1
|
O’Connor RS, Hao X, Shen K, Bashour K, Akimova T, Hancock WW, Kam L, Milone MC. Substrate rigidity regulates human T cell activation and proliferation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 189:1330-9. [PMID: 22732590 PMCID: PMC3401283 DOI: 10.4049/jimmunol.1102757] [Citation(s) in RCA: 236] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Adoptive immunotherapy using cultured T cells holds promise for the treatment of cancer and infectious disease. Ligands immobilized on surfaces fabricated from hard materials such as polystyrene plastic are commonly employed for T cell culture. The mechanical properties of a culture surface can influence the adhesion, proliferation, and differentiation of stem cells and fibroblasts. We therefore explored the impact of culture substrate stiffness on the ex vivo activation and expansion of human T cells. We describe a simple system for the stimulation of the TCR/CD3 complex and the CD28 receptor using substrates with variable rigidity manufactured from poly(dimethylsiloxane), a biocompatible silicone elastomer. We show that softer (Young's Modulus [E] < 100 kPa) substrates stimulate an average 4-fold greater IL-2 production and ex vivo proliferation of human CD4(+) and CD8(+) T cells compared with stiffer substrates (E > 2 MPa). Mixed peripheral blood T cells cultured on the stiffer substrates also demonstrate a trend (nonsignificant) toward a greater proportion of CD62L(neg), effector-differentiated CD4(+) and CD8(+) T cells. Naive CD4(+) T cells expanded on softer substrates yield an average 3-fold greater proportion of IFN-γ-producing Th1-like cells. These results reveal that the rigidity of the substrate used to immobilize T cell stimulatory ligands is an important and previously unrecognized parameter influencing T cell activation, proliferation, and Th differentiation. Substrate rigidity should therefore be a consideration in the development of T cell culture systems as well as when interpreting results of T cell activation based upon solid-phase immobilization of TCR/CD3 and CD28 ligands.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
236 |
2
|
Lambert LH, Goebrecht GK, De Leo SE, O’Connor RS, Nunez-Cruz S, Li TD, Yuan J, Milone MC, Kam LC. Improving T Cell Expansion with a Soft Touch. NANO LETTERS 2017; 17:821-826. [PMID: 28122453 PMCID: PMC5504474 DOI: 10.1021/acs.nanolett.6b04071] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Protein-coated microbeads provide a consistent approach for activating and expanding populations of T cells for immunotherapy but do not fully capture the properties of antigen presenting cells. In this report, we enhance T cell expansion by replacing the conventional, rigid bead with a mechanically soft elastomer. Polydimethylsiloxane (PDMS) was prepared in a microbead format and modified with activating antibodies to CD3 and CD28. A total of three different formulations of PDMS provided an extended proliferative phase in both CD4+-only and mixed CD4+-CD8+ T cell preparations. CD8+ T cells retained cytotoxic function, as measured by a set of biomarkers (perforin production, LAMP2 mobilization, and IFN-γ secretion) and an in vivo assay of targeted cell killing. Notably, PDMS beads presented a nanoscale polymer structure and higher rigidity than that associated with conventional bulk material. These data suggest T cells respond to this higher rigidity, indicating an unexpected effect of curing conditions. Together, these studies demonstrate that adopting mechanobiology ideas into the bead platform can provide new tools for T cell based immunotherapy.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
55 |
3
|
Hu J, Gondarenko AA, Dang AP, Bashour KT, O’Connor RS, Lee S, Liapis A, Ghassemi S, Milone MC, Sheetz MP, Dustin ML, Kam LC, Hone JC. High-Throughput Mechanobiology Screening Platform Using Micro- and Nanotopography. NANO LETTERS 2016; 16:2198-204. [PMID: 26990380 PMCID: PMC5403373 DOI: 10.1021/acs.nanolett.5b04364] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We herein demonstrate the first 96-well plate platform to screen effects of micro- and nanotopographies on cell growth and proliferation. Existing high-throughput platforms test a limited number of factors and are not fully compatible with multiple types of testing and assays. This platform is compatible with high-throughput liquid handling, high-resolution imaging, and all multiwell plate-based instrumentation. We use the platform to screen for topographies and drug-topography combinations that have short- and long-term effects on T cell activation and proliferation. We coated nanofabricated "trench-grid" surfaces with anti-CD3 and anti-CD28 antibodies to activate T cells and assayed for interleukin 2 (IL-2) cytokine production. IL-2 secretion was enhanced at 200 nm trench width and >2.3 μm grating pitch; however, the secretion was suppressed at 100 nm width and <0.5 μm pitch. The enhancement on 200 nm grid trench was further amplified with the addition of blebbistatin to reduce contractility. The 200 nm grid pattern was found to triple the number of T cells in long-term expansion, a result with direct clinical applicability in adoptive immunotherapy.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
27 |
4
|
Cichocki F, Zhang B, Wu CY, Chiu E, Day A, O’Connor RS, Yackoubov D, Simantov R, McKenna DH, Cao Q, Defor TE, Janakiram M, Wangen R, Cayci Z, Snyder N, Kumar A, Grzywacz B, Hwang J, Geffen Y, Miller JS, Maakaron J, Bachanova V. Nicotinamide enhances natural killer cell function and yields remissions in patients with non-Hodgkin lymphoma. Sci Transl Med 2023; 15:eade3341. [PMID: 37467318 PMCID: PMC10859734 DOI: 10.1126/scitranslmed.ade3341] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 06/29/2023] [Indexed: 07/21/2023]
Abstract
Allogeneic natural killer (NK) cell adoptive transfer has shown the potential to induce remissions in relapsed or refractory leukemias and lymphomas, but strategies to enhance NK cell survival and function are needed to improve clinical efficacy. Here, we demonstrated that NK cells cultured ex vivo with interleukin-15 (IL-15) and nicotinamide (NAM) exhibited stable induction of l-selectin (CD62L), a lymphocyte adhesion molecule important for lymph node homing. High frequencies of CD62L were associated with elevated transcription factor forkhead box O1 (FOXO1), and NAM promoted the stability of FOXO1 by preventing proteasomal degradation. NK cells cultured with NAM exhibited metabolic changes associated with elevated glucose flux and protection against oxidative stress. NK cells incubated with NAM also displayed enhanced cytotoxicity and inflammatory cytokine production and preferentially persisted in xenogeneic adoptive transfer experiments. We also conducted a first-in-human phase 1 clinical trial testing adoptive transfer of NK cells expanded ex vivo with IL-15 and NAM (GDA-201) combined with monoclonal antibodies in patients with relapsed or refractory non-Hodgkin lymphoma (NHL) and multiple myeloma (MM) (NCT03019666). Cellular therapy with GDA-201 and rituximab was well tolerated and yielded an overall response rate of 74% in 19 patients with advanced NHL. Thirteen patients had a complete response, and 1 patient had a partial response. GDA-201 cells were detected for up to 14 days in blood, bone marrow, and tumor tissues and maintained a favorable metabolic profile. The safety and efficacy of GDA-201 in this study support further development as a cancer therapy.
Collapse
|
Research Support, N.I.H., Extramural |
2 |
12 |
5
|
Hosseinalizadeh H, Rahmati M, Ebrahimi A, O’Connor RS. Current Status and Challenges of Vaccination Therapy for Glioblastoma. Mol Cancer Ther 2023; 22:435-446. [PMID: 36779991 PMCID: PMC10155120 DOI: 10.1158/1535-7163.mct-22-0503] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/15/2022] [Accepted: 01/25/2023] [Indexed: 02/14/2023]
Abstract
Glioblastoma (GBM), also known as grade IV astrocytoma, is the most common and deadly type of central nervous system malignancy in adults. Despite significant breakthroughs in current GBM treatments such as surgery, radiotherapy, and chemotherapy, the prognosis for late-stage glioblastoma remains bleak due to tumor recurrence following surgical resection. The poor prognosis highlights the evident and pressing need for more efficient and targeted treatment. Vaccination has successfully treated patients with advanced colorectal and lung cancer. Therefore, the potential value of using tumor vaccines in treating glioblastoma is increasingly discussed as a monotherapy or in combination with other cellular immunotherapies. Cancer vaccination includes both passive administration of monoclonal antibodies and active vaccination procedures to activate, boost, or bias antitumor immunity against cancer cells. This article focuses on active immunotherapy with peptide, genetic (DNA, mRNA), and cell-based vaccines in treating GBM and reviews the various treatment approaches currently being tested. Although the ease of synthesis, relative safety, and ability to elicit tumor-specific immune responses have made these vaccines an invaluable tool for cancer treatment, more extensive cohort studies and better guidelines are needed to improve the efficacy of these vaccines in anti-GBM therapy.
Collapse
|
Research Support, N.I.H., Extramural |
2 |
10 |
6
|
Tu VY, Ayari A, O’Connor RS. Beyond the Lactate Paradox: How Lactate and Acidity Impact T Cell Therapies against Cancer. Antibodies (Basel) 2021; 10:25. [PMID: 34203136 PMCID: PMC8293081 DOI: 10.3390/antib10030025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/14/2021] [Accepted: 06/22/2021] [Indexed: 11/16/2022] Open
Abstract
T cell therapies, including CAR T cells, have proven more effective in hematologic malignancies than solid tumors, where the local metabolic environment is distinctly immunosuppressive. In particular, the acidic and hypoxic features of the tumor microenvironment (TME) present a unique challenge for T cells. Local metabolism is an important consideration for activated T cells as they undergo bursts of migration, proliferation and differentiation in hostile soil. Tumor cells and activated T cells both produce lactic acid at high rates. The role of lactic acid in T cell biology is complex, as lactate is an often-neglected carbon source that can fuel TCA anaplerosis. Circulating lactate is also an important means to regulate redox balance. In hypoxic tumors, lactate is immune-suppressive. Here, we discuss how intrinsic- (T cells) as well as extrinsic (tumor cells and micro-environmental)-derived metabolic factors, including lactate, suppress the ability of antigen-specific T cells to eradicate tumors. Finally, we introduce recent discoveries that target the TME in order to potentiate T cell-based therapies against cancer.
Collapse
|
Review |
4 |
7 |
7
|
Mohamed FA, Thangavelu G, Rhee SY, Sage PT, O’Connor RS, Rathmell JC, Blazar BR. Recent Metabolic Advances for Preventing and Treating Acute and Chronic Graft Versus Host Disease. Front Immunol 2021; 12:757836. [PMID: 34712243 PMCID: PMC8546182 DOI: 10.3389/fimmu.2021.757836] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/13/2021] [Indexed: 01/14/2023] Open
Abstract
The therapeutic efficacy of allogeneic hematopoietic stem cell transplantation (allo-HSCT) is limited by the development of graft-versus-host disease (GVHD). In GVHD, rigorous pre-conditioning regimen resets the immune landscape and inflammatory milieu causing immune dysregulation, characterized by an expansion of alloreactive cells and a reduction in immune regulatory cells. In acute GVHD (aGVHD), the release of damage- and pathogen- associated molecular patterns from damaged tissue caused by the conditioning regimen sets the stage for T cell priming, activation and expansion further exacerbating tissue injury and organ damage, particularly in the gastrointestinal tract. Studies have shown that donor T cells utilize multiple energetic and biosynthetic pathways to mediate GVHD that can be distinct from the pathways used by regulatory T cells for their suppressive function. In chronic GVHD (cGVHD), donor T cells may differentiate into IL-21 producing T follicular helper cells or tissue resident T helper cells that cooperate with germinal center B cells or memory B cells, respectively, to produce allo- and auto-reactive antibodies with subsequent tissue fibrosis. Alternatively, donor T cells can become IFN- γ/IL-17 cytokine expressing T cells that mediate sclerodermatous skin injury. Patients refractory to the first line standard regimens for GVHD treatment have a poor prognosis indicating an urgent need for new therapies to restore the balance between effector and regulatory immune cells while preserving the beneficial graft-versus-tumor effect. Emerging data points toward a role for metabolism in regulating these allo- and auto-immune responses. Here, we will discuss the preclinical and clinical data available on the distinct metabolic demands of acute and chronic GVHD and recent efforts in identifying therapeutic targets using metabolomics. Another dimension of this review will examine the changing microbiome after allo-HSCT and the role of microbial metabolites such as short chain fatty acids and long chain fatty acids on regulating immune responses. Lastly, we will examine the metabolic implications of coinhibitory pathway blockade and cellular therapies in allo-HSCT. In conclusion, greater understanding of metabolic pathways involved in immune cell dysregulation during allo-HSCT may pave the way to provide novel therapies to prevent and treat GVHD.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
4 |
8
|
Tang Y, Liu W, Kadu S, Johnson O, Hasanali ZS, Kelly A, Shestov A, Pajarillo R, Greenblatt E, Holmes M, Wang LP, Shih N, O’Connor RS, Ruella M, Garfall AL, Allman D, Vogl DT, Cohen A, June CH, Sheppard NC. Exploiting the CD200-CD200R immune checkpoint axis in multiple myeloma to enhance CAR T-cell therapy. Blood 2024; 143:139-151. [PMID: 37616575 PMCID: PMC10862366 DOI: 10.1182/blood.2022018658] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 06/22/2023] [Accepted: 07/15/2023] [Indexed: 08/26/2023] Open
Abstract
ABSTRACT Patients with multiple myeloma (MM) treated with B-cell maturation antigen (BCMA)-specific chimeric antigen receptor (CAR) T cells usually relapse with BCMA+ disease, indicative of CAR T-cell suppression. CD200 is an immune checkpoint that is overexpressed on aberrant plasma cells (aPCs) in MM and is an independent negative prognostic factor for survival. However, CD200 is not present on MM cell lines, a potential limitation of current preclinical models. We engineered MM cell lines to express CD200 at levels equivalent to those found on aPCs in MM and show that these are sufficient to suppress clinical-stage CAR T-cells targeting BCMA or the Tn glycoform of mucin 1 (TnMUC1), costimulated by 4-1BB and CD2, respectively. To prevent CD200-mediated suppression of CAR T cells, we compared CRISPR-Cas9-mediated knockout of the CD200 receptor (CD200RKO), to coexpression of versions of the CD200 receptor that were nonsignaling, that is, dominant negative (CD200RDN), or that leveraged the CD200 signal to provide CD28 costimulation (CD200R-CD28 switch). We found that the CD200R-CD28 switch potently enhanced the polyfunctionality of CAR T cells, and improved cytotoxicity, proliferative capacity, CAR T-cell metabolism, and performance in a chronic antigen exposure assay. CD200RDN provided modest benefits, but surprisingly, the CD200RKO was detrimental to CAR T-cell activity, adversely affecting CAR T-cell metabolism. These patterns held up in murine xenograft models of plasmacytoma, and disseminated bone marrow predominant disease. Our findings underscore the importance of CD200-mediated immune suppression in CAR T-cell therapy of MM, and highlight a promising approach to enhance such therapies by leveraging CD200 expression on aPCs to provide costimulation via a CD200R-CD28 switch.
Collapse
|
Research Support, N.I.H., Extramural |
1 |
1 |
9
|
Ayari A, O’Connor RS. Citius, Altius, Fortius: Performance in a Bottle for CAR T-Cells. JOURNAL OF CLINICAL HAEMATOLOGY 2020; 1:103-106. [PMID: 33554221 PMCID: PMC7861513 DOI: 10.33696/haematology.1.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
|
research-article |
5 |
|
10
|
Kozani PS, Kozani PS, O’Connor RS. Humanized Chimeric Antigen Receptor (CAR) T cells. JOURNAL OF CANCER IMMUNOLOGY 2021; 3:183-187. [PMID: 35128536 PMCID: PMC8813057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
|
research-article |
4 |
|
11
|
Veliz K, Shen F, Shestova O, Shestov M, Shestov A, Sleiman S, Hansen T, O’Connor RS, Gill S. Deletion of CD38 enhances CD19 chimeric antigen receptor T cell function. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200819. [PMID: 38912091 PMCID: PMC11193011 DOI: 10.1016/j.omton.2024.200819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/22/2024] [Indexed: 06/25/2024]
Abstract
Cell surface molecules transiently upregulated on activated T cells can play a counter-regulatory role by inhibiting T cell function. Deletion or blockade of such immune checkpoint receptors has been investigated to improve the function of engineered immune effector cells. CD38 is upregulated on activated T cells, and although there have been studies showing that CD38 can play an inhibitory role in T cells, how it does so has not fully been elucidated. In comparison with molecules such as PD1, CTLA4, LAG3, and TIM3, we found that CD38 displays more sustained and intense expression following acute activation. After deleting CD38 from human chimeric antigen receptor (CAR) T cells, we showed relative resistance to exhaustion in vitro and improved anti-tumor function in vivo. CD38 is a multifunctional ectoenzyme with hydrolase and cyclase activities. Reintroduction of CD38 mutants into T cells lacking CD38 provided further evidence supporting the understanding that CD38 plays a crucial role in producing the immunosuppressive metabolite adenosine and utilizing nicotinamide adenine dinucleotide (NAD) in human T cells. Taken together, these results highlight a role for CD38 as an immunometabolic checkpoint in T cells and lead us to propose CD38 deletion as an additional avenue for boosting CAR T cell function.
Collapse
|
research-article |
1 |
|
12
|
O’Connor RS. Checkmate: Metabolic flexibility with a STING in its tail. SCIENCE ADVANCES 2023; 9:eadm6816. [PMID: 38055812 PMCID: PMC10699789 DOI: 10.1126/sciadv.adm6816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Inhibiting a key metabolic enzyme, ACLY, in cancer cells impacts T cell function in immunotherapy-resistant tumors and may offer a target for therapeutic treatment.
Collapse
|
Review |
2 |
|