1
|
Chan NC, Salazar AM, Pham AH, Sweredoski MJ, Kolawa NJ, Graham RLJ, Hess S, Chan DC. Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy. Hum Mol Genet 2011; 20:1726-37. [PMID: 21296869 PMCID: PMC3071670 DOI: 10.1093/hmg/ddr048] [Citation(s) in RCA: 791] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Parkin, an E3 ubiquitin ligase implicated in Parkinson's disease, promotes degradation of dysfunctional mitochondria by autophagy. Using proteomic and cellular approaches, we show that upon translocation to mitochondria, Parkin activates the ubiquitin–proteasome system (UPS) for widespread degradation of outer membrane proteins. This is evidenced by an increase in K48-linked polyubiquitin on mitochondria, recruitment of the 26S proteasome and rapid degradation of multiple outer membrane proteins. The degradation of proteins by the UPS occurs independently of the autophagy pathway, and inhibition of the 26S proteasome completely abrogates Parkin-mediated mitophagy in HeLa, SH-SY5Y and mouse cells. Although the mitofusins Mfn1 and Mfn2 are rapid degradation targets of Parkin, we find that degradation of additional targets is essential for mitophagy. These results indicate that remodeling of the mitochondrial outer membrane proteome is important for mitophagy, and reveal a causal link between the UPS and autophagy, the major pathways for degradation of intracellular substrates.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
791 |
2
|
Pierce NW, Lee JE, Liu X, Sweredoski MJ, Graham RLJ, Larimore EA, Rome M, Zheng N, Clurman BE, Hess S, Shan SO, Deshaies RJ. Cand1 promotes assembly of new SCF complexes through dynamic exchange of F box proteins. Cell 2013; 153:206-15. [PMID: 23453757 DOI: 10.1016/j.cell.2013.02.024] [Citation(s) in RCA: 206] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/24/2013] [Accepted: 02/12/2013] [Indexed: 11/29/2022]
Abstract
The modular SCF (Skp1, cullin, and F box) ubiquitin ligases feature a large family of F box protein substrate receptors that enable recognition of diverse targets. However, how the repertoire of SCF complexes is sustained remains unclear. Real-time measurements of formation and disassembly indicate that SCF(Fbxw7) is extraordinarily stable, but, in the Nedd8-deconjugated state, the cullin-binding protein Cand1 augments its dissociation by one-million-fold. Binding and ubiquitylation assays show that Cand1 is a protein exchange factor that accelerates the rate at which Cul1-Rbx1 equilibrates with multiple F box protein-Skp1 modules. Depletion of Cand1 from cells impedes recruitment of new F box proteins to pre-existing Cul1 and profoundly alters the cellular landscape of SCF complexes. We suggest that catalyzed protein exchange may be a general feature of dynamic macromolecular machines and propose a hypothesis for how substrates, Nedd8, and Cand1 collaborate to regulate the cellular repertoire of SCF complexes.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
206 |
3
|
Lee JE, Sweredoski MJ, Graham RLJ, Kolawa NJ, Smith GT, Hess S, Deshaies RJ. The steady-state repertoire of human SCF ubiquitin ligase complexes does not require ongoing Nedd8 conjugation. Mol Cell Proteomics 2010; 10:M110.006460. [PMID: 21169563 PMCID: PMC3098594 DOI: 10.1074/mcp.m110.006460] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human genome encodes 69 different F-box proteins (FBPs), each of which can potentially assemble with Skp1-Cul1-RING to serve as the substrate specificity subunit of an SCF ubiquitin ligase complex. SCF activity is switched on by conjugation of the ubiquitin-like protein Nedd8 to Cul1. Cycles of Nedd8 conjugation and deconjugation acting in conjunction with the Cul1-sequestering factor Cand1 are thought to control dynamic cycles of SCF assembly and disassembly, which would enable a dynamic equilibrium between the Cul1-RING catalytic core of SCF and the cellular repertoire of FBPs. To test this hypothesis, we determined the cellular composition of SCF complexes and evaluated the impact of Nedd8 conjugation on this steady-state. At least 42 FBPs assembled with Cul1 in HEK 293 cells, and the levels of Cul1-bound FBPs varied by over two orders of magnitude. Unexpectedly, quantitative mass spectrometry revealed that blockade of Nedd8 conjugation led to a modest increase, rather than a decrease, in the overall level of most SCF complexes. We suggest that multiple mechanisms including FBP dissociation and turnover cooperate to maintain the cellular pool of SCF ubiquitin ligases.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
50 |
4
|
Jang KS, Sweredoski MJ, Graham RLJ, Hess S, Clemons WM. Comprehensive proteomic profiling of outer membrane vesicles from Campylobacter jejuni. J Proteomics 2013; 98:90-8. [PMID: 24382552 DOI: 10.1016/j.jprot.2013.12.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 12/05/2013] [Accepted: 12/17/2013] [Indexed: 10/25/2022]
Abstract
UNLABELLED Gram-negative bacteria constitutively release outer membrane vesicles (OMVs) during cell growth that play significant roles in bacterial survival, virulence and pathogenesis. In this study, comprehensive proteomic analysis of OMVs from a human gastrointestinal pathogen Campylobacter jejuni NCTC11168 was performed using high-resolution mass spectrometry. The OMVs of C. jejuni NCTC11168 were isolated from culture supernatants then characterized using electron microscopy and dynamic light scattering revealing spherical OMVs of an average diameter of 50nm. We then identified 134 vesicular proteins using high-resolution LTQ-Orbitrap mass spectrometry. Subsequent functional analysis of the genes revealed the relationships of the vesicular proteins. Furthermore, known N-glycoproteins were identified from the list of the vesicular proteome, implying the potential role of the OMVs as a delivery means for biologically relevant bacterial glycoproteins. These results enabled us to elucidate the overall proteome profile of pathogenic bacterium C. jejuni and to speculate on the function of OMVs in bacterial infections and communication. BIOLOGICAL SIGNIFICANCE This work demonstrates the importance of understanding vesicular proteomes from a human pathogen Campylobacter jejuni. From the secreted outer membrane vesicles (OMVs) of C. jejuni NCTC11168, we found a variety of virulence factors and essential proteins for bacterial survival. Bioinformatics analysis of these proteins predicted functional enrichment and localization. The most highly enriched were redox enzymes, which are considered to be essential for survival in oxygen-limiting environments and are predicted to be on the twin-arginine translocation (Tat) pathway suggesting a role for this pathway in the biogenesis of OMVs. This study additionally implicates a biological role for N-linked glycoproteins in OMVs. These approaches allow for a better understanding of the physiology of this important human pathogen.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
46 |
5
|
Jain S, Graham C, Graham RLJ, McMullan G, Ternan NG. Quantitative proteomic analysis of the heat stress response in Clostridium difficile strain 630. J Proteome Res 2011; 10:3880-90. [PMID: 21786815 DOI: 10.1021/pr200327t] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Clostridium difficile is a serious nosocomial pathogen whose prevalence worldwide is increasing. Postgenomic technologies can now be deployed to develop understanding of the evolution and diversity of this important human pathogen, yet little is known about the adaptive ability of C. difficile. We used iTRAQ labeling and 2D-LC-MS/MS driven proteomics to investigate the response of C. difficile 630 to a mild, but clinically relevant, heat stress. A statistically validated list of 447 proteins to which functional roles were assigned was generated, allowing reconstruction of central metabolic pathways including glycolysis, γ-aminobutyrate metabolism, and peptidoglycan biosynthesis. Some 49 proteins were significantly modulated under heat stress: classical heat shock proteins including GroEL, GroES, DnaK, Clp proteases, and HtpG were up-regulated in addition to several stress inducible rubrerythrins and proteins associated with protein modification, such as prolyl isomerases and proline racemase. The flagellar filament protein, FliC, was down-regulated, possibly as an energy conservation measure, as was the SecA1 preprotein translocase. The up-regulation of hydrogenases and various oxidoreductases suggests that electron flux across these pools of enzymes changes under heat stress. This work represents the first comparative proteomic analysis of the heat stress response in C. difficile strain 630, complementing the existing proteomics data sets and the single microarray comparative analysis of stress response. Thus we have a benchmark proteome for this pathogen, leading to a deeper understanding of its physiology and metabolism informed by the unique functional and adaptive processes used during a temperature upshift mimicking host pyrexia.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
45 |
6
|
Kolawa N, Sweredoski MJ, Graham RLJ, Oania R, Hess S, Deshaies RJ. Perturbations to the ubiquitin conjugate proteome in yeast δubx mutants identify Ubx2 as a regulator of membrane lipid composition. Mol Cell Proteomics 2013; 12:2791-803. [PMID: 23793018 PMCID: PMC3790291 DOI: 10.1074/mcp.m113.030163] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Yeast Cdc48 (p97/VCP in human cells) is a hexameric AAA ATPase that is thought to use ATP hydrolysis to power the segregation of ubiquitin-conjugated proteins from tightly bound partners. Current models posit that Cdc48 is linked to its substrates through adaptor proteins, including a family of seven proteins (13 in human) that contain a Cdc48-binding UBX domain. However, few substrates for specific UBX proteins are known, and hence the generality of this hypothesis remains untested. Here, we use mass spectrometry to identify ubiquitin conjugates that accumulate in cdc48 and ubx mutants. Different ubx mutants exhibit unique patterns of conjugate accumulation that point to functional specialization of individual Ubx proteins. To validate our findings, we examined in detail the endoplasmic reticulum-bound transcription factor Spt23, which we identified as a putative Ubx2 substrate. Mutant ubx2Δ cells are deficient in both cleaving the ubiquitinated 120 kDa precursor of Spt23 to form active p90 and in localizing p90 to the nucleus, resulting in reduced expression of the target gene OLE1, which encodes fatty acid desaturase. Our findings provide a resource for future investigations on Cdc48, illustrate the utility of proteomics to identify ligands for specific ubiquitin receptor pathways, and uncover Ubx2 as a key player in the regulation of membrane lipid biosynthesis.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
25 |
7
|
Haines DS, Lee JE, Beauparlant SL, Kyle DB, den Besten W, Sweredoski MJ, Graham RLJ, Hess S, Deshaies RJ. Protein interaction profiling of the p97 adaptor UBXD1 points to a role for the complex in modulating ERGIC-53 trafficking. Mol Cell Proteomics 2012; 11:M111.016444. [PMID: 22337587 DOI: 10.1074/mcp.m111.016444] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
UBXD1 is a member of the poorly understood subfamily of p97 adaptors that do not harbor a ubiquitin association domain or bind ubiquitin-modified proteins. Of clinical importance, p97 mutants found in familial neurodegenerative conditions Inclusion Body Myopathy Paget's disease of the bone and/or Frontotemporal Dementia and Amyotrophic Lateral Sclerosis are defective at interacting with UBXD1, indicating that functions regulated by a p97-UBXD1 complex are altered in these diseases. We have performed liquid chromatography-mass spectrometric analysis of UBXD1-interacting proteins to identify pathways in which UBXD1 functions. UBXD1 displays prominent association with ERGIC-53, a hexameric type I integral membrane protein that functions in protein trafficking. The UBXD1-ERGIC-53 interaction requires the N-terminal 10 residues of UBXD1 and the C-terminal cytoplasmic 12 amino acid tail of ERGIC-53. Use of p97 and E1 enzyme inhibitors indicate that complex formation between UBXD1 and ERGIC-53 requires the ATPase activity of p97, but not ubiquitin modification. We also performed SILAC-based quantitative proteomic profiling to identify ERGIC-53 interacting proteins. This analysis identified known (e.g. COPI subunits) and novel (Rab3GAP1/2 complex involved in the fusion of vesicles at the cell membrane) interactions that are also mediated through the C terminus of the protein. Immunoprecipitation and Western blotting analysis confirmed the proteomic interaction data and it also revealed that an UBXD1-Rab3GAP association requires the ERGIC-53 binding domain of UBXD1. Localization studies indicate that UBXD1 modules the sub-cellular trafficking of ERGIC-53, including promoting movement to the cell membrane. We propose that p97-UBXD1 modulates the trafficking of ERGIC-53-containing vesicles by controlling the interaction of transport factors with the cytoplasmic tail of ERGIC-53.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
24 |
8
|
Graham RLJ, Pollock CE, O'Loughlin SN, Ternan NG, Weatherly DB, Tarleton RL, McMullan G. Multidimensional analysis of the insoluble sub-proteome ofOceanobacillus iheyensis HTE831, an alkaliphilic and halotolerant deep-sea bacterium isolated from the Iheya ridge. Proteomics 2007; 7:82-91. [PMID: 17146838 DOI: 10.1002/pmic.200600665] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We report the first proteomic analysis of the insoluble sub-proteome of the alkaliphilic and halotolerant deep-sea bacterium Oceanobacillus iheyensis HTE831. A multidimensional gel-based and gel-free analysis was utilised and a total of 4352 peptides were initially identified by automated MS/MS identification software. Automated curation of this list using PROVALT reduced our peptide list to 467 uniquely identified peptides that resulted in the positive identification of 153 proteins. These identified proteins were functionally classified and physiochemically characterised. Of 26 proteins identified as hypothetical conserved, we have assigned function to all but four. A total of 41 proteins were predicted to possess signal peptides. In silico investigation of these proteins allowed us to identify three of the five bacterial classes of signal peptide, namely: (i) twin-arginine translocation; (ii) Sec-type and (iii) lipoprotein transport. Our proteomic strategy has also allowed us to identify, at neutral pH, a number of proteins described previously as belonging to two putative transport systems believed to be of importance in the alkaliphilic adaptation of O. iheyensis HTE831.
Collapse
|
|
18 |
20 |
9
|
Honarpour N, Rose CM, Brumbaugh J, Anderson J, Graham RLJ, Sweredoski MJ, Hess S, Coon JJ, Deshaies RJ. F-box protein FBXL16 binds PP2A-B55α and regulates differentiation of embryonic stem cells along the FLK1+ lineage. Mol Cell Proteomics 2014; 13:780-91. [PMID: 24390425 PMCID: PMC3945908 DOI: 10.1074/mcp.m113.031765] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The programmed formation of specific tissues from embryonic stem cells is a major goal of regenerative medicine. To identify points of intervention in cardiac tissue formation, we performed an siRNA screen in murine embryonic stem cells to identify ubiquitin system genes that repress cardiovascular tissue formation. Our screen uncovered an F-box protein, Fbxl16, as a repressor of one of the earliest steps in the cardiogenic lineage: FLK1+ progenitor formation. Whereas F-box proteins typically form SCF ubiquitin ligases, shotgun mass spectrometry revealed that FBXL16 instead binds protein phosphatase 2A (PP2A) containing a B55 specificity subunit (PP2A(B55)). Phosphoproteomic analyses indicate that FBXL16 negatively regulates phosphorylation of the established PP2A(B55) substrate, vimentin. We suggest that FBXL16 negatively regulates the activity of B55α-PP2A to modulate the genesis of FLK1+ progenitor cells.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
20 |
10
|
Russell MR, Graham C, D'Amato A, Gentry-Maharaj A, Ryan A, Kalsi JK, Whetton AD, Menon U, Jacobs I, Graham RLJ. Diagnosis of epithelial ovarian cancer using a combined protein biomarker panel. Br J Cancer 2019; 121:483-489. [PMID: 31388184 PMCID: PMC6738042 DOI: 10.1038/s41416-019-0544-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 07/04/2019] [Accepted: 07/18/2019] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND An early detection tool for EOC was constructed from analysis of biomarker expression data from serum collected during the UKCTOCS. METHODS This study included 49 EOC cases (19 Type I and 30 Type II) and 31 controls, representing 482 serial samples spanning seven years pre-diagnosis. A logit model was trained by analysis of dysregulation of expression data of four putative biomarkers, (CA125, phosphatidylcholine-sterol acyltransferase, vitamin K-dependent protein Z and C-reactive protein); by scoring the specificity associated with dysregulation from the baseline expression for each individual. RESULTS The model is discriminatory, passes k-fold and leave-one-out cross-validations and was further validated in a Type I EOC set. Samples were analysed as a simulated annual screening programme, the algorithm diagnosed cases with >30% PPV 1-2 years pre-diagnosis. For Type II cases (~80% were HGS) the algorithm classified 64% at 1 year and 28% at 2 years tDx as severe. CONCLUSIONS The panel has the potential to diagnose EOC one-two years earlier than current diagnosis. This analysis provides a tangible worked example demonstrating the potential for development as a screening tool and scrutiny of its properties. Limits on interpretation imposed by the number of samples available are discussed.
Collapse
|
Randomized Controlled Trial |
6 |
19 |
11
|
Malerod H, Graham RLJ, Sweredoski MJ, Hess S. Comprehensive Profiling of N-Linked Glycosylation Sites in HeLa Cells Using Hydrazide Enrichment. J Proteome Res 2012. [PMID: 23205564 DOI: 10.1021/pr300859k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
|
13 |
18 |
12
|
Abstract
Mass spectrometry based proteomics is now widely used in the microbial sciences. In conjunction with transcriptomics it has greatly enhanced the field of microbial biology and has provide microbiologists with unparalleled insights into cellular processes and functions. Proteomics allows the dynamic nature of the entire protein network to be mapped providing a deeper understanding of microbial systems, their evolution and role in disease states. This review is intended to provide an overview of mass spectrometry and its application to the field of microbial proteomics. Background is provided on the core mass analyzers, including the Orbitrap mass spectrometer, and novel fragmentation processes such as Electron Transfer Dissociation which leave post-translational modifications intact on peptide backbones allowing for their identification and localization. The review will also provide information on current key quantitative technologies and the state of the art in microbial metaproteomics.
Collapse
|
Review |
14 |
17 |
13
|
Zhang D, Sweredoski MJ, Graham RLJ, Hess S, Shan SO. Novel proteomic tools reveal essential roles of SRP and importance of proper membrane protein biogenesis. Mol Cell Proteomics 2011; 11:M111.011585. [PMID: 22030350 DOI: 10.1074/mcp.m111.011585] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The signal recognition particle (SRP), which mediates cotranslational protein targeting to cellular membranes, is universally conserved and essential for bacterial and mammalian cells. However, the current understanding of the role of SRP in cell physiology and pathology is still poor, and the reasons behind its essential role in cell survival remain unclear. Here, we systematically analyzed the consequences of SRP loss in E. coli using time-resolved quantitative proteomic analyses. A series of snapshots of the steady-state and newly synthesized proteome unveiled three stages of cellular responses to SRP depletion, and demonstrated essential roles of SRP in metabolism, membrane potential, and protein and energy homeostasis in both the membrane and cytoplasm. We also identified a group of periplasmic proteins, including key molecular chaperones, whose localization was impaired by the loss of SRP; this and additional results showed that SRP is crucial for protein homeostasis in the bacterial envelope. These results reveal the extensive roles that SRP plays in bacterial physiology, emphasize the importance of proper membrane protein biogenesis, and demonstrate the ability of time-resolved quantitative proteomic analysis to provide new biological insights.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
15 |
14
|
Ternan NG, Jain S, Graham RLJ, McMullan G. Semiquantitative analysis of clinical heat stress in Clostridium difficile strain 630 using a GeLC/MS workflow with emPAI quantitation. PLoS One 2014; 9:e88960. [PMID: 24586458 PMCID: PMC3933415 DOI: 10.1371/journal.pone.0088960] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 01/16/2014] [Indexed: 12/11/2022] Open
Abstract
Clostridium difficile is considered to be the most frequent cause of infectious bacterial diarrhoea in hospitals worldwide yet its adaptive ability remains relatively uncharacterised. Here, we used GeLC/MS and the exponentially modified protein abundance index (emPAI) calculation to determine proteomic changes in response to a clinically relevant heat stress. Reproducibility between both biological and technical replicates was good, and a 37°C proteome of 224 proteins was complemented by a 41°C proteome of 202 proteins at a 1% false discovery rate. Overall, 236 C. difficile proteins were identified and functionally categorised, of which 178 were available for comparative purposes. A total of 65 proteins (37%) were modulated by 1.5-fold or more at 41°C compared to 37°C and we noted changes in the majority of proteins associated with amino acid metabolism, including upregulation of the reductive branch of the leucine fermentation pathway. Motility was reduced at 41°C as evidenced by a 2.7 fold decrease in the flagellar filament protein, FliC, and a global increase in proteins associated with detoxification and adaptation to atypical conditions was observed, concomitant with decreases in proteins mediating transcriptional elongation and the initiation of protein synthesis. Trigger factor was down regulated by almost 5-fold. We propose that under heat stress, titration of the GroESL and dnaJK/grpE chaperones by misfolded proteins will, in the absence of trigger factor, prevent nascent chains from emerging efficiently from the ribosome causing translational stalling and also an increase in secretion. The current work has thus allowed development of a heat stress model for the key cellular processes of protein folding and export.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
14 |
15
|
O'Loughlin SN, Graham RLJ, McMullan G, Ternan NG. A role for carbon catabolite repression in the metabolism of phosphonoacetate byAgromyces fucosusVs2. FEMS Microbiol Lett 2006; 261:133-40. [PMID: 16842370 DOI: 10.1111/j.1574-6968.2006.00344.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
A strain of Agromyces fucosus, designated Vs2, metabolized a range of organophosphonate compounds as sole phosphorus sources for growth and metabolized phosphonoacetate as a sole carbon, energy and phosphorus source for growth. With phosphonoacetate as the sole phosphorus source and a pyruvate carbon source, transient phosphate release to the medium was observed, in contrast to cultures grown with glucose and phosphonoacetate, where no phosphate release to the medium was observed. Carbon catabolite repression, specifically by means of inducer exclusion of phosphonoacetate, was proposed as the mechanism responsible, and phosphonoacetate hydrolase enzyme assays carried out on cell extracts confirmed that induced phosphonoacetate hydrolase activities were indeed higher in cells grown on pyruvate with phosphonoacetate as sole phosphorus source. This phenomenon has not previously been demonstrated in vivo, and must represent a significant metabolic control of organophosphonate metabolism. The catabolite repression phenomenon was also evident when A. fucosus grew on 2-aminoethylphosphonate as sole phosphorus source, allowing demonstration of a third mode of control for biodegradation of this compound. Excision of stained zymogram gel pieces, followed by tryptic digestion and mass spectrometric analysis, allowed the identification of phosphonoacetate hydrolase-derived peptides.
Collapse
|
|
19 |
11 |
16
|
Graham RLJ, McMullen AA, Moore G, Dempsey-Hibbert NC, Myers B, Graham C. SWATH-MS identification of CXCL7, LBP, TGFβ1 and PDGFRβ as novel biomarkers in human systemic mastocytosis. Sci Rep 2022; 12:5087. [PMID: 35332176 PMCID: PMC8948255 DOI: 10.1038/s41598-022-08345-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/07/2022] [Indexed: 12/11/2022] Open
Abstract
Mastocytosis is a rare myeloproliferative disease, characterised by accumulation of neoplastic mast cells in one or several organs. It presents as cutaneous or systemic. Patients with advanced systemic mastocytosis have a median survival of 3.5 years. The aetiology of mastocytosis is poorly understood, patients present with a broad spectrum of varying clinical symptoms that lack specificity to point clearly to a definitive diagnosis. Discovery of novel blood borne biomarkers would provide a tractable method for rapid identification of mastocytosis and its sub-types. Moving towards this goal, we carried out a clinical biomarker study on blood from twenty individuals (systemic mastocytosis: n = 12, controls: n = 8), which were subjected to global proteome investigation using the novel technology SWATH-MS. This identified several putative biomarkers for systemic mastocytosis. Orthogonal validation of these putative biomarkers was achieved using ELISAs. Utilising this workflow, we identified and validated CXCL7, LBP, TGFβ1 and PDGF receptor-β as novel biomarkers for systemic mastocytosis. We demonstrate that CXCL7 correlates with neutrophil count offering a new insight into the increased prevalence of anaphylaxis in mastocytosis patients. Additionally, demonstrating the utility of SWATH-MS for the discovery of novel biomarkers in the systemic mastocytosis diagnostic sphere.
Collapse
|
|
3 |
6 |
17
|
Irvine A, McKenzie D, McCoy CJ, Graham RLJ, Graham C, Huws SA, Atkinson LE, Mousley A. Novel integrated computational AMP discovery approaches highlight diversity in the helminth AMP repertoire. PLoS Pathog 2023; 19:e1011508. [PMID: 37523405 PMCID: PMC10414684 DOI: 10.1371/journal.ppat.1011508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 08/10/2023] [Accepted: 06/23/2023] [Indexed: 08/02/2023] Open
Abstract
Antimicrobial Peptides (AMPs) are immune effectors that are key components of the invertebrate innate immune system providing protection against pathogenic microbes. Parasitic helminths (phylum Nematoda and phylum Platyhelminthes) share complex interactions with their hosts and closely associated microbiota that are likely regulated by a diverse portfolio of antimicrobial immune effectors including AMPs. Knowledge of helminth AMPs has largely been derived from nematodes, whereas the flatworm AMP repertoire has not been described. This study highlights limitations in the homology-based approaches, used to identify putative nematode AMPs, for the characterisation of flatworm AMPs, and reveals that innovative algorithmic AMP prediction approaches provide an alternative strategy for novel helminth AMP discovery. The data presented here: (i) reveal that flatworms do not encode traditional lophotrochozoan AMP groups (Big Defensin, CSαβ peptides and Myticalin); (ii) describe a unique integrated computational pipeline for the discovery of novel helminth AMPs; (iii) reveal >16,000 putative AMP-like peptides across 127 helminth species; (iv) highlight that cysteine-rich peptides dominate helminth AMP-like peptide profiles; (v) uncover eight novel helminth AMP-like peptides with diverse antibacterial activities, and (vi) demonstrate the detection of AMP-like peptides from Ascaris suum biofluid. These data represent a significant advance in our understanding of the putative helminth AMP repertoire and underscore a potential untapped source of antimicrobial diversity which may provide opportunities for the discovery of novel antimicrobials. Further, unravelling the role of endogenous worm-derived antimicrobials and their potential to influence host-worm-microbiome interactions may be exploited for the development of unique helminth control approaches.
Collapse
|
research-article |
2 |
|
18
|
Sweredoski MJ, Smith GT, Kalli A, Graham RLJ, Hess S. LogViewer: a software tool to visualize quality control parameters to optimize proteomics experiments using Orbitrap and LTQ-FT mass spectrometers. J Biomol Tech 2011; 22:122-126. [PMID: 22131886 PMCID: PMC3221448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Visualization tools that allow both optimization of instrument's parameters for data acquisition and specific quality control (QC) for a given sample prior to time-consuming database searches have been scarce until recently and are currently still not freely available. To address this need, we have developed the visualization tool LogViewer, which uses diagnostic data from the RAW files of the Thermo Orbitrap and linear trap quadrupole-Fourier transform (LTQ-FT) mass spectrometers to monitor relevant metrics. To summarize and visualize the performance on our test samples, log files from RawXtract are imported and displayed. LogViewer is a visualization tool that allows a specific and fast QC for a given sample without time-consuming database searches. QC metrics displayed include: mass spectrometry (MS) ion-injection time histograms, MS ion-injection time versus retention time, MS(2) ion-injection time histograms, MS(2) ion-injection time versus retention time, dependent scan histograms, charge-state histograms, mass-to-charge ratio (M/Z) distributions, M/Z histograms, mass histograms, mass distribution, summary, repeat analyses, Raw MS, and Raw MS(2). Systematically optimizing all metrics allowed us to increase our protein identification rates from 600 proteins to routinely determine up to 1400 proteins in any 160-min analysis of a complex mixture (e.g., yeast lysate) at a false discovery rate of <1%. Visualization tools, such as LogViewer, make QC of complex liquid chromotography (LC)-MS and LC-MS/MS data and optimization of the instrument's parameters accessible to users.
Collapse
|
research-article |
14 |
|