol for five species and one species complex. There was no evidence of synergy between monochamol and ipsenol on beetle catches. Monochamol had no effect on catches of other Cerambycidae or on any associated species of bark beetles, weevils, or bark beetle predators. We present a robust data set suggesting that the combination of α-pinene, ipsenol, and monochamol may be a useful lure for detecting Monochamus species.
Collapse
|
22
|
Pfammatter JA, Coyle DR, Gandhi KJK, Hernandez N, Hofstetter RW, Moser JC, Raffa KF. Structure of Phoretic Mite Assemblages Across Subcortical Beetle Species at a Regional Scale. ENVIRONMENTAL ENTOMOLOGY 2016; 45:53-65. [PMID: 26496952 DOI: 10.1093/ee/nvv150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/24/2015] [Indexed: 06/05/2023]
Abstract
Mites associated with subcortical beetles feed and reproduce within habitats transformed by tree-killing herbivores. Mites lack the ability to independently disperse among these habitats, and thus have evolved characteristics that facilitate using insects as transport between resources. Studies on associations between mites and beetles have historically been beetle-centric, where an assemblage of mite species is characterized on a single beetle species. However, available evidence suggests there may be substantial overlap among mite species on various species of beetles utilizing similar host trees. We assessed the mite communities of multiple beetle species attracted to baited funnel traps in Pinus stands in southern Wisconsin, northern Arizona, and northern Georgia to better characterize mite dispersal and the formation of mite-beetle phoretic associations at multiple scales. We identified approximately 21 mite species totaling 10,575 individuals on 36 beetle species totaling 983 beetles. Of the mites collected, 97% were represented by eight species. Many species of mites were common across beetle species, likely owing to these beetles' common association with trees in the genus Pinus. Most mite species were found on at least three beetle species. Histiostoma spp., Iponemus confusus Lindquist, Histiogaster arborsignis Woodring and Trichouropoda australis Hirschmann were each found on at least seven species of beetles. While beetles had largely similar mite membership, the abundances of individual mite species were highly variable among beetle species within each sampling region. Phoretic mite communities also varied within beetle species between regions, notably for Ips pini (Say) and Ips grandicollis (Eichhoff).
Collapse
|
23
|
Aflitto NC, Hofstetter RW. Use of acoustics to deter bark beetles from entering tree material. PEST MANAGEMENT SCIENCE 2014; 70:1808-1814. [PMID: 24376044 DOI: 10.1002/ps.3720] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 12/05/2013] [Accepted: 12/20/2013] [Indexed: 06/03/2023]
Abstract
BACKGROUND Acoustic technology is a potential tool to protect wood materials and eventually live trees from colonization by bark beetles. Bark beetles such as the southern pine beetle Dendroctonus frontalis, western pine beetle D. brevicomis and pine engraver Ips pini (Coleoptera: Curculionidae) use chemical and acoustic cues to communicate and to locate potential mates and host trees. In this study, the efficacy of sound treatments on D. frontalis, D. brevicomis and I. pini entry into tree materials was tested. RESULTS Acoustic treatments significantly influenced whether beetles entered pine logs in the laboratory. Playback of artificial sounds reduced D. brevicomis entry into logs, and playback of stress call sounds reduced D. frontalis entry into logs. Sound treatments had no effect on I. pini entry into logs. CONCLUSION The reduction in bark beetle entry into logs using particular acoustic treatments indicates that sound could be used as a viable management tool.
Collapse
|
24
|
Aflitto NC, Hofstetter RW, McGuire R, Dunn DD, Potter KA. Technique for studying arthropod and microbial communities within tree tissues. J Vis Exp 2014:e50793. [PMID: 25489987 PMCID: PMC4354042 DOI: 10.3791/50793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phloem tissues of pine are habitats for many thousands of organisms. Arthropods and microbes use phloem and cambium tissues to seek mates, lay eggs, rear young, feed, or hide from natural enemies or harsh environmental conditions outside of the tree. Organisms that persist within the phloem habitat are difficult to observe given their location under bark. We provide a technique to preserve intact phloem and prepare it for experimentation with invertebrates and microorganisms. The apparatus is called a ‘phloem sandwich’ and allows for the introduction and observation of arthropods, microbes, and other organisms. This technique has resulted in a better understanding of the feeding behaviors, life-history traits, reproduction, development, and interactions of organisms within tree phloem. The strengths of this technique include the use of inexpensive materials, variability in sandwich size, flexibility to re-open the sandwich or introduce multiple organisms through drilled holes, and the preservation and maintenance of phloem integrity. The phloem sandwich is an excellent educational tool for scientific discovery in both K-12 science courses and university research laboratories.
Collapse
|
25
|
Hofstetter RW, Dunn DD, McGuire R, Potter KA. Using acoustic technology to reduce bark beetle reproduction. PEST MANAGEMENT SCIENCE 2014; 70:24-27. [PMID: 24105962 DOI: 10.1002/ps.3656] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 08/02/2013] [Accepted: 09/18/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND Acoustic signals play a critical role in mate choice, species recognition, communication, territoriality, predator escape and prey selection. Bark beetles, which are significant disturbance agents of forests, produce a variety of acoustic signals. RESULTS A bioacoustic approach to reducing bark beetle reproduction within wood tissues was explored. Playback of modified biological sounds reduced beetle reproductive output, tunneling distance and adult survival. CONCLUSION The targeted use of biologically relevant sounds disrupts insect behaviors and could be a species-specific, environmentally friendly method of insect management.
Collapse
|