1
|
Waldherr G, Beck J, Neumann P, Said RS, Nitsche M, Markham ML, Twitchen DJ, Twamley J, Jelezko F, Wrachtrup J. High-dynamic-range magnetometry with a single nuclear spin in diamond. NATURE NANOTECHNOLOGY 2011; 7:105-108. [PMID: 22179568 DOI: 10.1038/nnano.2011.224] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 11/16/2011] [Indexed: 05/31/2023]
Abstract
Sensors based on the nitrogen-vacancy defect in diamond are being developed to measure weak magnetic and electric fields at the nanoscale. However, such sensors rely on measurements of a shift in the Lamor frequency of the defect, so an accumulation of quantum phase causes the measurement signal to exhibit a periodic modulation. This means that the measurement time is either restricted to half of one oscillation period, which limits accuracy, or that the magnetic field range must be known in advance. Moreover, the precision increases only slowly (as T(-0.5)) with measurement time T (ref. 3). Here, we implement a quantum phase estimation algorithm on a single nuclear spin in diamond to combine both high sensitivity and high dynamic range. By achieving a scaling of the precision with time to T(-0.85), we improve the sensitivity by a factor of 7.4 for an accessible field range of 16 mT, or, alternatively, we improve the dynamic range by a factor of 130 for a sensitivity of 2.5 µT Hz(-1/2). Quantum phase estimation algorithms have also recently been implemented using a single electron spin in a nitrogen-vacancy centre. These methods are applicable to a variety of field detection schemes, and do not require quantum entanglement.
Collapse
|
|
14 |
53 |
2
|
Mantawy EM, Said RS, Abdel-Aziz AK. Mechanistic approach of the inhibitory effect of chrysin on inflammatory and apoptotic events implicated in radiation-induced premature ovarian failure: Emphasis on TGF-β/MAPKs signaling pathway. Biomed Pharmacother 2018; 109:293-303. [PMID: 30396087 DOI: 10.1016/j.biopha.2018.10.092] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/14/2018] [Accepted: 10/15/2018] [Indexed: 12/29/2022] Open
Abstract
Radiotherapy is one of the most relevant treatment modalities for various types of malignancies. However, it causes premature ovarian failure (POF) and subsequent infertility in women of reproductive age; hence urging the development of effective radioprotective agents. Chrysin, a natural flavone, possesses several pharmacological activities owing to its antioxidant, anti-inflammatory and anti-apoptotic properties. Therefore, the aim of this study was to investigate the efficacy of chrysin in limiting γ-radiation-mediated POF and to elucidate the underlying molecular mechanisms. Immature female Sprague-Dawley rats were subjected to a single dose of γ-radiation (3.2 Gy) and/or treated with chrysin (50 mg/kg) once daily for two weeks before and three days post-irradiation. Chrysin prevented the radiation-induced ovarian dysfunction by restoring estradiol levels, preserving the normal ovarian histoarchitecture and combating the follicular loss. Eelectron microscopic analysis showed that the disruption of ultrastructure components due to radiation exposure was hampered by chrysin administration. Mechanistically, chrsyin was able to reduce the levels of the inflammatory markers NF-κB, TNF-α, iNOS and COX-2 in radiation-induced ovarian damage. Chrysin also exhibited potent anti-apoptotic effects against radiation-induced cell death by downregulating the expression of cytochrome c and caspase 3. Radiation obviously induced upregulation of TGF-β protein with subsequent phospholyration and hence activation of downstream mitogen-activated protein kinases (MAPKs); p38 and JNK. Notably, administration of chrysin successfully counteracted these effects. These findings revealed that chrysin may be beneficial in ameliorating radiation-induced POF, predominantly via downregulating TGF-β/MAPK signaling pathways leading subsequently to hindering inflammatory and apoptotic signal transduction pathways implicated in POF.
Collapse
|
Journal Article |
7 |
38 |
3
|
Mohamed HA, Said RS. Coenzyme Q10 attenuates inflammation and fibrosis implicated in radiation enteropathy through suppression of NF-kB/TGF-β/MMP-9 pathways. Int Immunopharmacol 2021; 92:107347. [PMID: 33418245 DOI: 10.1016/j.intimp.2020.107347] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 01/01/2023]
Abstract
Radiation enteropathy is one the most common clinical issue for patients receiving radiotherapy for abdominal/pelvic tumors which severely affect the quality of life of cancer patients due to dysplastic lesions (ischemia, ulcer, or fibrosis) that aggravate the radiation damage. Herein, this study demonstrated the prophylactic role of coenzyme Q10 (CoQ10), a powerful antioxidant, against radiotherapy-induced gastrointestinal injury. Male Sprague Dawley rats were divided into four groups: group 1 was defined as control, and group 2 was the irradiated group. Group 3 and 4 were CoQ10 control and radiation plus CoQ10 groups, respectively. CoQ10 (10 mg/kg) was orally administered for 10 days before 10 Gy whole-body radiation and was continued for 4 days post-irradiation. CoQ10 administration protected rats delivered a lethal dose of ϒ-radiation from changes in crypt-villus structures and promoted regeneration of the intestinal epithelium. CoQ10 attenuated radiation-induced oxidative stress by decreasing lipid peroxidation and increasing the antioxidant enzyme catalase activity and reduced glutathione level. CoQ10 also counteracts inflammatory response mediated after radiation exposure through downregulating intestinal NF-ĸB expression which subsequently decreased the level of inflammatory cytokine IL-6 and the expression of COX-2. Radiation-induced intestinal fibrosis confirmed via Masson's trichrome staining occurred through upregulating transforming growth factor (TGF)-β1 and matrix metalloproteinase (MMP)-9 expression, while CoQ10 administration significantly diminishes these effects which further confirmed the anti-fibrotic property of CoQ10. Therefore, CoQ10 is a promising radioprotector that could prevent intestinal complications and enhance the therapeutic ratio of radiotherapy in patients with pelvic tumors through suppressing the NF-kB/TGF-β1/MMP-9 signaling pathway.
Collapse
|
Journal Article |
4 |
32 |
4
|
El-Derany MO, Said RS, El-Demerdash E. Bone Marrow-Derived Mesenchymal Stem Cells Reverse Radiotherapy-Induced Premature Ovarian Failure: Emphasis on Signal Integration of TGF-β, Wnt/β-Catenin and Hippo Pathways. Stem Cell Rev Rep 2021; 17:1429-1445. [PMID: 33594662 DOI: 10.1007/s12015-021-10135-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2021] [Indexed: 11/29/2022]
Abstract
Radiotherapy is an indispensable cancer treatment approach. However, it is associated with hazardous consequences on multiple organs characterized by insidious worsening severity over time. This study aimed to examine the potential therapeutic effects of bone marrow mesenchymal stem cells (BM-MSCs) in radiation-induced premature ovarian failure (POF). Exposing female rats to 3.2 Gy whole-body ϒ-rays successfully induced POF. One week later, a single intravenous injection of BM-MSCs (2*106) cells was administered. BM-MSCs perfectly home to the damaged ovaries, enhanced ovarian follicle pool, and preserved the ovarian function manifested by restoring serum estradiol and follicle stimulating hormone levels, besides, rescuing the fertility outcomes of irradiated rats. These events have been associated with inhibiting ovarian apoptosis (Bax/Bcl2, caspase 3) and enhancing proliferation (PCNA). Interestingly, BM-MSCs reversed the inhibition of ovarian FOXO3 expression induced by radiation which resulted in increased primordial follicles stock. Moreover, BM-MSCs recovered the suppressed folliculogenesis process induced by radiation through upregulating FOXO1, GDF-9, and Fst genes expression accompanied by downregulating TGF-β which enhanced granulosa cells proliferation and secondary follicle development. Mechanistically, BM-MSCs miRNAs epigenetically upregulate Wnt/β-catenin and Hippo signaling pathways which are implicated in ovarian follicles growth and maturation. Therefore, BM-MSCs presented a ray of hope in the treatment of radiation-associated POF through genetic and epigenetic modulation of the integrated TGF-β, Wnt/β-catenin, and Hippo pathways which control apoptosis, proliferation, and differentiation of ovarian follicles.
Collapse
|
Journal Article |
4 |
31 |
5
|
Said RS, Nada AS, El-Demerdash E. Sodium selenite improves folliculogenesis in radiation-induced ovarian failure: a mechanistic approach. PLoS One 2012; 7:e50928. [PMID: 23236409 PMCID: PMC3516513 DOI: 10.1371/journal.pone.0050928] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 10/25/2012] [Indexed: 01/14/2023] Open
Abstract
Radiotherapy is a major factor contributing to female infertility by inducing premature ovarian failure (POF). Therefore, the need for an effective radioprotective agent is evident. The present study investigated the mechanism of potential radioprotective effect of sodium selenite on radiation-induced ovarian failure and whether sodium selenite can stimulate in-vivo follicular development in experimental rats. Immature female Sprague-Dawely rats were either exposed to gamma-radiation (3.2 Gy, LD20), once and/or treated with sodium selenite (0.5 mg/kg), once daily for one week before irradiation. Follicular and oocyte development, apoptotic markers, proliferation marker as well as oxidative stress markers were assessed 24-h after irradiation. In addition, fertility assessment was performed after female rats became completely mature at two months of age. Sodium selenite significantly enhanced follicular development as compared to the irradiated group. Sodium selenite significantly reversed the oxidative stress effects of radiation that was evidenced by increasing in lipid peroxide level and decreasing in glutathione level, and glutathione peroxidase (GPx) activity. Assessment of apoptosis and cell proliferation markers revealed that caspase 3 and cytochrome c expressions markedly-increased, whereas, PCNA expression markedly-decreased in the irradiated group; in contrast, sodium selenite treatment prevented these alterations. Histopathological examination further confirmed the radioprotective efficacy of sodium selenite and its in-vivo effect on ovarian follicles’ maturation. In conclusion, sodium selenite showed a radioprotective effect and improved folliculogenesis through increasing ovarian granulosa cells proliferation, estradiol and FSH secretion, and GPx activity, whilst decreasing lipid peroxidation and oxidative stress, leading to inhibition of the apoptosis pathway through decreasing the expressions of caspase 3 and cytochrome c.
Collapse
|
Journal Article |
13 |
27 |
6
|
Said RS, Mohamed HA, Kamal MM. Coenzyme Q10 mitigates ionizing radiation-induced testicular damage in rats through inhibition of oxidative stress and mitochondria-mediated apoptotic cell death. Toxicol Appl Pharmacol 2019; 383:114780. [PMID: 31618661 DOI: 10.1016/j.taap.2019.114780] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 10/05/2019] [Accepted: 10/10/2019] [Indexed: 12/24/2022]
Abstract
Radiotherapy is a common treatment modality for cancer patients; however, its use is limited by decreasing the probability of fertility in male cancer survivors. Therefore, this study aimed to define the capability of coenzyme Q10 (CoQ10), a potent stimulator of mitochondrial function, in attenuating ionizing radiation (IR)-induced spermatogenesis impairments. Male Sprague Dawley rats were exposed to a single dose of ϒ-rays (10 Gy) and/or treated with CoQ10 (10 mg/kg, orally, for 2 consecutive weeks). IR mediated irregular seminiferous tubules, which were emerged with typical morphological characteristics of apoptosis, and nuclear condensation, while CoQ10 significantly preserved the testicular structure and maintained spermatogenesis, which was displayed by higher levels of serum estradiol and testosterone. CoQ10 remarkably augmented sperm count, motility, and viability while diminished the rate of sperm-defects relatively to their counterparts after IR exposure. CoQ10 modulations in reproductive parameters were underpinned by attenuating IR-induced oxidative stress as evidenced by decreasing lipid peroxidation and increasing the antioxidant enzymes glutathione peroxidase and glutathione-s-transferase activities, and glutathione level. Supporting the involvement of CoQ10 in the anti-apoptotic response, the reduced mRNA expression levels of p53, Puma, and Bax accompanied by the increased Bcl-2 mRNA expression were observed. Subsequently, CoQ10 ameliorated the mitochondria dependent apoptotic pathway through diminishing Bax/Bcl-2 ratio, caspase-3 protein expression, and DNA fragmentation in testes of irradiated rats. Taken together, our findings showed that CoQ10 conserved against IR-induced steroidogenesis disruption through subsiding mitochondria-mediated oxidative stress injury in germinal cells.
Collapse
|
|
6 |
18 |
7
|
Mantawy EM, Said RS, Kassem DH, Abdel-Aziz AK, Badr AM. Novel molecular mechanisms underlying the ameliorative effect of N-acetyl-L-cysteine against ϒ-radiation-induced premature ovarian failure in rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111190. [PMID: 32871518 DOI: 10.1016/j.ecoenv.2020.111190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 07/26/2020] [Accepted: 08/16/2020] [Indexed: 06/11/2023]
Abstract
Radiotherapy represents a critical component in cancer treatment. However, premature ovarian failure (POF) is a major hurdle of deleterious off-target effects in young females, which, therefore, call for an effective radioprotective agent. The present study aimed to explore the molecular mechanism underlying the protective effects of N-acetyl-L-cysteine (NAC) against γ-radiation-provoked POF. Immature female Sprague-Dawley rats were orally-administered NAC (50 mg/kg) and were exposed to a single whole-body dose of 3.2 Gy ϒ-radiation. NAC administration remarkably reversed abnormal serum estradiol and anti-Müllerian hormone levels by 73% and 40%, respectively while ameliorating the histopathological and ultrastructural alterations-triggered by γ-radiation. Mechanistically, NAC alleviated radiation-induced oxidative damage through significantly increased glutathione peroxidase activity by 102% alongside with decreasing NADPH oxidase subunits (p22 and NOX4) gene expressions by 48% and 38%, respectively compared to the irradiated untreated group. Moreover, NAC administration achieved its therapeutic effect by inhibiting ovarian apoptosis-induced by radiation through downregulating p53 and Bax levels by 33% and 16%, respectively while increasing the Bcl-2 mRNA expression by 135%. Hence, the Bax/Bcl2 ratio and cytochrome c expression were subsequently reduced leading to decreased caspase 3 activity by 43%. Importantly, the anti-apoptotic property of NAC could be attributed to inactivation of MAPK signaling molecules; p38 and JNK, and enhancement of the ovarian vascular endothelial growth factor (VEGF) expression. Taken together, our results suggest that NAC can inhibit radiotherapy-induced POF while preserving ovarian function and structure through upregulating VEGF expression and suppressing NOX4/MAPK/p53 apoptotic signaling.
Collapse
|
|
5 |
6 |
8
|
Shawki MA, Elsayed NS, Mantawy EM, Said RS. Promising drug repurposing approach targeted for cytokine storm implicated in SARS-CoV-2 complications. Immunopharmacol Immunotoxicol 2021; 43:395-409. [PMID: 34057871 PMCID: PMC8171013 DOI: 10.1080/08923973.2021.1931302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/04/2021] [Indexed: 12/16/2022]
Abstract
A global threat has emerged in 2019 due to the rapid spread of Coronavirus disease (COVID-19). As of January 2021, the number of cases worldwide reached 103 million cases and 2.22 million deaths which were confirmed as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This global pandemic galvanized the scientific community to study the causative virus (SARS-CoV2) pathogenesis, transmission, and clinical symptoms. Remarkably, the most common complication associated with this disease is the cytokine storm which is responsible for COVID-19 mortality. Thus, targeting the cytokine storm with new medications is needed to hamper COVID-19 complications where the most prominent strategy for the treatment is drug repurposing. Through this strategy, several steps are skipped especially those required for testing drug safety and thus may help in reducing the dissemination of this pandemic. Accordingly, the aim of this review is to outline the pathogenesis, clinical features, and immune complications of SARS-CoV2 in addition to suggesting several repurposed drugs with their plausible mechanism of action for possible management of severe COVID-19 cases.
Collapse
|
Review |
4 |
1 |
9
|
Abdelhamid AH, Mantawy EM, Said RS, El-Demerdash E. Neuroprotective effects of saxagliptin against radiation-induced cognitive impairment: Insights on Akt/CREB/SIRT1/BDNF signaling pathway. Toxicol Appl Pharmacol 2024; 489:116994. [PMID: 38857790 DOI: 10.1016/j.taap.2024.116994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/10/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
Radiation-induced cognitive impairment has recently fueled scientific interest with an increasing prevalence of cancer patients requiring whole brain irradiation (WBI) in their treatment algorithm. Saxagliptin (SAXA), a dipeptidyl peptidase-IV (DPP-IV) inhibitor, has exhibited competent neuroprotective effects against varied neurodegenerative disorders. Hence, this study aimed at examining the efficacy of SAXA in alleviating WBI-induced cognitive deficits. Male Sprague Dawley rats were distributed into control group, WBI group exposed to 20 Gy ϒ-radiation, SAXA group treated for three weeks with SAXA (10 mg/kg. orally, once daily), and WBI/SAXA group exposed to 20 Gy ϒ-radiation then treated with SAXA (10 mg/kg. orally, once daily). SAXA effectively reversed memory deterioration and motor dysfunction induced by 20 Gy WBI during behavioural tests and preserved normal histological architecture of the hippocampal tissues of irradiated rats. Mechanistically, SAXA inhibited WBI-induced hippocampal oxidative stress via decreasing lipid peroxidation while restoring catalase antioxidant activity. Moreover, SAXA abrogated radiation-induced hippocampal neuronal apoptosis through downregulating proapoptotic Bcl-2 Associated X-protein (Bax) and upregulating antiapoptotic B-cell lymphoma 2 (Bcl-2) expressions and eventually diminishing expression of cleaved caspase 3. Furthermore, SAXA boosted hippocampal neurogenesis by upregulating brain-derived neurotrophic factor (BDNF) expression. These valuable neuroprotective capabilities of SAXA were linked to activating protein kinase B (Akt), and cAMP-response element-binding protein (CREB) along with elevating the expression of sirtuin 1 (SIRT-1). SAXA successfully mitigated cognitive dysfunction triggered by WBI, attenuated oxidative injury, and neuronal apoptosis, and enhanced neurogenesis through switching on Akt/CREB/BDNF/SIRT-1 signaling axes. Such fruitful neurorestorative effects of SAXA provide an innovative therapeutic strategy for improving the cognitive capacity of cancer patients exposed to radiotherapy.
Collapse
|
|
1 |
|
10
|
Gamal El-Din MI, Mantawy EM, Said RS, Fahmy NM, Fayez S, Shahin MI, Nasr M, Elissawy AM, Singab ANB. Hibiscus schizopetalus boosts wound healing via restoring redox balance and hindering inflammatory responses in rats: Insights on metabolome profiling and molecular docking. Arch Pharm (Weinheim) 2024; 357:e2400392. [PMID: 39240066 DOI: 10.1002/ardp.202400392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024]
Abstract
Hibiscus species (Malvaceae) possess a plethora of appealing pharmacological activities with an extended history of customary use in diverse medical conditions. The present study aimed at comparing the metabolomic analyses of three Hibiscus species native to Egypt, namely H. tiliaceus, H. schizopetalus extract (HSE), and H. rosa-sinensis, alongside identifying a promising natural wound healing candidate. Chemical profiling of the leaf extracts was achieved via UPLC-ESI/MS/MS-guided analysis that resulted in the tentative identification of a total of 48 secondary metabolites pertaining to phenolic acids, flavonoids, anthocyanins, fatty acids, and fatty amides. Remarkably, in vitro studies revealed that HSE exhibited the topmost wound healing activity. Subsequently, HSE was formulated into hydro- and nanogel (1% w/v) formulations for further assessing its efficacy in the wound excision model. HSE-nanogel demonstrated a significant in vivo wound contraction activity alongside improving histopathological abnormalities. Mechanistically, HSE-nanogel upregulated the wound antioxidant status through increasing the levels of reduced glutathione (GSH) and catalase activity. Moreover, HSE-nanogel suppressed the wound inflammatory responses by diminishing the expressions of NF-ĸB, TNF-α, and IL-6. Molecular docking studies were performed on HSE's major constituents using CDOCKER, which further supported the in vivo findings. Collectively, HSE nanogel exhibits notable aptitude as a wound-healing agent, warranting further clinical appraisal.
Collapse
|
|
1 |
|
11
|
Mostafa F, Mantawy EM, Said RS, Azab SS, El-Demerdash E. Captopril attenuates oxidative stress and neuroinflammation implicated in cisplatin-induced cognitive deficits in rats. Psychopharmacology (Berl) 2025; 242:563-578. [PMID: 39809925 PMCID: PMC11861019 DOI: 10.1007/s00213-024-06706-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 10/18/2024] [Indexed: 01/16/2025]
Abstract
RATIONALE One of the most debilitating drawbacks of cisplatin chemotherapy is neurotoxicity which elicits memory impairment and cognitive dysfunction (chemobrain). This is primarily triggered by oxidative stress and inflammation. Captopril, an angiotensin-converting enzyme inhibitor, has been reported as a neuroprotective agent owing to its antioxidant and anti-inflammatory effects. OBJECTIVE We examined the possible neuroprotective effect of captopril against cisplatin-induced neurological and behavioral abnormalities in rats. METHODS Chemobrain was induced in rats by cisplatin (5 mg/kg, i.p.) on the 7th and 14th days of the study while captopril was administered orally (25 mg/kg) daily for three weeks. The effects of captopril were assessed by performing behavioral tests, histological examination, and evaluation of oxidative stress and inflammatory markers. RESULTS Cisplatin caused learning/memory dysfunction assessed by passive avoidance and Y-maze tests, decline in locomotion, and rotarod motor balance loss which were further verified by neurodegeneration observed in histological examination. Also, cisplatin aggravated oxidative stress by elevating lipid peroxidation (MDA) levels and diminishing catalase activity. Moreover, cisplatin upregulated the neuroinflammatory markers (TNF, IL-6, GFAP, and NF-κB). Captopril successfully ameliorated cisplatin damage on the levels of neurobehavioral and histopathological changes. Mechanistically, captopril significantly diminished MDA production and preserved catalase antioxidant activity. Captopril also counteracted neuroinflammation through inhibiting NF-κB and its downstream proinflammatory cytokines besides repressing astrocyte activity by reducing GFAP expression. CONCLUSION Our findings revealed that captopril could abrogate cisplatin neurotoxicity via reducing oxidative stress and neuroinflammation thus enhancing cognitive and behavioral performance. This could suggest the repurposing of captopril as a neuroprotective agent, especially in hypertensive cancer patients receiving cisplatin.
Collapse
|
research-article |
1 |
|
12
|
Mohamed DH, Said RS, Kassem DH, Gad AM, El-Demerdash E, Mantawy EM. Hesperidin attenuates radiation-induced ovarian failure in rats: Emphasis on TLR-4/NF-ĸB signaling pathway. Toxicol Appl Pharmacol 2024; 492:117111. [PMID: 39326792 DOI: 10.1016/j.taap.2024.117111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/09/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
Young women suffering from premature ovarian failure after radiotherapy carry a huge burden in the field of cancer therapy including reproductive loss, emotional stress, and physical troubles that reduce their long-term quality of life. Hesperidin (HSP) exhibited antioxidant, anti-inflammatory, and anti-apoptotic properties. HSP enhanced in vitro follicular maturation and preserved in vivo ovarian stockpile. In this research, the role of HSP in radiation-induced POF in rats was investigated besides ascertaining its underlying mechanisms. Female Sprague-Dawley rats were arbitrarily allocated into four groups: control-group, ϒ-irradiated-group (3.2 Gy once on the 7th day), HSP-group (100 mg/kg, orally for 10 days), and HSP/ϒ-irradiated-group (ϒ-radiation was applied one hour after HSP). At the end of experiment, the whole ovaries were collected for histological and biochemical analyses. Administration of HSP preserved the ovarian histoarchitecture and follicular stock, retained ovarian weight, and conserved serum estradiol and AMH levels following radiation exposure. HSP ameliorated the ovarian oxidative damage mediated by radiation through augmenting the activities of glutathione peroxidase, glutathione reductase, and catalase antioxidant enzymes. HSP exhibited remarkable anti-inflammatory activity by downregulating the expression of ovarian TLR-4, NF-ĸB, and TNF-α. Moreover, HSP suppressed the apoptotic machinery triggered by radiation by reducing p53 and Bax while increasing Bcl-2 mRNA expressions alongside diminishing caspase-3 expression. Additionally, HSP regulated estrous cycle disorder of irradiated rats and improved their reproductive capacity reflected by enhancing pregnancy outcomes. Therefore, HSP represents an appealing candidate as an adjunct remedy for female cancer patients during radiotherapy protocols owing to its antioxidant, anti-inflammatory, anti-apoptotic, and hormone-regulatory effects.
Collapse
|
|
1 |
|
13
|
Korany DA, Said RS, Ayoub IM, Labib RM, El-Ahmady SH, Singab ANB. Protective effects of Brownea grandiceps (Jacq.) against ϒ-radiation-induced enteritis in rats in relation to its secondary metabolome fingerprint. Biomed Pharmacother 2022; 146:112603. [PMID: 35062069 DOI: 10.1016/j.biopha.2021.112603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/24/2021] [Accepted: 12/25/2021] [Indexed: 11/30/2022] Open
Abstract
Radiation enteritis is the most common complication of radiotherapy in patients with pelvic malignancies. Thus, the radioprotective activity of the total hydro-alcoholic extract (BGE) and the ethyl acetate soluble fraction (EAF) of Brownea grandiceps leaves was evaluated against ϒ-radiation-induced enteritis in rats. (BGE) and (EAF) were characterized using HPLC-PDA-ESI-MS/MS analysis. The total phenolic and flavonoid contents were also quantified. In vivo administration of (BGE) (400 mg/kg) and (EAF) (200 & 400 mg/kg) prevented intestinal injury and maintained the mucosal integrity of irradiated rats through increasing villi length and promoting crypt regeneration. Also, (EAF) showed more potent antioxidant activity than (BGE) through reduction of MDA level and enhancement of GSH content and catalase enzyme activity. (BGE) and (EAF) down-regulated intestinal NF-κB expression leading to diminished expression of downstream inflammatory cytokine TNF-α. Moreover, (EAF) markedly reduced the expression of profibrotic marker TGF-β1. Seventy-nine compounds were tentatively identified, including flavonoids, proanthocyanidins, polar lipids and phenolic acids. (EAF) showed significantly higher total phenolic and flavonoid contents, as compared to (BGE). Results revealed remarkable radioprotective activity of (BGE) and (EAF), with significantly higher activity for (EAF). The chemical constituents of (BGE) and (EAF) strongly supported their radioprotective activity. To the best of our knowledge, the present study describes for the first time the radioprotective activity of B. grandiceps leaves in relation to its secondary metabolome fingerprint; emphasizing the great promise of B. grandiceps leaves, especially (EAF), to be used as natural radio-protective agent.
Collapse
|
|
3 |
|