1
|
Saxena J, Adhikari B, Brkljaca R, Huppertz T, Chandrapala J, Zisu B. Inter-relationship between lactose crystallization and surface free fat during storage of infant formula. Food Chem 2020; 322:126636. [PMID: 32283375 DOI: 10.1016/j.foodchem.2020.126636] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/25/2020] [Accepted: 03/17/2020] [Indexed: 01/10/2023]
Abstract
Inter-relationship between lactose crystallization (LC), the amount and composition of surface free fat (SFF); and their effect on physico-chemical properties of infant formula (IF) containing hydrolyzed and intact (non-hydrolyzed) whey protein in their composition were investigated at two temperatures (25 and 45 °C) and five RH (11-65%) conditions. Results varied with compositional variation of IF. LC increased exponentially with SFF in non-hydrolyzed IF powders. IF composition influenced LC and caused selective migration of triglycerides, resulting in higher proportion of unsaturated fats in SFF of powders with large lactose crystals and vice-versa. Increase in SFF with increased proportion of saturated fats in their composition, resulted in reduced wettability of powders. Overall, IF composition affects LC which influences the amount and type of fat migration to particle surface resulting in varying wettability of IF powders.
Collapse
|
|
5 |
20 |
2
|
Saxena J, Adhikari B, Brkljaca R, Huppertz T, Chandrapala J, Zisu B. Physicochemical properties and surface composition of infant formula powders. Food Chem 2019; 297:124967. [PMID: 31253317 DOI: 10.1016/j.foodchem.2019.124967] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 05/06/2019] [Accepted: 06/08/2019] [Indexed: 11/28/2022]
Abstract
Compositional difference in infant formula (IF) tends to influence its functionality and storage behaviour. The aim was to study the composition and physico-chemical properties of different stages of two commercial IF (A and B). Lactose crystallization measured by X-ray diffraction ranged between 2 and 32 % and was observed to decrease with increasing IF stages, which directly correlates with their composition. Scanning electron microscopy confirmed the presence of crystalline lactose which significantly (p < 0.05) increased the powder particle size. On the contrary, a negative correlation was observed between surface fat and lactose crystallization in all samples. Bulk and surface-free fat composition was significantly (p < 0.05) different for all samples. Surface free-fat analysis showed restricted presence (5-10% of surface fat) of unsaturated fatty acids (C18:1 and C18:2) in IF with higher crystalline lactose as opposed to >40% in others, suggesting a possible role of lactose crystallization in preferential migration of triglycerides to particle surface.
Collapse
|
|
6 |
13 |
3
|
Ghasemlou M, Daver F, Ivanova EP, Brkljaca R, Adhikari B. Assessment of interfacial interactions between starch and non-isocyanate polyurethanes in their hybrids. Carbohydr Polym 2020; 246:116656. [PMID: 32747288 DOI: 10.1016/j.carbpol.2020.116656] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022]
Abstract
Manufacturing of multifunctional materials through blending is a promising route for improving performance of biopolymers including starch. Non-isocyanate polyurethanes (NIPUs) are an emerging group of green materials. Understanding the mechanism of interaction between starch and NIPU not only highlights underlying chemistry but also offers an opportunity to tailor the properties and functions of starch-NIPU hybrids. We investigated the interfacial interactions between starch and NIPU to pave the way towards development of high-performance green materials. Multiple analyses revealed that NIPU interacted effectively with starch chains via intermolecular hydrogen bonds. We showed that NIPU domains can efficiently interact with the small portion of starch skeleton at interfacial region and they are only moderately miscible. Incorporation of either component above certain ratio resulted in a phase separation. This work contributes towards understanding of interfacial chemistry between starch and NIPUs and enables tailoring the interface for facile engineering of starch-NIPU hybrids.
Collapse
|
|
5 |
11 |
4
|
Saxena J, Adhikari B, Brkljaca R, Huppertz T, Zisu B, Chandrapala J. Effect of compositional variation on physico-chemical and structural changes in infant formula during storage. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2020.104957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
|
4 |
3 |
5
|
Saxena J, Adhikari B, Brkljaca R, Huppertz T, Zisu B, Chandrapala J. Influence of Lactose on the Physicochemical Properties and Stability of Infant Formula Powders: A Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1928182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
|
4 |
2 |
6
|
Brkljaca R, Dahse HM, Voigt K, Urban S. Antimicrobial Evaluation of the Constituents Isolated From Macropidia fuliginosa (Hook.) Druce. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19884411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Six compounds previously isolated and reported from Macropidia fuliginosa were evaluated for antimicrobial activity against 11 different microbial strains, with all compounds displaying broad spectrum activity. In addition, the compounds were also assessed for their antiproliferative activity and cytotoxicity. Further investigation of M. fuliginosa has led to the discovery of a previously described acenaphthylenediol from the bulbs of the plant.
Collapse
|
|
6 |
2 |
7
|
Saxena J, Adhikari B, Brkljaca R, Huppertz T, Zisu B, Chandrapala J. Influence of lactose pre-crystallization on the storage stability of infant formula powder containing lactose and maltodextrin. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
|
4 |
1 |
8
|
Ali I, Jupp B, Hudson MR, Major B, Silva J, Yamakawa GR, Casillas-Espinosa PM, Braine E, Thergarajan P, Haskali MB, Vivash L, Brkljaca R, Shultz SR, Kwan P, Fukushima K, Sachdev P, Cheng JY, Mychasiuk R, Jones NC, Wright DK, OBrien TJ. In vivo biomarkers of GABAergic function in epileptic rats treated with the GAT-1 inhibitor E2730. Epilepsia 2024; 65:3376-3390. [PMID: 39302665 DOI: 10.1111/epi.18119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/22/2024]
Abstract
OBJECTIVE E2730, an uncompetitive γ-aminobutyric acid (GABA) transporter-1 (GAT-1) inhibitor, has potent anti-seizure effects in a rodent model of chronic temporal lobe epilepsy, the kainic acid status epilepticus (KASE) rat model. In this study, we examined purported neuroimaging and physiological surrogate biomarkers of the effect of E2730 on brain GABAergic function. METHODS We conducted a randomized cross-over study, incorporating 1-week treatments with E2730 (100 mg/kg/day subcutaneous infusion) or vehicle in epileptic post-KASE rats. KASE rats underwent serial 9.4 T magnetic resonance spectroscopy (MRS) measuring GABA and other brain metabolites, [18F]Flumazenil positron emission tomography (PET) quantifying GABAA receptor availability, quantitative electroencephalography (qEEG) and transcranial magnetic stimulation (TMS)-mediated motor activity, as well as continuous video-EEG recording to measure spontaneous seizures during each treatment. Age-matched, healthy control animals treated with E2730 or vehicle were also studied. RESULTS E2730 treatment significantly reduced spontaneous seizures, with 8 of 11 animals becoming seizure-free. MRS revealed that E2730-treated animals had significantly reduced taurine levels. [18F]Flumazenil PET imaging revealed no changes in GABA receptor affinity or density during E2730 treatment. The power of gamma frequency oscillations in the EEG was decreased significantly in the auditory cortex and hippocampus of KASE and control rats during E2730 treatment. Auditory evoked gamma frequency power was enhanced by E2730 treatment in the auditory cortex of KASE and healthy controls, but only in the hippocampus of KASE rats. E2730 did not influence motor evoked potentials triggered by TMS. SIGNIFICANCE This study identified clinically relevant changes in multimodality imaging and functional purported biomarkers of GABAergic activity during E2730 treatment in epileptic and healthy control animals. These biomarkers could be utilized in clinical trials of E2730 and potentially other GABAergic drugs to provide surrogate endpoints, thereby reducing the cost of such trials.
Collapse
|
|
1 |
|
9
|
O'Brien WT, Wright DK, van Emmerik ALJJ, Bain J, Brkljaca R, Christensen J, Yamakawa GR, Chen Z, Giesler LP, Sun M, O'Brien TJ, Monif M, Shultz SR, McDonald SJ. Serum neurofilament light as a biomarker of vulnerability to a second mild traumatic brain injury. Transl Res 2022; 255:77-84. [PMID: 36402367 DOI: 10.1016/j.trsl.2022.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 11/19/2022]
Abstract
A second mild traumatic brain injury (mTBI) sustained prior to neuropathological recovery can lead to exacerbated effects. Without objective indicators of this neuropathology, individuals may return to activities at risk of mTBI when their brain is still vulnerable. With axonal injury recognized as a neuropathological hallmark of mTBI, we hypothesized that serum levels of neurofilament light (NfL), a highly sensitive biomarker of axonal injury, may be predictive of vulnerability to worse outcomes in the event of a second mTBI. Given this hypothesis is difficult to test clinically, we used a two-hit model of mTBI in rats and staggered inter-injury intervals by 1-, 3-, 7-, or 14-days. Repeat-mTBI rats were dichotomized into NfLhigh (NfL>median at the time of re-injury) and NfLlow (NfL<median) groups, with behavior and NfL levels analyzed throughout the 28-days, followed by ex vivo diffusion tensor imaging. NfL levels at the time of the second mTBI were found to be predictive of vulnerability to re-injury, with NfLhigh rats displaying more neurological signs and a greater potentiation of NfL levels after the second mTBI. Importantly, this potentiation phenomenon remained even when limiting analyses to rats with longer inter-injury intervals, providing evidence that vulnerability to re-injury may not be exclusively dependent on inter-injury interval. Finally, NfL levels correlated with, and were predictive of, the severity of neurological signs following the second mTBI. These findings provide evidence that measurement of NfL during mTBI recovery may be reflective of the vulnerability to a second mTBI, and as such may have utility to assist return to sport, duty and work decisions.
Collapse
|
|
3 |
|
10
|
Lee NT, Savvidou I, Selan C, Wright DK, Brkljaca R, Chia JSJ, Calvello I, Craenmehr DDD, Larsson P, Tarlac V, Vuong A, Carmichael I, Wang X, Peter K, Robson SC, Nandurkar HH, Sashindranath M. Endothelial -targeted CD39 is protective in a mouse model of global forebrain ischaemia. J Neuroinflammation 2025; 22:115. [PMID: 40259346 PMCID: PMC12013200 DOI: 10.1186/s12974-025-03394-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 02/21/2025] [Indexed: 04/23/2025] Open
Abstract
Global ischemic brain injury occurs after cardiac arrest or prolonged hypotensive episodes following surgery or trauma. It causes significant neurological deficits even after successful re-establishment of blood flow. It is the primary cause of death in 68% of inpatient and 23% of out-of-hospital cardiac arrest cases, but there are currently no treatments. Endothelial activation and dysfunction impairing small vessel blood flow is the cause of brain damage. Purinergic signaling is an endogenous molecular pathway, where CD39 and CD73 catabolize extracellular adenosine triphosphate (eATP) to adenosine. After ischemia, eATP is released, triggering thrombosis and inflammation. In contrast, adenosine is anti-thrombotic, protects against oxidative stress, and suppresses the immune response. Our group developed a bifunctional compound - anti-VCAM-CD39 that targets the dysregulated endothelium and promotes adenosine generation at the infarct site, localising the antithrombotic and anti-inflammatory effects of CD39. We investigated whether anti-VCAM-CD39 could improve outcome in a murine model of global ischaemia caused by dual carotid artery ligation (DCAL). Test drugs anti-VCAM-CD39 and controls were given 3 h after 30 min ischaemia. Assessments at 24 h included neurological function, infarct volume, perfusion, and albumin extravasation to assess blood-brain barrier (BBB) permeability. We showed that there was an overall improvement in neurological deficit in anti-VCAM-CD39-treated mice after DCAL. MRI revealed that these mice had significantly smaller infarcts and reduced apoptotic activity on the side of permanent occlusion, compared to saline treated mice. There was reduced albumin extravasation in treated mice after DCAL, suggesting anti-VCAM-CD39 conferred neuroprotection in the brain through preservation of BBB permeability. In vitro findings confirmed that anti-VCAM-CD39-mediated adenosine production protected against hypoxia-induced endothelial cell death. anti-VCAM-CD39 is a novel therapeutic that can promote neuroprotection, reduce tissue damage and inflammation after hypoxic brain injury in mice. These findings suggest that anti-VCAM-CD39 could be a new avenue of cardiac arrest therapy and could potentially be used in other cerebrovascular diseases where endothelial dysfunction is a constant underlying pathology.
Collapse
|
research-article |
1 |
|
11
|
Lee NT, Savvidou I, Selan C, Calvello I, Vuong A, Wright DK, Brkljaca R, Willcox A, Chia JSJ, Wang X, Peter K, Robson SC, Medcalf RL, Nandurkar HH, Sashindranath M. Development of endothelial-targeted CD39 as a therapy for ischemic stroke. J Thromb Haemost 2024; 22:2331-2344. [PMID: 38754782 DOI: 10.1016/j.jtha.2024.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/11/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Ischemic stroke is characterized by a necrotic lesion in the brain surrounded by an area of dying cells termed the penumbra. Salvaging the penumbra either with thrombolysis or mechanical retrieval is the cornerstone of stroke management. At-risk neuronal cells release extracellular adenosine triphosphate, triggering microglial activation and causing a thromboinflammatory response, culminating in endothelial activation and vascular disruption. This is further aggravated by ischemia-reperfusion injury that follows all reperfusion therapies. The ecto-enzyme CD39 regulates extracellular adenosine triphosphate by hydrolyzing it to adenosine, which has antithrombotic and anti-inflammatory properties and reverses ischemia-reperfusion injury. OBJECTIVES The objective off the study was to determine the efficacy of our therapeutic, anti-VCAM-CD39 in ischaemic stroke. METHODS We developed anti-VCAM-CD39 that targets the antithrombotic and anti-inflammatory properties of recombinant CD39 to the activated endothelium of the penumbra by binding to vascular cell adhesion molecule (VCAM)-1. Mice were subjected to 30 minutes of middle cerebral artery occlusion and analyzed at 24 hours. Anti-VCAM-CD39 or control agents (saline, nontargeted CD39, or anti-VCAM-inactive CD39) were given at 3 hours after middle cerebral artery occlusion. RESULTS Anti-VCAM-CD39 treatment reduced neurologic deficit; magnetic resonance imaging confirmed significantly smaller infarcts together with an increase in cerebrovascular perfusion. Anti-VCAM-CD39 also restored blood-brain barrier integrity and reduced microglial activation. Coadministration of anti-VCAM-CD39 with thrombolytics (tissue plasminogen activator [tPA]) further reduced infarct volumes and attenuated blood-brain barrier permeability with no associated increase in intracranial hemorrhage. CONCLUSION Anti-VCAM-CD39, uniquely targeted to endothelial cells, could be a new stroke therapy even when administered 3 hours postischemia and may further synergize with thrombolytic therapy to improve stroke outcomes.
Collapse
|
|
1 |
|