Bhadani RV, Gajera HP, Hirpara DG, Kachhadiya HJ, Dave RA. Metabolomics of extracellular compounds and parasitic enzymes of Beauveria bassiana associated with biological control of whiteflies (Bemisia tabaci).
PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021;
176:104877. [PMID:
34119221 DOI:
10.1016/j.pestbp.2021.104877]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 04/08/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
The Beauveria spp. were isolated from soil and insect cadavers of crop rhizosphere and characterized for parasitic enzyme activity and virulence against whiteflies (Bemisia tabaci). The colony morphology and molecular identification using ITS specific marker were carried out and confirmed entomopathogenic fungi as Beauveria bassiana. The bioefficacy of B. bassiana against whiteflies demonstrated highest corrected mortality and lowest LC50 in isolate B. bassiana JAU2 (SEM morphology) followed by JAU1 on 6th days. Parasitic enzymes chitinase and lipase were determined highest in JAU2 and protease activity examined higher in isolate JAU4 followed by JAU2 isolate on 6th days after inoculation. Comparative extracellular metabolomics carried out from potent (JAU1 and JAU2), moderate (JAU4 and JAU14) and weak (JAU6) B. bassiana isolates in normal suborder dextrose agar with yeast extrect (SDAY) and chitin induced media. Results illustrated that total 105 metabolites identified common for all five B. bassiana isolates differing in virulence. However, the color intensity of the metabolites changes in heat map showing differential concentration of that extracellular compound compared to other isolates. The volcano plot analysis illustrated 58 compounds significanlty diverse between potent JAU1 and JAU2 under two different culture conditions of which 34 compounds recognized up regulated in most potent JAU2 under chitin induced media. Out of 34 metabolites, ten compounds viz., fumaricine, resazurin, N-methyldioctylamine, penaresidun B, tetralin, squamocin B, oligomycin C, pubesenolide, epirbuterol and gentamicin C1a were recognized significantly upregulated in most potent JAU2 and reported for antimicrobial, nematicidal, larvicidalor insecticidal activities. The mass spectra and fragment structure were elucidated under LCMS-QTOF for some novel and unique compounds recognized in most potent B. bassiana JAU2, involved in parasitic activity against whiteflies.
Collapse