1
|
Schmid MC, Khan SQ, Kaneda MM, Pathria P, Shepard R, Louis TL, Anand S, Woo G, Leem C, Faridi MH, Geraghty T, Rajagopalan A, Gupta S, Ahmed M, Vazquez-Padron RI, Cheresh DA, Gupta V, Varner JA. Integrin CD11b activation drives anti-tumor innate immunity. Nat Commun 2018; 9:5379. [PMID: 30568188 PMCID: PMC6300665 DOI: 10.1038/s41467-018-07387-4] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/31/2018] [Indexed: 02/07/2023] Open
Abstract
Myeloid cells are recruited to damaged tissues where they can resolve infections and tumor growth or stimulate wound healing and tumor progression. Recruitment of these cells is regulated by integrins, a family of adhesion receptors that includes integrin CD11b. Here we report that, unexpectedly, integrin CD11b does not regulate myeloid cell recruitment to tumors but instead controls myeloid cell polarization and tumor growth. CD11b activation promotes pro-inflammatory macrophage polarization by stimulating expression of microRNA Let7a. In contrast, inhibition of CD11b prevents Let7a expression and induces cMyc expression, leading to immune suppressive macrophage polarization, vascular maturation, and accelerated tumor growth. Pharmacological activation of CD11b with a small molecule agonist, Leukadherin 1 (LA1), promotes pro-inflammatory macrophage polarization and suppresses tumor growth in animal models of murine and human cancer. These studies identify CD11b as negative regulator of immune suppression and a target for cancer immune therapy.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
185 |
2
|
Maiguel D, Faridi MH, Wei C, Kuwano Y, Balla KM, Hernandez D, Barth CJ, Lugo G, Donnelly M, Nayer A, Moita LF, Schürer S, Traver D, Ruiz P, Vazquez-Padron RI, Ley K, Reiser J, Gupta V. Small molecule-mediated activation of the integrin CD11b/CD18 reduces inflammatory disease. Sci Signal 2011; 4:ra57. [PMID: 21900205 DOI: 10.1126/scisignal.2001811] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The integrin CD11b/CD18 (also known as Mac-1), which is a heterodimer of the α(M) (CD11b) and β(2) (CD18) subunits, is critical for leukocyte adhesion and migration and for immune functions. Blocking integrin-mediated leukocyte adhesion, although beneficial in experimental models, has had limited success in treating inflammatory diseases in humans. Here, we used an alternative strategy of inhibiting leukocyte recruitment by activating CD11b/CD18 with small-molecule agonists, which we term leukadherins. These compounds increased the extent of CD11b/CD18-dependent cell adhesion of transfected cells and of primary human and mouse neutrophils, which resulted in decreased chemotaxis and transendothelial migration. Leukadherins also decreased leukocyte recruitment and reduced arterial narrowing after injury in rats. Moreover, compared to a known integrin antagonist, leukadherins better preserved kidney function in a mouse model of experimental nephritis. Leukadherins inhibited leukocyte recruitment by increasing leukocyte adhesion to the inflamed endothelium, which was reversed with a blocking antibody. Thus, we propose that pharmacological activation of CD11b/CD18 offers an alternative therapeutic approach for inflammatory diseases.
Collapse
|
Journal Article |
14 |
96 |
3
|
Liu ZJ, Tan Y, Beecham GW, Seo DM, Tian R, Li Y, Vazquez-Padron RI, Pericak-Vance M, Vance JM, Goldschmidt-Clermont PJ, Livingstone AS, Velazquez OC. Notch activation induces endothelial cell senescence and pro-inflammatory response: implication of Notch signaling in atherosclerosis. Atherosclerosis 2012; 225:296-303. [PMID: 23078884 DOI: 10.1016/j.atherosclerosis.2012.04.010] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 04/12/2012] [Accepted: 04/19/2012] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Notch signaling plays pivotal roles in the pathogenesis of vascular disease. However, little is known about its role in atherosclerosis. We sought to investigate the potential involvement of the Notch signaling in atherosclerosis. METHODS Expression of Notch pathway components in mouse and human aorta with or without atherosclerosis plaque was examined by immunohistochemistry. Expression of Notch target genes in young versus aged human endothelial cells (EC) was examined by PCRArray and immunoblot. In vitro loss- and gain-of-function approaches were utilized to evaluate the role of Notch signaling in inducing EC senescence and secretion of pro-inflammatory cytokines by ProteinArray. Notch gene profile was studied in 1054 blood samples of patients with coronary artery disease (CAD). Genotyping was performed using the Genome-Wide Single Nucleotide Polymorphism (SNP) Array. RESULTS Notch pathway components were upregulated in luminal EC at atherosclerotic lesions from mouse and human aortas. In addition, the Notch pathway was activated in aged but not young human EC. Enforced Notch activation resulted in EC senescence and significantly upregulated expression of several molecules implicated in the inflammatory response (IL-6/IL-8/IL-1α/RANTES/ICAM-1). The upregulated IL-6 was partially responsible for mediating leukocyte transendothelial migration. Genetic association analysis detected, of 82 SNPs across 6 Notch pathway genes analyzed, 4 SNPs with nominal association with CAD burden. CONCLUSION Notch pathway is activated in luminal EC at atherosclerotic plaques and results in pro-inflammatory response and senescence of EC. Notch signaling may be linked to human CAD risk. These findings implicate a potential involvement of Notch signaling in atherosclerosis.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
88 |
4
|
Faridi MH, Khan SQ, Zhao W, Lee HW, Altintas MM, Zhang K, Kumar V, Armstrong AR, Carmona-Rivera C, Dorschner JM, Schnaith AM, Li X, Ghodke-Puranik Y, Moore E, Purmalek M, Irizarry-Caro J, Zhang T, Day R, Stoub D, Hoffmann V, Khaliqdina SJ, Bhargava P, Santander AM, Torroella-Kouri M, Issac B, Cimbaluk DJ, Zloza A, Prabhakar R, Deep S, Jolly M, Koh KH, Reichner JS, Bradshaw EM, Chen J, Moita LF, Yuen PS, Li Tsai W, Singh B, Reiser J, Nath SK, Niewold TB, Vazquez-Padron RI, Kaplan MJ, Gupta V. CD11b activation suppresses TLR-dependent inflammation and autoimmunity in systemic lupus erythematosus. J Clin Invest 2017; 127:1271-1283. [PMID: 28263189 PMCID: PMC5373862 DOI: 10.1172/jci88442] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 01/13/2017] [Indexed: 12/16/2022] Open
Abstract
Genetic variations in the ITGAM gene (encoding CD11b) strongly associate with risk for systemic lupus erythematosus (SLE). Here we have shown that 3 nonsynonymous ITGAM variants that produce defective CD11b associate with elevated levels of type I interferon (IFN-I) in lupus, suggesting a direct link between reduced CD11b activity and the chronically increased inflammatory status in patients. Treatment with the small-molecule CD11b agonist LA1 led to partial integrin activation, reduced IFN-I responses in WT but not CD11b-deficient mice, and protected lupus-prone MRL/Lpr mice from end-organ injury. CD11b activation reduced TLR-dependent proinflammatory signaling in leukocytes and suppressed IFN-I signaling via an AKT/FOXO3/IFN regulatory factor 3/7 pathway. TLR-stimulated macrophages from CD11B SNP carriers showed increased basal expression of IFN regulatory factor 7 (IRF7) and IFN-β, as well as increased nuclear exclusion of FOXO3, which was suppressed by LA1-dependent activation of CD11b. This suggests that pharmacologic activation of CD11b could be a potential mechanism for developing SLE therapeutics.
Collapse
|
research-article |
8 |
76 |
5
|
Manning E, Pham S, Li S, Vazquez-Padron RI, Mathew J, Ruiz P, Salgar SK. Interleukin-10 delivery via mesenchymal stem cells: a novel gene therapy approach to prevent lung ischemia-reperfusion injury. Hum Gene Ther 2010; 21:713-27. [PMID: 20102275 DOI: 10.1089/hum.2009.147] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Ischemia-reperfusion (IR) injury is an important cause of primary graft failure in lung transplantation. In this study, viral interleukin-10 (vIL-10)-engineered mesenchymal stem cells (MSCs) were tested for their ability to prevent lung IR injury. Bone marrow-derived MSCs were transduced with rvIL-10-retrovirus. After 120 min of warm left lung ischemia, rats received approximately 15 x 10(6) vIL-10-engineered MSCs (MSC-vIL-10), empty vector-engineered MSCs (MSC-vec), or saline intravenously. Mean blood oxygenation (PaO(2)/FiO(2) ratio, mmHg) was measured at 4 hr, 24 hr, 72 hr, and 7 days. As early as 4 hr post-IR injury with MSC-vIL-10 treatment, blood oxygenation was significantly (p < 0.05) improved (319 +/- 94; n = 7) compared with untreated (saline) controls (63 +/- 19; n = 6). At 24 hr post-IR injury, in the MSC-vIL-10-treated group there was a further increase in blood oxygenation (353 +/- 105; n = 10) compared with the MSC-vec group (138 +/- 86; n = 9) and saline group (87 +/- 39; n = 10). By 72 hr, oxygenation reached normal (475 +/- 55; n = 9) in the MSC-vIL-10-treated group but not in the saline-treated and MSC-vec-treated groups. At 4 hr after IR injury, lungs with MSC-vIL10 treatment had a lower (p < 0.05) injury score (0.9 +/- 0.4) compared with lungs of the untreated (saline) group (2.5 +/- 1.4) or MSC-vec-treated group (2 +/- 0.4). Lung microvascular permeability and wet-to-dry weight ratios were markedly lower in the MSC-vIL10 group compared with untreated (saline) controls. ISOL (in situ oligonucleotide ligation for DNA fragmentation detection) and caspase-3 staining demonstrated significantly (p < 0.05) fewer apoptotic cells in MSC-vIL10-treated lungs. Animals that received MSC-vIL10 therapy had fewer (p < 0.05) CD4(+) and CD8(+) T cells in bronchoalveolar lavage fluid compared with untreated control animals. A therapeutic strategy using vIL-10-engineered MSCs to prevent IR injury in lung transplantation seems promising.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
66 |
6
|
Vazquez-Padron RI, Lasko D, Li S, Louis L, Pestana IA, Pang M, Liotta C, Fornoni A, Aitouche A, Pham SM. Aging exacerbates neointimal formation, and increases proliferation and reduces susceptibility to apoptosis of vascular smooth muscle cells in mice. J Vasc Surg 2005; 40:1199-207. [PMID: 15622375 DOI: 10.1016/j.jvs.2004.08.034] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVES In response to injury, aging mediates exaggerated neointimal formation, the pathologic hallmark of obliterative vascular diseases. We assessed the development of neointima in a model of mechanical vascular injury in aging mice (18 months old) and young mice (2 months old). To investigate the mechanisms by which aging affects neointimal formation, we also carried out a set of in vitro studies to characterize the biologic properties of vascular smooth muscle cells (VSMCs) derived from aging and young mice. METHODS Aging and young mice were subjected to wire injury to the carotid artery. Four weeks later injured arteries were harvested, and neointimal formation was histologically assessed. The profiles of angiogenesis-related genes between aortic VSMCs derived from aging and young mice were compared with complementary DNA arrays. Expression of platelet-derived growth factor receptor-alpha (PDGFR-alpha) and proliferation in response to platelet-derived growth factor-BB (PDGF-BB) by VSMCs were assessed. Susceptibility to apoptosis in aging and young VSMCs in response to nitric oxide and serum starvation was investigated. In addition, the level of apoptosis in neointimal VSMCs (by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling assay) was compared between aging and young animals. RESULTS When compared with young mice, aging mice exhibited exaggerated neointimal formation (intima-media ratio, 1.17 +/- 0.57 vs 0.49 +/- 0.16; P < .0001). Aging VSMCs expressed higher levels of PDGFR-alpha (12.0% +/- 2.7% vs 3.2 +/- 0.67%; P = .034) and greater proliferative response (4-fold increase) to PDGF-BB, compared with young VSMCs. However, aging VSMCs were less susceptible to apoptosis when subjected to serum starvation (75% less) and exposure to nitric oxide (50% less). Furthermore, there was more apoptosis in the neointima of young arteries than in their aging counterparts (8.75% +/- 3.3% vs 2.8% +/- 1.9; P = .021). CONCLUSIONS Age-dependent increases in PDGFR-alpha may alter VSMC proliferation, and when coupled with resistance to apoptosis could contribute to exaggerated neointima formation in aging animals. Of significance, our findings in the mouse will enable application of abundant molecular tools afforded by this species to further dissect the mechanisms of exaggerated neointimal formation associated with aging. CLINICAL RELEVANCE Neointimal formation is the pathologic hallmark of obliterative vascular diseases, including primary atherosclerosis, post stent restenosis, graft occlusion after vascular bypass procedures, and transplant allograft vasculopathy. Aging is an independent risk factor for development of cardiovascular diseases, and aging exaggerates neointimal formation after vascular injury. Understanding the mechanisms responsible for this phenomenon may facilitate prevention or provide new therapies for vascular occlusive diseases, which are so prevalent in the aging population. Our ability to reproduce the model in the mouse will no doubt facilitate such understanding.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
63 |
7
|
Ding W, Li J, Singh J, Alif R, Vazquez-Padron RI, Gomes SA, Hare JM, Shehadeh LA. miR-30e targets IGF2-regulated osteogenesis in bone marrow-derived mesenchymal stem cells, aortic smooth muscle cells, and ApoE-/- mice. Cardiovasc Res 2015; 106:131-42. [PMID: 25678587 DOI: 10.1093/cvr/cvv030] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIMS Activation of an osteogenic transcriptional program contributes to the initiation of aortic calcification in atherosclerosis. The role of microRNAs in regulating aortic calcification is understudied. We tested the hypothesis that miR-30e regulates an osteogenic program in bone marrow-derived mesenchymal stem cells (MSCs), aortic smooth muscle cells (SMCs), and ApoE(-/-) mice. METHODS AND RESULTS In aortas of wild-type mice, we found that miR-30e is highly expressed in medial SMCs. In aortas of old ApoE(-/-) mice, we found that miR-30e transcripts are down-regulated in an inverse relation to the osteogenic markers Runx2, Opn, and Igf2. In vitro, miR-30e over-expression reduced the proliferation of MSCs and SMCs while increasing adipogenic differentiation of MSCs and smooth muscle differentiation of SMCs. In MSCs and SMCs over-expressing miR-30e, microarrays and qPCR showed repression of an osteogenic gene panel including Igf2. Inhibiting miR-30e in MSCs increased Igf2 transcripts. In SMCs, IGF2 recombinant protein rescued miR-30e-repressed osteogenic differentiation. Luciferase and mutagenesis assays showed binding of miR-30e to a novel and essential site at the 3'UTR of Igf2. In ApoE(-/-) mice, injections of antimiR-30e oligos increased Igf2 expression in the aortas and livers and significantly enhanced OPN protein expression and calcium deposition in aortic valves. CONCLUSION miR-30e represses the osteogenic program in MSCs and SMCs by targeting IGF2 and drives their differentiation into adipogenic or smooth muscle lineage, respectively. Our data suggest that down-regulation of miR-30e in aortas with age and atherosclerosis triggers vascular calcification. The miR-30e pathway plays an important regulatory role in vascular diseases.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
46 |
8
|
Tabbara M, Duque JC, Martinez L, Escobar LA, Wu W, Pan Y, Fernandez N, Velazquez OC, Jaimes EA, Salman LH, Vazquez-Padron RI. Pre-existing and Postoperative Intimal Hyperplasia and Arteriovenous Fistula Outcomes. Am J Kidney Dis 2016; 68:455-64. [PMID: 27012909 DOI: 10.1053/j.ajkd.2016.02.044] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 02/07/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND The contribution of intimal hyperplasia (IH) to arteriovenous fistula (AVF) failure is uncertain. This observational study assessed the relationship between pre-existing, postoperative, and change in IH over time and AVF outcomes. STUDY DESIGN Prospective cohort study with longitudinal assessment of IH at the time of AVF creation (pre-existing) and transposition (postoperative). Patients were followed up for up to 3.3 years. SETTING & PARTICIPANTS 96 patients from a single center who underwent AVF surgery initially planned as a 2-stage procedure. Veins and AVF samples were collected from 66 and 86 patients, respectively. Matched-pair tissues were available from 56 of these patients. PREDICTORS Pre-existing, postoperative, and change in IH over time. OUTCOMES Anatomic maturation failure was defined as an AVF that never reached a diameter > 6mm. Primary unassisted patency was defined as the time elapsed from the second-stage surgery to the first intervention. MEASUREMENTS Maximal intimal thickness in veins and AVFs and change in intimal thickness over time. RESULTS Pre-existing IH (>0.05mm) was present in 98% of patients. In this group, the median intimal thickness increased 4.40-fold (IQR, 2.17- to 4.94-fold) between AVF creation and transposition. However, this change was not associated with pre-existing thickness (r(2)=0.002; P=0.7). Ten of 96 (10%) AVFs never achieved maturation, whereas 70% of vascular accesses remained patent at the end of the observational period. Postoperative IH was not associated with anatomic maturation failure using univariate logistic regression. Pre-existing, postoperative, and change in IH over time had no effects on primary unassisted patency. LIMITATIONS The small number of patients from whom longitudinal tissue samples were available and low incidence of anatomic maturation failure, which decreased the statistical power to find associations between end points and IH. CONCLUSIONS Pre-existing, postoperative, and change in IH over time were not associated with 2-stage AVF outcomes.
Collapse
|
Observational Study |
9 |
44 |
9
|
Duque JC, Tabbara M, Martinez L, Cardona J, Vazquez-Padron RI, Salman LH. Dialysis Arteriovenous Fistula Failure and Angioplasty: Intimal Hyperplasia and Other Causes of Access Failure. Am J Kidney Dis 2016; 69:147-151. [PMID: 28084215 DOI: 10.1053/j.ajkd.2016.08.025] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 08/02/2016] [Indexed: 12/27/2022]
Abstract
The arteriovenous fistula (AVF) is the preferred hemodialysis access type because it has better patency rates and fewer complications than other access types. However, primary failure remains a common problem impeding AVF maturation and adding to patients' morbidity and mortality. Juxta-anastomotic (or inflow) stenosis is the most common reason leading to primary failure, and percutaneous transluminal angioplasty continues to be the gold-standard treatment with excellent success rates. Intimal hyperplasia (IH) has been traditionally blamed as the main pathophysiologic culprit, but new evidence raises doubts regarding the contribution of IH alone to primary failure. We report a 64-year-old man with a 2-stage brachiobasilic AVF that was complicated by failure 4 months after creation. An angiogram showed multiple juxta-anastomotic and midfistula stenotic lesions. Percutaneous transluminal angioplasty was successful in assisting maturation and subsequently cannulating the AVF for hemodialysis treatment. We failed to identify the underlying cause of stenosis because biopsy specimens from fistula tissue obtained at the time of transposition revealed no occlusive IH. This case emphasizes the need for additional research on factors contributing to AVF failure besides IH and highlights the need for more therapeutic options to reduce AVF failure rate.
Collapse
|
Journal Article |
9 |
43 |
10
|
Martinez L, Duque JC, Tabbara M, Paez A, Selman G, Hernandez DR, Sundberg CA, Tey JCS, Shiu YT, Cheung AK, Allon M, Velazquez OC, Salman LH, Vazquez-Padron RI. Fibrotic Venous Remodeling and Nonmaturation of Arteriovenous Fistulas. J Am Soc Nephrol 2018; 29:1030-1040. [PMID: 29295872 DOI: 10.1681/asn.2017050559] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 10/16/2017] [Indexed: 02/03/2023] Open
Abstract
The frequency of primary failure in arteriovenous fistulas (AVFs) remains unacceptably high. This lack of improvement is due in part to a poor understanding of the pathobiology underlying AVF nonmaturation. This observational study quantified the progression of three vascular features, medial fibrosis, intimal hyperplasia (IH), and collagen fiber organization, during early AVF remodeling and evaluated the associations thereof with AVF nonmaturation. We obtained venous samples from patients undergoing two-stage upper-arm AVF surgeries at a single center, including intraoperative veins at the first-stage access creation surgery and AVFs at the second-stage transposition procedure. Paired venous samples from both stages were used to evaluate change in these vascular features after anastomosis. Anatomic nonmaturation (AVF diameter never ≥6 mm) occurred in 39 of 161 (24%) patients. Neither preexisting fibrosis nor IH predicted AVF outcomes. Postoperative medial fibrosis associated with nonmaturation (odds ratio [OR], 1.55; 95% confidence interval [95% CI], 1.05 to 2.30; P=0.03, per 10% absolute increase in fibrosis), whereas postoperative IH only associated with failure in those individuals with medial fibrosis over the population's median value (OR, 2.63; 95% CI, 1.07 to 6.46; P=0.04, per increase of 1 in the intima/media ratio). Analysis of postoperative medial collagen organization revealed that circumferential alignment of fibers around the lumen associated with AVF nonmaturation (OR, 1.38; 95% CI, 1.03 to 1.84; P=0.03, per 10° increase in angle). This study demonstrates that excessive fibrotic remodeling of the vein after AVF creation is an important risk factor for nonmaturation and that high medial fibrosis determines the stenotic potential of IH.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
41 |
11
|
Saaoud F, Liu L, Xu K, Cueto R, Shao Y, Lu Y, Sun Y, Snyder NW, Wu S, Yang L, Zhou Y, Williams DL, Li C, Martinez L, Vazquez-Padron RI, Zhao H, Jiang X, Wang H, Yang X. Aorta- and liver-generated TMAO enhances trained immunity for increased inflammation via ER stress/mitochondrial ROS/glycolysis pathways. JCI Insight 2023; 8:e158183. [PMID: 36394956 PMCID: PMC9870092 DOI: 10.1172/jci.insight.158183] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 11/16/2022] [Indexed: 11/18/2022] Open
Abstract
We determined whether gut microbiota-produced trimethylamine (TMA) is oxidized into trimethylamine N-oxide (TMAO) in nonliver tissues and whether TMAO promotes inflammation via trained immunity (TI). We found that endoplasmic reticulum (ER) stress genes were coupregulated with MitoCarta genes in chronic kidney diseases (CKD); TMAO upregulated 190 genes in human aortic endothelial cells (HAECs); TMAO synthesis enzyme flavin-containing monooxygenase 3 (FMO3) was expressed in human and mouse aortas; TMAO transdifferentiated HAECs into innate immune cells; TMAO phosphorylated 12 kinases in cytosol via its receptor PERK and CREB, and integrated with PERK pathways; and PERK inhibitors suppressed TMAO-induced ICAM-1. TMAO upregulated 3 mitochondrial genes, downregulated inflammation inhibitor DARS2, and induced mitoROS, and mitoTEMPO inhibited TMAO-induced ICAM-1. β-Glucan priming, followed by TMAO restimulation, upregulated TNF-α by inducing metabolic reprogramming, and glycolysis inhibitor suppressed TMAO-induced ICAM-1. Our results have provided potentially novel insights regarding TMAO roles in inducing EC activation and innate immune transdifferentiation and inducing metabolic reprogramming and TI for enhanced vascular inflammation, and they have provided new therapeutic targets for treating cardiovascular diseases (CVD), CKD-promoted CVD, inflammation, transplantation, aging, and cancer.
Collapse
|
Research Support, N.I.H., Extramural |
2 |
40 |
12
|
Rodriguez-Menocal L, St-Pierre M, Wei Y, Khan S, Mateu D, Calfa M, Rahnemai-Azar AA, Striker G, Pham SM, Vazquez-Padron RI. The origin of post-injury neointimal cells in the rat balloon injury model. Cardiovasc Res 2008; 81:46-53. [DOI: 10.1093/cvr/cvn265] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
|
17 |
37 |
13
|
Rodriguez-Menocal L, Faridi MH, Martinez L, Shehadeh LA, Duque JC, Wei Y, Mesa A, Pena A, Gupta V, Pham SM, Vazquez-Padron RI. Macrophage-derived IL-18 and increased fibrinogen deposition are age-related inflammatory signatures of vascular remodeling. Am J Physiol Heart Circ Physiol 2014; 306:H641-53. [PMID: 24414074 DOI: 10.1152/ajpheart.00641.2013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aging has been associated with pathological vascular remodeling and increased neointimal hyperplasia. The understanding of how aging exacerbates this process is fundamental to prevent cardiovascular complications in the elderly. This study proposes a mechanism by which aging sustains leukocyte adhesion, vascular inflammation, and increased neointimal thickness after injury. The effect of aging on vascular remodeling was assessed in the rat balloon injury model using microarray analysis, immunohistochemistry, and LINCOplex assays. The injured arteries in aging rats developed thicker neointimas than those in younger animals, and this significantly correlated with a higher number of tissue macrophages and increased vascular IL-18. Indeed, IL-18 was 23-fold more abundant in the injured vasculature of aged animals compared with young rats, while circulating levels were similar in both groups of animals. The depletion of macrophages in aged rats with clodronate liposomes ameliorated vascular accumulation of IL-18 and significantly decreased neointimal formation. IL-18 was found to inhibit apoptosis of vascular smooth muscle cells (VSMC) and macrophages, thus favoring both the formation and inflammation of the neointima. In addition, injured arteries of aged rats accumulated 18-fold more fibrinogen-γ than those of young animals. Incubation of rat peritoneal macrophages with immobilized IL-18 increased leukocyte adhesion to fibrinogen and suggested a proinflammatory positive feedback loop among macrophages, VSMC, and the deposition of fibrinogen during neointimal hyperplasia. In conclusion, our data reveal that concentration changes in vascular cytokine and fibrinogen following injury in aging rats contribute to local inflammation and postinjury neointima formation.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
33 |
14
|
Faridi MH, Altintas MM, Gomez C, Duque JC, Vazquez-Padron RI, Gupta V. Small molecule agonists of integrin CD11b/CD18 do not induce global conformational changes and are significantly better than activating antibodies in reducing vascular injury. Biochim Biophys Acta Gen Subj 2013; 1830:3696-710. [PMID: 23454649 DOI: 10.1016/j.bbagen.2013.02.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 02/15/2013] [Accepted: 02/19/2013] [Indexed: 01/08/2023]
Abstract
BACKGROUND CD11b/CD18 is a key adhesion receptor that mediates leukocyte adhesion, migration and immune functions. We recently identified novel compounds, leukadherins, that allosterically enhance CD11b/CD18-dependent cell adhesion and reduce inflammation in vivo, suggesting integrin activation to be a novel mechanism of action for the development of anti-inflammatory therapeutics. Since a number of well-characterized anti-CD11b/CD18 activating antibodies are currently available, we wondered if such biological agonists could also become therapeutic leads following this mechanism of action. METHODS We compared the two types of agonists using in vitro cell adhesion and wound-healing assays and using animal model systems. We also studied effects of the two types of agonists on outside-in signaling in treated cells. RESULTS Both types of agonists similarly enhanced integrin-mediated cell adhesion and decreased cell migration. However, unlike leukadherins, the activating antibodies produced significant CD11b/CD18 macro clustering and induced phosphorylation of key proteins involved in outside-in signaling. Studies using conformation reporter antibodies showed that leukadherins did not induce global conformational changes in CD11b/CD18 explaining the reason behind their lack of ligand-mimetic outside-in signaling. In vivo, leukadherins reduced vascular injury in a dose-dependent fashion, but, surprisingly, the anti-CD11b activating antibody ED7 was ineffective. CONCLUSIONS Our results suggest that small molecule allosteric agonists of CD11b/CD18 have clear advantages over the biologic activating antibodies and provide a mechanistic basis for the difference. GENERAL SIGNIFICANCE CD11b/CD18 activation represents a novel strategy for reducing inflammatory injury. Our study establishes small molecule leukadherins as preferred agonists over activating antibodies for future development as novel anti-inflammatory therapeutics.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
31 |
15
|
Vazquez-Padron RI, Allon M. New Insights into Dialysis Vascular Access: Impact of Preexisting Arterial and Venous Pathology on AVF and AVG Outcomes. Clin J Am Soc Nephrol 2016; 11:1495-1503. [PMID: 27401525 PMCID: PMC4974874 DOI: 10.2215/cjn.01860216] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Despite significant improvements in preoperative patient evaluation and surgical planning, vascular access failure in patients on hemodialysis remains a frequent and often unforeseeable complication. Our inability to prevent this complication is, in part, because of an incomplete understanding of how preexisting venous and arterial conditions influence the function of newly created arteriovenous fistulas and grafts. This article reviews the relationship between three preexisting vascular pathologies associated with CKD (intimal hyperplasia, vascular calcification, and medial fibrosis) and hemodialysis access outcomes. The published literature indicates that the pathogenesis of vascular access failure is multifactorial and not determined by any of these pathologies individually. Keeping this observation in mind should help focus our research on the true causes responsible for vascular access failure and the much needed therapies to prevent it.
Collapse
|
Review |
9 |
29 |
16
|
Shehadeh LA, Webster KA, Hare JM, Vazquez-Padron RI. Dynamic regulation of vascular myosin light chain (MYL9) with injury and aging. PLoS One 2011; 6:e25855. [PMID: 22003410 PMCID: PMC3189218 DOI: 10.1371/journal.pone.0025855] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 09/12/2011] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Aging-associated changes in the cardiovascular system increase the risk for disease development and lead to profound alterations in vascular reactivity and stiffness. Elucidating the molecular response of arteries to injury and age will help understand the exaggerated remodeling of aging vessels. METHODOLOGY/PRINCIPAL FINDINGS We studied the gene expression profile in a model of mechanical vascular injury in the iliac artery of aging (22 months old) and young rats (4 months old). We investigated aging-related variations in gene expression at 30 min, 3 d and 7 d post injury. We found that the Myosin Light Chain gene (MYL9) was the only gene differentially expressed in the aged versus young injured arteries at all time points studied, peaking at day 3 after injury (4.6 fold upregulation (p<0.05) in the smooth muscle cell layers. We confirmed this finding on an aging aortic microarray experiment available through NCBI's GEO database. We found that Myl9 was consistently upregulated with age in healthy rat aortas. To determine the arterial localization of Myl9 with age and injury, we performed immunohistochemistry for Myl9 in rat iliac arteries and found that in healthy and injured (30 days post injury) arteries, Myl9 expression increased with age in the endothelial layers. CONCLUSIONS/SIGNIFICANCE The consistent upregulation of the myosin light chain protein (Myl9) with age and injury in arterial tissue draws attention to the increased vascular permeability and to the age-caused predisposition to arterial constriction after balloon angioplasty.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
26 |
17
|
Martinez L, Tabbara M, Duque JC, Selman G, Falcon NS, Paez A, Griswold AJ, Ramos-Echazabal G, Hernandez DR, Velazquez OC, Salman LH, Vazquez-Padron RI. Transcriptomics of Human Arteriovenous Fistula Failure: Genes Associated With Nonmaturation. Am J Kidney Dis 2019; 74:73-81. [PMID: 30826088 PMCID: PMC10980359 DOI: 10.1053/j.ajkd.2018.12.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 12/17/2018] [Indexed: 12/16/2022]
Abstract
RATIONALE & OBJECTIVE Improving arteriovenous fistula (AVF) outcomes requires better understanding of the biology underlying maturation or failure. Our current knowledge of maturation relies on extrapolation from other vascular pathologies, which does not incorporate unique aspects of AVF remodeling. This study compares the RNA expression of pre-access (native) veins and AVFs with distinct maturation outcomes. STUDY DESIGN Case-control study. SETTING & PARTICIPANTS 64 patients undergoing 2-stage AVF surgeries at a single center. 19 native veins and 19 AVF samples were analyzed using RNA sequencing (RNA-seq). 58 native veins were studied using real-time polymerase chain reaction; 45, using immunohistochemistry; and 19, using Western blot analysis. PREDICTOR RNA expression in native veins and AVFs. OUTCOME Anatomic nonmaturation, defined as an AVF that never achieved an internal diameter ≥ 6mm. ANALYTICAL APPROACH Pre-access native veins and AVF samples were obtained from patients undergoing 2-stage AVF creation. Veins that subsequently matured or failed after access creation were analyzed using RNA-seq to search for genes associated with maturation failure. Genes associated with nonmaturation were confirmed using real-time polymerase chain reaction, immunohistochemistry, and Western blot analysis. In addition, the association between pre-access gene expression and postoperative morphology was evaluated. RNA-seq was also performed on AVFs to search for transcriptional differences between AVFs that matured and those that failed at the time of transposition. RESULTS Pro-inflammatory genes (CSF3R, FPR1, S100A8, S100A9, and VNN2) were upregulated in pre-access veins that failed (false discovery rate < 0.05), and their expression colocalized to smooth muscle cells. Expression of S100A8 and S100A9 correlated with postoperative intimal hyperplasia and the product of medial fibrosis and intimal hyperplasia (r=0.32-0.38; P < 0.05). AVFs that matured or failed were transcriptionally similar at the time of transposition. LIMITATIONS Small sample size, analysis of only upper-arm veins and transposed fistulas. CONCLUSIONS Increased expression of proinflammatory genes in pre-access veins appears to be associated with greater risk for AVF nonmaturation.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
25 |
18
|
Vazquez-Padron RI, Mateu D, Rodriguez-Menocal L, Wei Y, Webster KA, Pham SM. Novel role of Egr-1 in nicotine-related neointimal formation. Cardiovasc Res 2010; 88:296-303. [PMID: 20615913 DOI: 10.1093/cvr/cvq213] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
AIMS The aim of this study was to investigate the mechanisms by which nicotine increases vascular smooth muscle cell (VSMC) proliferation and post-injury neointimal formation. METHODS AND RESULTS Vascular injury was inflicted in the right iliac artery of nicotine-treated and control rats. Nicotine increased post-injury VSMC proliferation (Ki67(+) cells) and neointimal formation (neointima/media ratio, 0.42 ± 0.23 vs. 0.14 ± 0.07, P= 0.02). To determine the mechanisms by which nicotine exacerbates VSMC proliferation, cultured cells were exposed to nicotine, and signalling pathways leading to cell proliferation were studied. Nicotine activated extracellular signal-regulated kinase (ERK) 1/2 in a dose- and time-dependent manner. The blockade of this signalling axis abolished nicotine-mediated proliferation. Functional nicotinic acetylcholine receptors and Ca(2+) influx were necessary for ERK1/2 activation and nicotine-induced mitogenesis in VSMCs. Downstream to ERK1/2, nicotine induced the phosphorylation of Ets-like gene 1 in a timely co-ordinated manner with the up-regulation of the atherogenic transcription factor, early growth response 1 (Egr-1). The treatment of balloon-injured arteries with a lentivirus vector carrying a short hairpin RNA against Egr-1 abolished the deleterious effect of nicotine on vascular remodelling. CONCLUSION Nicotine acts through its receptors in VSMC to activate the ERK-Egr-1 signaling cascade that induces cell proliferation and exacerbates post-injury neointimal development.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
25 |
19
|
Skartsis N, Manning E, Wei Y, Velazquez OC, Liu ZJ, Goldschmidt-Clermont PJ, Salman LH, Asif A, Vazquez-Padron RI. Origin of neointimal cells in arteriovenous fistulae: bone marrow, artery, or the vein itself? Semin Dial 2011; 24:242-8. [PMID: 21517994 PMCID: PMC4169005 DOI: 10.1111/j.1525-139x.2011.00870.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To elucidate the source of neointimal cells, experimental fistulas were created in Lewis wild-type (WT) and transgenic rats that constitutively expressed the green fluorescent protein (GFP) in all tissues. Arteriovenous fistula (AVFs) were created by anastomosing the left renal vein to the abdominal aorta. The contribution of bone marrow (BM)-derived cells to the AVF neointima was examined in lethally irradiated WT rats that had been rescued with GFP BM cells. Neointimal cells in these chimeric rats were mostly GFP negative indicating the non-BM origin of those cells. Then, the contribution of arterial cells to the AVF neointima was assessed in a fistula made with a GFP aorta that had been implanted orthotopically into a WT rat. Most of the neointimal cells were also GFP negative demonstrating that AVF neointimal cells are not derived from the feeding artery. Finally to study local resident cells contribution to the formation of neointimal lesions, a composite fistula was created by interposing a GFP vein between the renal vein and the aorta in a WT recipient rat. GFP neointimal cells were only found in the transplanted vein. This study suggests that neointimal cells originate from the local resident cells in the venous limb of the fistula.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
24 |
20
|
El Kassem M, Alghamdi I, Vazquez-Padron RI, Asif A, Lenz O, Sanjar T, Fayad F, Salman L. The Role of Endovascular Stents in Dialysis Access Maintenance. Adv Chronic Kidney Dis 2015; 22:453-8. [PMID: 26524950 DOI: 10.1053/j.ackd.2015.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 02/10/2015] [Indexed: 11/11/2022]
Abstract
Vascular stenosis is most often the culprit behind hemodialysis vascular access dysfunction, and although percutaneous transluminal angioplasty remains the gold standard treatment for vascular stenosis, over the past decade the use of stents as a treatment option has been on the rise. Aside from the 2 Food and Drug Administration-approved stent grafts for the treatment of venous graft anastomosis stenosis, use of all other stents in vascular access dysfunction is off-label. Kidney Disease Outcomes Quality Initiative recommends limiting stent use to specific conditions, such as elastic lesions and recurrent stenosis; otherwise, additional adapted indications are in procedure-related complications, such as grade 2 and 3 hematomas. Published reports have shown the potential use of stents in a variety of conditions leading to vascular access dysfunction, such as venous graft anastomosis stenosis, cephalic arch stenosis, central venous stenosis, dialysis access aneurysmal elimination, cardiac implantable electronic device-induced stenosis, and thrombosed arteriovenous grafts. Although further research is needed for many of these conditions, evidence for recommendations has been clear in some; for instance, we know now that stents should be avoided along cannulation sites and should not be used in eliminating dialysis access aneurysms. In this review article, we evaluate the available evidence for the use of stents in each of the aforementioned conditions leading to hemodialysis vascular access dysfunctions.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
22 |
21
|
Khan SJ, Pham S, Wei Y, Mateo D, St-Pierre M, Fletcher TM, Vazquez-Padron RI. Stress-induced senescence exaggerates postinjury neointimal formation in the old vasculature. Am J Physiol Heart Circ Physiol 2010; 298:H66-74. [DOI: 10.1152/ajpheart.00501.2009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study aims to demonstrate the role of stress-induced senescence in aged-related neointimal formation. We demonstrated that aging increases senescence-associated β-galactosidase activity (SA-β-Gal) after vascular injury and the subsequent neointimal formation (neointima-to-media ratio: 0.8 ± 0.2 vs. 0.54 ± 0.15) in rats. We found that senescent cells (SA-β-Gal+ p21+) were scattered throughout the media and adventitia of the vascular wall at day 7 after injury and reached their maximum number at day 14. However, senescent cells only persisted in the injured arteries of aged animals until day 30. No senescent cells were observed in the noninjured, contralateral artery. Interestingly, vascular senescent cells accumulated genomic 8-oxo-7,8-dihydrodeoxyguanine, indicating that these cells were under intense oxidative stress. To demonstrate whether senescence worsens intimal hyperplasia after injury, we seeded matrigel-embedded senescent and nonsenescent vascular smooth muscle cells around injured vessels. The neointima was thicker in arteries treated with senescent cells with respect to those that received normal cells (neointima-to-media ratio: 0.41 ± 0.105 vs. 0.26 ± 0.04). In conclusion, these results demonstrate that vascular senescence is not only a consequence of postinjury oxidative stress but is also a worsening factor for neointimal development in the aging vasculature.
Collapse
|
|
15 |
21 |
22
|
Shao H, Li Y, Pastar I, Xiao M, Prokupets R, Liu S, Yu K, Vazquez-Padron RI, Tomic-Canic M, Velazquez OC, Liu ZJ. Notch1 signaling determines the plasticity and function of fibroblasts in diabetic wounds. Life Sci Alliance 2020; 3:3/12/e202000769. [PMID: 33109684 PMCID: PMC7652398 DOI: 10.26508/lsa.202000769] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022] Open
Abstract
Fibroblasts play a pivotal role in wound healing. However, the molecular mechanisms determining the reparative response of fibroblasts remain unknown. Here, we identify Notch1 signaling as a molecular determinant controlling the plasticity and function of fibroblasts in modulating wound healing and angiogenesis. The Notch pathway is activated in fibroblasts of diabetic wounds but not in normal skin and non-diabetic wounds. Consistently, wound healing in the FSP-1 +/- ;ROSA LSL-N1IC+/+ mouse, in which Notch1 is activated in fibroblasts, is delayed. Increased Notch1 activity in fibroblasts suppressed their growth, migration, and differentiation into myofibroblasts. Accordingly, significantly fewer myofibroblasts and less collagen were present in granulation tissues of the FSP-1 +/- ;ROSA LSL-N1IC+/+ mice, demonstrating that high Notch1 activity inhibits fibroblast differentiation. High Notch1 activity in fibroblasts diminished their role in modulating the angiogenic response. We also identified that IL-6 is a functional Notch1 target and involved in regulating angiogenesis. These findings suggest that Notch1 signaling determines the plasticity and function of fibroblasts in wound healing and angiogenesis, unveiling intracellular Notch1 signaling in fibroblasts as potential target for therapeutic intervention in diabetic wound healing.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
20 |
23
|
Manning E, Skartsis N, Orta AM, Velazquez OC, Liu ZJ, Asif A, Salman LH, Vazquez-Padron RI. A new arteriovenous fistula model to study the development of neointimal hyperplasia. J Vasc Res 2012; 49:123-31. [PMID: 22249138 DOI: 10.1159/000332327] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 08/19/2011] [Indexed: 11/19/2022] Open
Abstract
This study describes an alternative arteriovenous fistula (AVF) model in the rat in which the animals develop significant neointimal hyperplasia (NIH) not only at the distal anastomotic site, but also throughout the fistula body. This aortocaval fistula was established by anastomosing the distal end of the renal vein to the abdominal aorta after unilateral nephrectomy. The increased hemodynamic stress resulting from exposing the renal vein to the arterial circulation induced venous NIH as early as 7 days after surgery. This experimental AVF was characterized by the early lack of endothelium, the accumulation of proliferating vascular smooth muscle cells and the neovascularization of the fistula adventitia. In summary, we have described an informative animal model to study the pathobiology of NIH in native AVF.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
19 |
24
|
Pestana IA, Vazquez-Padron RI, Aitouche A, Pham SM. Nicotinic and PDGF-receptor function are essential for nicotine-stimulated mitogenesis in human vascular smooth muscle cells. J Cell Biochem 2006; 96:986-95. [PMID: 16149045 DOI: 10.1002/jcb.20564] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cigarette smoking is implicated in the formation of occlusive vascular diseases. Nicotine's role in this process is incompletely understood. Nicotine's effect on human aortic vascular smooth muscle cells (HaVSMC) and the role of the nicotinic receptor (nAChR), platelet-derived growth factor (PDGF), and the PDGF-receptor (PDGF-R) in this response were studied. Nicotine's mitogenic effect was characterized by three methods: thymidine incorporation, a viability/proliferation assay based on metabolic conversion of tetrazolium salt to formazan dye and cell counting. Nicotine administration (10(-6) M) stimulated cell cycle entry marked by increased DNA synthesis, PCNA and cyclin D1 production, and increased cell division. Nicotinic receptor blockade with d-tubocurarine, a nicotinic AchR blocker, decreased nicotine-induced DNA synthesis, and cell division (0.33 +/- 0.04, 0.77 +/- 0.31-fold decrease, respectively). Nicotine increased cellular PDGF-BB transcript levels and protein release (ELISA: 1.6 +/- 0.5-fold increase) but not PDGF-AA or PDGF-AB release. Nicotine increased PDGFbeta-receptor protein content. PDGF inactivation with anti-PDGF antibody abolished nicotine-induced DNA synthesis (1.9 +/- 0.08-fold decrease). PDGF-R blockade with the PDGF-R antagonist tyrphostin AG 1295 decreased nicotine-induced DNA synthesis and cell division (0.25 +/- 0.01, 0.44 +/- 0.2-fold decrease, respectively). PDGF-R blockade reversed nicotine-stimulated increases in PDGF release, PDGF-BB transcripts, and PDGF-receptor levels (0.68 +/- 0.34; 0.46 +/- 0.01; 0.28 +/- 0.01-fold decrease, respectively). In conclusion, nicotine-mediated activation of nAChRs increases PDGF-BB transcription and protein production as well as PDGF beta-receptor levels. PDGF-BB/PDGF-R interaction is vital in nicotine's mitogenic actions on human aortic smooth muscle cells.
Collapse
MESH Headings
- Adult
- Aged
- Aorta/drug effects
- Aorta/metabolism
- Becaplermin
- Blotting, Western
- Cell Cycle
- Cell Division
- Cell Line
- Cell Proliferation
- Cell Survival
- Cells, Cultured
- Culture Media, Conditioned/pharmacology
- Cyclin D1/metabolism
- DNA/chemistry
- Humans
- Indicators and Reagents/pharmacology
- Ligands
- Male
- Middle Aged
- Mitogens
- Models, Statistical
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Nicotine/metabolism
- Nicotine/pharmacology
- Nicotinic Antagonists/pharmacology
- Nitroblue Tetrazolium/pharmacology
- Platelet-Derived Growth Factor/metabolism
- Proliferating Cell Nuclear Antigen/metabolism
- Proto-Oncogene Proteins c-sis
- RNA, Messenger/metabolism
- Receptors, Cholinergic/metabolism
- Receptors, Nicotinic/metabolism
- Receptors, Platelet-Derived Growth Factor/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Smoking
- Thymidine/metabolism
- Time Factors
- Tubocurarine/pharmacology
Collapse
|
Research Support, N.I.H., Extramural |
19 |
18 |
25
|
Boden J, Lassance-Soares RM, Wang H, Wei Y, Spiga MG, Adi J, Layman H, Yu H, Vazquez-Padron RI, Andreopoulos F, Webster KA. Vascular Regeneration in Ischemic Hindlimb by Adeno-Associated Virus Expressing Conditionally Silenced Vascular Endothelial Growth Factor. J Am Heart Assoc 2016; 5:e001815. [PMID: 27231018 PMCID: PMC4937238 DOI: 10.1161/jaha.115.001815] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 04/19/2016] [Indexed: 01/07/2023]
Abstract
BACKGROUND Critical limb ischemia (CLI) is the extreme manifestation of peripheral artery disease, a major unmet clinical need for which lower limb amputation is the only option for many patients. After 2 decades in development, therapeutic angiogenesis has been tested clinically via intramuscular delivery of proangiogenic proteins, genes, and stem cells. Efficacy has been modest to absent, and the largest phase 3 trial of gene therapy for CLI reported a worsening trend of plasmid fibroblast growth factor. In all clinical trials to date, gene therapy has used unregulated vectors with limited duration of expression. Only unregulated extended expression vectors such as adeno-associated virus (AAV) and lentivirus have been tested in preclinical models. METHODS AND RESULTS We present preclinical results of ischemia (hypoxia)-regulated conditionally silenced (CS) AAV-human vascular endothelial growth factor (hVEGF) gene delivery that shows efficacy and safety in a setting where other strategies fail. In a BALB/c mouse model of CLI, we show that gene therapy with AAV-CS-hVEGF, but not unregulated AAV or plasmid, vectors conferred limb salvage, protection from necrosis, and vascular regeneration when delivered via intramuscular or intra-arterial routes. All vector treatments conferred increased capillary density, but organized longitudinal arteries were selectively generated by AAV-CS-hVEGF. AAV-CS-hVEGF therapy reversibly activated angiogenic and vasculogenic genes, including Notch, SDF1, Angiopoietin, and Ephrin-B2. Reoxygenation extinguished VEGF expression and inactivated the program with no apparent adverse side effects. CONCLUSIONS Restriction of angiogenic growth factor expression to regions of ischemia supports the safe and stable reperfusion of hindlimbs in a clinically relevant murine model of CLI.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
17 |