1
|
Higdon JV, Delage B, Williams DE, Dashwood RH. Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacol Res 2007; 55:224-36. [PMID: 17317210 PMCID: PMC2737735 DOI: 10.1016/j.phrs.2007.01.009] [Citation(s) in RCA: 675] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 11/09/2006] [Accepted: 01/19/2007] [Indexed: 12/21/2022]
Abstract
Cruciferous vegetables are a rich source of glucosinolates and their hydrolysis products, including indoles and isothiocyanates, and high intake of cruciferous vegetables has been associated with lower risk of lung and colorectal cancer in some epidemiological studies. Glucosinolate hydrolysis products alter the metabolism or activity of sex hormones in ways that could inhibit the development of hormone-sensitive cancers, but evidence of an inverse association between cruciferous vegetable intake and breast or prostate cancer in humans is limited and inconsistent. Organizations such as the National Cancer Institute recommend the consumption of five to nine servings of fruits and vegetables daily, but separate recommendations for cruciferous vegetables have not been established. Isothiocyanates and indoles derived from the hydrolysis of glucosinolates, such as sulforaphane and indole-3-carbinol (I3C), have been implicated in a variety of anticarcinogenic mechanisms, but deleterious effects also have been reported in some experimental protocols, including tumor promotion over prolonged periods of exposure. Epidemiological studies indicate that human exposure to isothiocyanates and indoles through cruciferous vegetable consumption may decrease cancer risk, but the protective effects may be influenced by individual genetic variation (polymorphisms) in the metabolism and elimination of isothiocyanates from the body. Cooking procedures also affect the bioavailability and intake of glucosinolates and their derivatives. Supplementation with I3C or the related dimer 3,3'-diindolylmethane (DIM) alters urinary estrogen metabolite profiles in women, but the effects of I3C and DIM on breast cancer risk are not known. Small preliminary trials in humans suggest that I3C supplementation may be beneficial in treating conditions related to human papilloma virus infection, such as cervical intraepithelial neoplasia and recurrent respiratory papillomatosis, but larger randomized controlled trials are needed.
Collapse
|
Review |
18 |
675 |
2
|
Clarke JD, Dashwood RH, Ho E. Multi-targeted prevention of cancer by sulforaphane. Cancer Lett 2008; 269:291-304. [PMID: 18504070 PMCID: PMC2579766 DOI: 10.1016/j.canlet.2008.04.018] [Citation(s) in RCA: 373] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 02/07/2008] [Accepted: 04/15/2008] [Indexed: 12/16/2022]
Abstract
Isothiocyanates are found in cruciferous vegetables such as broccoli, Brussels sprouts, cauliflower, and cabbage. Epidemiologic studies suggest that cruciferous vegetable intake may lower overall cancer risk, including colon and prostate cancer. Sulforaphane (SFN) is an isothiocyanate found in cruciferous vegetables and is especially high in broccoli and broccoli sprouts. SFN has proved to be an effective chemoprotective agent in cell culture, carcinogen-induced and genetic animal cancer models, as well as in xenograft models of cancer. Early research focused on the "blocking activity" of SFN via Phase 2 enzyme induction, as well as inhibition of enzymes involved in carcinogen activation, but there has been growing interest in other mechanisms of chemoprotection by SFN. Recent studies suggest that SFN offers protection against tumor development during the "post-initiation" phase and mechanisms for suppression effects of SFN, including cell cycle arrest and apoptosis induction are of particular interest. In humans, a key factor in determining the efficacy of SFN as a chemoprevention agent is gaining an understanding of the metabolism, distribution and bioavailability of SFN and the factors that alter these parameters. This review discusses the established anti-cancer properties of SFN, with an emphasis on the possible chemoprevention mechanisms. The current status of SFN in human clinical trials also is included, with consideration of the chemistry, metabolism, absorption and factors influencing SFN bioavailability.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
373 |
3
|
Myzak MC, Karplus PA, Chung FL, Dashwood RH. A novel mechanism of chemoprotection by sulforaphane: inhibition of histone deacetylase. Cancer Res 2004; 64:5767-74. [PMID: 15313918 DOI: 10.1158/0008-5472.can-04-1326] [Citation(s) in RCA: 368] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sulforaphane (SFN), a compound found at high levels in broccoli and broccoli sprouts, is a potent inducer of phase 2 detoxification enzymes and inhibits tumorigenesis in animal models. SFN also has a marked effect on cell cycle checkpoint controls and cell survival and/or apoptosis in various cancer cells, through mechanisms that are poorly understood. We tested the hypothesis that SFN acts as an inhibitor of histone deacetylase (HDAC). In human embryonic kidney 293 cells, SFN dose-dependently increased the activity of a beta-catenin-responsive reporter (TOPflash), without altering beta-catenin or HDAC protein levels. Cytoplasmic and nuclear extracts from these cells had diminished HDAC activity, and both global and localized histone acetylation was increased, compared with untreated controls. Studies with SFN and with media from SFN-treated cells indicated that the parent compound was not responsible for the inhibition of HDAC, and this was confirmed using an inhibitor of glutathione S-transferase, which blocked the first step in the metabolism of SFN, via the mercapturic acid pathway. Whereas SFN and its glutathione conjugate (SFN-GSH) had little or no effect, the two major metabolites SFN-cysteine and SFN-N-acetylcysteine were effective HDAC inhibitors in vitro. Finally, several of these findings were recapitulated in HCT116 human colorectal cancer cells: SFN dose-dependently increased TOPflash reporter activity and inhibited HDAC activity, there was an increase in acetylated histones and in p21(Cip1/Waf1), and chromatin immunoprecipitation assays revealed an increase in acetylated histones bound to the P21 promoter. Collectively, these findings suggest that SFN may be effective as a tumor-suppressing agent and as a chemotherapeutic agent, alone or in combination with other HDAC inhibitors currently undergoing clinical trials.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
368 |
4
|
Myzak MC, Dashwood WM, Orner GA, Ho E, Dashwood RH. Sulforaphane inhibits histone deacetylase in vivo and suppresses tumorigenesis in Apc-minus mice. FASEB J 2006; 20:506-8. [PMID: 16407454 PMCID: PMC2373266 DOI: 10.1096/fj.05-4785fje] [Citation(s) in RCA: 240] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sulforaphane (SFN) is an isothiocyanate from broccoli that induces phase 2 detoxification enzymes. We recently reported that SFN acts as a histone deacetylase (HDAC) inhibitor in human colon cancer cells in vitro, and the present study sought to extend these findings in vivo. In mice treated with a single oral dose of 10 mumol SFN, there was significant inhibition of HDAC activity in the colonic mucosa after 6 h, and immunoblots revealed a concomitant increase in acetylated histones H3 and H4, which returned to control levels by 48 h. Longer-term treatment with SFN in the diet resulted in levels of acetylated histones and p21(WAF1) in the ileum, colon, prostate, and peripheral blood mononuclear cells that were elevated compared with controls. Consistent with these findings, SFN suppressed tumor development in Apc(min) mice, and there was an increase in acetylated histones in the polyps, including acetylated histones specifically associated with the promoter region of the P21 and bax genes. These results provide the first evidence for HDAC inhibition by SFN in vivo and imply that such a mechanism might contribute to the cancer chemoprotective and therapeutic effects of SFN, alone or in combination with other HDAC inhibitors currently undergoing clinical trials.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
240 |
5
|
Myzak MC, Hardin K, Wang R, Dashwood RH, Ho E. Sulforaphane inhibits histone deacetylase activity in BPH-1, LnCaP and PC-3 prostate epithelial cells. Carcinogenesis 2006; 27:811-9. [PMID: 16280330 PMCID: PMC2276576 DOI: 10.1093/carcin/bgi265] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Sulforaphane (SFN), an isothiocyanate first isolated from broccoli, exhibits chemopreventive properties in prostate cancer cells through mechanisms that are poorly understood. We recently reported on a novel mechanism of chemoprotection by SFN in human colon cancer cells, namely the inhibition of histone deacetylase (HDAC). Here, we show that addition of 15 microM SFN also inhibited HDAC activity by 40, 30 and 40% in BPH-1, LnCaP and PC-3 prostate epithelial cells, respectively. The inhibition of HDAC was accompanied by a 50-100% increase in acetylated histones in all three prostate cell lines, and in BPH-1 cells treated with SFN there was enhanced interaction of acetylated histone H4 with the promoter region of the P21 gene and the bax gene. A corresponding 1.5- to 2-fold increase was seen for p21Cip1/Waf1 and Bax protein expression, consistent with previous studies using HDAC inhibitors, such as trichostatin A. The downstream events included cell cycle arrest and activation of apoptosis, as evidenced by changes in cell cycle kinetics and induction of multi-caspase activity. These findings provide new insight into the mechanisms of SFN action in benign prostate hyperplasia, androgen-dependent prostate cancer and androgen-independent prostate cancer cells, and they suggest a novel approach to chemoprotection and chemotherapy of prostate cancer through the inhibition of HDAC.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
208 |
6
|
Dashwood RH, Ho E. Dietary histone deacetylase inhibitors: from cells to mice to man. Semin Cancer Biol 2007; 17:363-9. [PMID: 17555985 PMCID: PMC2737738 DOI: 10.1016/j.semcancer.2007.04.001] [Citation(s) in RCA: 205] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 04/20/2007] [Accepted: 04/24/2007] [Indexed: 12/13/2022]
Abstract
Sulforaphane (SFN) is an isothiocyanate found in cruciferous vegetables, such as broccoli and broccoli sprouts. This anticarcinogen was first identified as a potent inducer of Phase 2 detoxification enzymes, but evidence is mounting that SFN also acts through epigenetic mechanisms. SFN has been shown to inhibit histone deacetylase (HDAC) activity in human colon and prostate cancer lines, with an increase in global and local histone acetylation status, such as on the promoter regions of P21 and bax genes. SFN also inhibited the growth of prostate cancer xenografts and spontaneous intestinal polyps in mouse models, with evidence for altered histone acetylation and HDAC activities in vivo. In human subjects, a single ingestion of 68 g broccoli sprouts inhibited HDAC activity in circulating peripheral blood mononuclear cells 3-6 h after consumption, with concomitant induction of histone H3 and H4 acetylation. These findings provide evidence that one mechanism of cancer chemoprevention by SFN is via epigenetic changes associated with inhibition of HDAC activity. Other dietary agents such as butyrate, biotin, lipoic acid, garlic organosulfur compounds, and metabolites of vitamin E have structural features compatible with HDAC inhibition. The ability of dietary compounds to de-repress epigenetically silenced genes in cancer cells, and to activate these genes in normal cells, has important implications for cancer prevention and therapy. In a broader context, there is growing interest in dietary HDAC inhibitors and their impact on epigenetic mechanisms affecting other chronic conditions, such as cardiovascular disease, neurodegeneration and aging.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
205 |
7
|
Liew C, Schut HA, Chin SF, Pariza MW, Dashwood RH. Protection of conjugated linoleic acids against 2-amino-3- methylimidazo[4,5-f]quinoline-induced colon carcinogenesis in the F344 rat: a study of inhibitory mechanisms. Carcinogenesis 1995; 16:3037-43. [PMID: 8603482 DOI: 10.1093/carcin/16.12.3037] [Citation(s) in RCA: 191] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Grilled ground beef contains a number of heterocyclic amine carcinogens, such as 2-amino-3-methylimidazo[4,5-f] quinoline (IQ), as well as anticarcinogenic conjugated linoleic acids (CLA). In the present study, CLA was administered to male F344 rats by gavage on alternating days in weeks 1-4, while IQ was given by gavage every other day in weeks 3 and 4 (100 mg/kg body wt). Rats were killed 6 h after the final carcinogen dose 16 in order to score colonic aberrant crypt foci (ACF). In the ACF study, CLA had no effect on the size of the foci, but inhibited significantly (P < 0.05) the number of ACF/colon, from 4.3 +/- 2.4 in controls to 1.1 +/- 1.3 in CLA-treated rats (mean +/- SD, n = 10). Rats given CLA also had significantly lower IQ-DNA adducts in the colon as determined by 32P-postlabeling analysis; relative adduct labeling levels (RAL x 10(7) for the major adduct were 9.13 +/- 2.6 in controls versus 5.42 +/- 1.8 in CLA-treated animals (P < 0.05). Mechanism studies indicated that CLA and other fatty acids interact with certain heterocyclic amines in a manner consistent with substrate-ligand binding. However, no such interaction occurred with IQ, and CLA failed to inhibit significantly the mutagenicity of N-hydroxy-IQ in the Salmonella assay. Liver microsomes from CLA-treated rats exhibited lower activities for dealkylation of 7-ethoxyresorufin and methoxyresorufin and activated IQ to DNA binding species less effectively than microsomes from control animals. Direct addition of CLA to the in vitro incubation inhibited IQ-DNA binding and was associated with increased recovery of unmetabolized parent compound. In the Salmonella assay, CLA inhibited the mutagenic activity of IQ in the presence of S9 or ram seminal vesicle microsomes. Collectively, these results support a mechanism involving inhibition of carcinogen activation by CLA, as opposed to direct interaction with the procarcinogen, scavenging of electrophiles or selective induction of phase I detoxification pathways.
Collapse
|
|
30 |
191 |
8
|
Ho E, Clarke JD, Dashwood RH. Dietary sulforaphane, a histone deacetylase inhibitor for cancer prevention. J Nutr 2009; 139:2393-6. [PMID: 19812222 PMCID: PMC2777483 DOI: 10.3945/jn.109.113332] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The reversible acetylation of histones is an important mechanism of gene regulation. During prostate cancer progression, specific modifications in acetylation patterns on histones are apparent. Targeting the epigenome, including the use of histone deacetylase (HDAC) inhibitors, is a novel strategy for cancer chemoprevention. Recently, drugs classified as HDAC inhibitors have shown promise in cancer clinical trials. We have previously found that sulforaphane (SFN), a compound found in cruciferous vegetables, inhibits HDAC activity in human colorectal and prostate cancer cells. Based on the similarity of SFN metabolites and other phytochemicals to known HDAC inhibitors, we previously demonstrated that sulforaphane acted as an HDAC inhibitor in the prostate, causing enhanced histone acetylation, derepression of P21 and Bax, and induction of cell cycle arrest/apoptosis, leading to cancer prevention. The ability of SFN to target aberrant acetylation patterns, in addition to effects on phase 2 enzymes, may make it an effective chemoprevention agent. These studies are important because of the potential to qualify or change recommendations for high-risk prostate cancer patients and thereby increase their survival through simple dietary choices incorporating easily accessible foods into their diets. These studies also will provide a strong scientific foundation for future large-scale human clinical intervention studies.
Collapse
|
research-article |
16 |
162 |
9
|
Rajendran P, Ho E, Williams DE, Dashwood RH. Dietary phytochemicals, HDAC inhibition, and DNA damage/repair defects in cancer cells. Clin Epigenetics 2011; 3:4. [PMID: 22247744 PMCID: PMC3255482 DOI: 10.1186/1868-7083-3-4] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 10/26/2011] [Indexed: 12/21/2022] Open
Abstract
Genomic instability is a common feature of cancer etiology. This provides an avenue for therapeutic intervention, since cancer cells are more susceptible than normal cells to DNA damaging agents. However, there is growing evidence that the epigenetic mechanisms that impact DNA methylation and histone status also contribute to genomic instability. The DNA damage response, for example, is modulated by the acetylation status of histone and non-histone proteins, and by the opposing activities of histone acetyltransferase and histone deacetylase (HDAC) enzymes. Many HDACs overexpressed in cancer cells have been implicated in protecting such cells from genotoxic insults. Thus, HDAC inhibitors, in addition to unsilencing tumor suppressor genes, also can silence DNA repair pathways, inactivate non-histone proteins that are required for DNA stability, and induce reactive oxygen species and DNA double-strand breaks. This review summarizes how dietary phytochemicals that affect the epigenome also can trigger DNA damage and repair mechanisms. Where such data is available, examples are cited from studies in vitro and in vivo of polyphenols, organosulfur/organoselenium compounds, indoles, sesquiterpene lactones, and miscellaneous agents such as anacardic acid. Finally, by virtue of their genetic and epigenetic mechanisms, cancer chemopreventive agents are being redefined as chemo- or radio-sensitizers. A sustained DNA damage response coupled with insufficient repair may be a pivotal mechanism for apoptosis induction in cancer cells exposed to dietary phytochemicals. Future research, including appropriate clinical investigation, should clarify these emerging concepts in the context of both genetic and epigenetic mechanisms dysregulated in cancer, and the pros and cons of specific dietary intervention strategies.
Collapse
|
Journal Article |
14 |
144 |
10
|
Clarke JD, Hsu A, Williams DE, Dashwood RH, Stevens JF, Ho E. Metabolism and tissue distribution of sulforaphane in Nrf2 knockout and wild-type mice. Pharm Res 2011; 28:3171-9. [PMID: 21681606 PMCID: PMC3253624 DOI: 10.1007/s11095-011-0500-z] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 05/27/2011] [Indexed: 02/06/2023]
Abstract
PURPOSE To determine the metabolism and tissue distribution of the dietary chemoprotective agent sulforaphane following oral administration to wild-type and Nrf2 knockout (Nrf2(-/-)) mice. METHODS Male and female wild-type and Nrf2(-/-) mice were given sulforaphane (5 or 20 μmoles) by oral gavage; plasma, liver, kidney, small intestine, colon, lung, brain and prostate were collected at 2, 6 and 24 h (h). The five major metabolites of sulforaphane were measured in tissues by high performance liquid chromatography coupled with tandem mass spectrometry. RESULTS Sulforaphane metabolites were detected in all tissues at 2 and 6 h post gavage, with the highest concentrations in the small intestine, prostate, kidney and lung. A dose-dependent increase in sulforaphane concentrations was observed in all tissues except prostate. At 5 μmole, Nrf2(-/-) genotype had no effect on sulforaphane metabolism. Only Nrf2(-/-) females given 20 μmoles sulforaphane for 6 h exhibited a marked increase in tissue sulforaphane metabolite concentrations. The relative abundance of each metabolite was not strikingly different between genders and genotypes. CONCLUSIONS Sulforaphane is metabolized and reaches target tissues in wild-type and Nrf2(-/-) mice. These data provide further evidence that sulforaphane is bioavailable and may be an effective dietary chemoprevention agent for several tissue sites.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
133 |
11
|
Clarke JD, Hsu A, Yu Z, Dashwood RH, Ho E. Differential effects of sulforaphane on histone deacetylases, cell cycle arrest and apoptosis in normal prostate cells versus hyperplastic and cancerous prostate cells. Mol Nutr Food Res 2011; 55:999-1009. [PMID: 21374800 PMCID: PMC3129466 DOI: 10.1002/mnfr.201000547] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 12/14/2010] [Accepted: 12/22/2010] [Indexed: 12/21/2022]
Abstract
SCOPE Sulforaphane (SFN) is an isothiocyanate derived from cruciferous vegetables such as broccoli. The ability of SFN to inhibit histone deacetylase (HDAC) enzymes may be one mechanism by which it acts as a chemoprevention agent. The ability of a chemopreventive agent to specifically cause cytotoxicity in cancer and not normal cells is an important factor in determining its safety and clinical relevance. METHODS AND RESULTS We characterized the effects of SFN in normal (PrEC), benign hyperplasia (BPH1) and cancerous (LnCap and PC3) prostate epithelial cells. We observed that 15 μM SFN selectively induced cell cycle arrest and apoptosis in BPH1, LnCap and PC3 cells but not PrEC cells. SFN treatment also selectively decreased HDAC activity, and Class I and II HDAC proteins, increased acetylated histone H3 at the promoter for P21, induced p21 expression and increased tubulin acetylation in prostate cancer cells. HDAC6 over-expression was able to reverse SFN-induced cyotoxicity. In PrEC cells, SFN caused only a transient reduction in HDAC activity with no change in any other endpoints tested. The differences in sensitivity to SFN in PrEC and PC3 are likely not due to differences in SFN metabolism or differences in phase 2 enzyme induction. CONCLUSION SFN exerts differential effects on cell proliferation, HDAC activity and downstream targets in normal and cancer cells.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
131 |
12
|
Myzak MC, Dashwood RH. Chemoprotection by sulforaphane: keep one eye beyond Keap1. Cancer Lett 2006; 233:208-18. [PMID: 16520150 PMCID: PMC2276573 DOI: 10.1016/j.canlet.2005.02.033] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Accepted: 02/25/2005] [Indexed: 11/24/2022]
Abstract
Sulforaphane (SFN) is an isothiocyanate found in cruciferous vegetables, with particularly high levels detected in broccoli and broccoli sprouts. Over a decade ago, this phytochemical was identified as a likely chemopreventive agent based on its ability to induce Phase 2 detoxification enzymes, as well as to inhibit Phase 1 enzymes involved in carcinogen activation. Considerable attention has focused on SFN as a 'blocking' agent, with the ability to modulate the Nrf2/Keap1 pathway, but recent evidence suggests that SFN acts by numerous other mechanisms. SFN induces cell cycle arrest and apoptosis in cancer cells, inhibits tubulin polymerization, activates checkpoint 2 kinase, and inhibits histone deacetylase activity. The latter findings suggest that SFN may be effective during the post-initiation stages of carcinogenesis, as a 'suppressing' agent. Moreover, pharmacological administration of SFN may be a promising therapeutic approach to the treatment of cancers, including those characterized by increased inflammation and involving viral or bacterial-related pathologies. The present review discusses the more widely established chemoprotective mechanisms of SFN, but makes the case for additional work on mechanisms that might be of importance during later stages of carcinogenesis, beyond Keap1.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
127 |
13
|
Nian H, Delage B, Ho E, Dashwood RH. Modulation of histone deacetylase activity by dietary isothiocyanates and allyl sulfides: studies with sulforaphane and garlic organosulfur compounds. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2009; 50:213-21. [PMID: 19197985 PMCID: PMC2701665 DOI: 10.1002/em.20454] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Histone deacetylase (HDAC) inhibitors reactivate epigenetically-silenced genes in cancer cells, triggering cell cycle arrest and apoptosis. Recent evidence suggests that dietary constituents can act as HDAC inhibitors, such as the isothiocyanates found in cruciferous vegetables and the allyl compounds present in garlic. Broccoli sprouts are a rich source of sulforaphane (SFN), an isothiocyanate that is metabolized via the mercapturic acid pathway and inhibits HDAC activity in human colon, prostate, and breast cancer cells. In mouse preclinical models, SFN inhibited HDAC activity and induced histone hyperacetylation coincident with tumor suppression. Inhibition of HDAC activity also was observed in circulating peripheral blood mononuclear cells obtained from people who consumed a single serving of broccoli sprouts. Garlic organosulfur compounds can be metabolized to allyl mercaptan (AM), a competitive HDAC inhibitor that induced rapid and sustained histone hyperacetylation in human colon cancer cells. Inhibition of HDAC activity by AM was associated with increased histone acetylation and Sp3 transcription factor binding to the promoter region of the P21WAF1 gene, resulting in elevated p21 protein expression and cell cycle arrest. Collectively, the results from these studies, and others reviewed herein, provide new insights into the relationships between reversible histone modifications, diet, and cancer chemoprevention.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
123 |
14
|
Dashwood RH, Myzak MC, Ho E. Dietary HDAC inhibitors: time to rethink weak ligands in cancer chemoprevention? Carcinogenesis 2006; 27:344-9. [PMID: 16267097 PMCID: PMC2267878 DOI: 10.1093/carcin/bgi253] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
There is growing interest in the various mechanisms that regulate chromatin remodeling, including modulation of histone deacetylase (HDAC) activities. Competitive HDAC inhibitors disrupt the cell cycle and/or induce apoptosis via de-repression of genes such as P21 and BAX, and cancer cells appear to be more sensitive than non-transformed cells to trichostatin A and related HDAC inhibitory compounds. This apparent selectivity of action in cancer cells makes HDAC inhibitors an attractive avenue for drug development. However, in the search for potent HDAC inhibitors with cancer therapeutic potential there has been a tendency to overlook or dismiss weak ligands that could prove effective in cancer prevention, including agents present in the human diet. Recent reports have described butyrate, diallyl disulfide and sulforaphane as HDAC inhibitors, and many other dietary agents will be probably discovered to attenuate HDAC activity. Here we discuss 'pharmacologic' agents that potently de-repress gene expression (e.g. during therapeutic intervention) versus dietary HDAC inhibitors that, as weak ligands, might subtly regulate the expression of genes involved in cell growth and apoptosis. An important question is the extent to which dietary HDAC inhibitors, and other dietary agents that affect gene expression via chromatin remodeling, modulate the expression of genes such as P21 and BAX so that cells can respond most effectively to external stimuli and toxic insults.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
122 |
15
|
Santana-Rios G, Orner GA, Amantana A, Provost C, Wu SY, Dashwood RH. Potent antimutagenic activity of white tea in comparison with green tea in the Salmonella assay. Mutat Res 2001; 495:61-74. [PMID: 11448643 DOI: 10.1016/s1383-5718(01)00200-5] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
There is growing interest in the potential health benefits of tea, including the antimutagenic properties. Four varieties of white tea, which represent the least processed form of tea, were shown to have marked antimutagenic activity in the Salmonella assay, particularly in the presence of S9. The most active of these teas, Exotica China white tea, was significantly more effective than Premium green tea (Dragonwell special grade) against 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) and four other heterocyclic amine mutagens, namely 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), 2-amino-3,4,8-trimethyl-3H-imidazo[4,5-f]quinoxaline (4,8-DiMeIQx), 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), and 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2). Mechanism studies were performed using rat liver S9 in assays for methoxyresorufin O-demethylase (MROD), a marker for the enzyme cytochrome P4501A2 that activates heterocyclic amines, as well as Salmonella assays with the direct-acting mutagen 2-hydroxyamino-3-methylimidazo[4,5-f]quinoline (N-hydroxy-IQ). White tea at low concentrations in the assay inhibited MROD activity, and attenuated the mutagenic activity of N-hydroxy-IQ in the absence of S9. Nine of the major constituents found in green tea also were detected in white tea, including high levels of epigallocatechin-3-gallate (EGCG) and several other polyphenols. When these major constituents were mixed to produce "artificial" teas, according to their relative levels in white and green teas, the complete tea exhibited higher antimutagenic potency compared with the corresponding artificial tea. The results suggest that the greater inhibitory potency of white versus green tea in the Salmonella assay might be related to the relative levels of the nine major constituents, perhaps acting synergistically with other (minor) constituents, to inhibit mutagen activation as well as "scavenging" the reactive intermediate(s).
Collapse
|
Comparative Study |
24 |
118 |
16
|
Myzak MC, Dashwood RH. Histone deacetylases as targets for dietary cancer preventive agents: lessons learned with butyrate, diallyl disulfide, and sulforaphane. Curr Drug Targets 2006; 7:443-52. [PMID: 16611031 DOI: 10.2174/138945006776359467] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cancer is a multi-factorial process involving genetic and epigenetic events which result in neoplastic transformation. Reversal of aberrant epigenetic events, including those that modulate the transcriptional activity of genes associated with various signaling pathways, holds the prospect of influencing multiple stages of tumorigenesis. Perturbation of normal histone acetylation status can result in undesirable phenotypic changes, including developmental disorders and cancer. Indeed, aberrant histone acetylation may be an etiological factor in several, if not all, types of cancer. In general, histone acetylation leads to chromatin remodeling and a de-repression of transcription. Histone deacetylase (HDAC) inhibitors may be useful for cancer prevention and therapy by virtue of their ability to 'reactivate' the expression of epigenetically silenced genes, including those involved in differentiation, cell cycle regulation, apoptosis, angiogenesis, invasion, and metastasis. Several natural and synthetic HDAC inhibitors have been shown to affect the growth and survival of tumor cells in vitro and in vivo. Interestingly, three dietary chemopreventive agents, butyrate, diallyl disulfide, and sulforaphane, also have HDAC inhibitory activity. This review discusses the role of aberrant histone acetylation in tumorigenesis and describes the potential for cancer chemoprevention and therapy with a particular emphasis on dietary HDAC inhibitors.
Collapse
|
Review |
19 |
106 |
17
|
Xu M, Bailey AC, Hernaez JF, Taoka CR, Schut HA, Dashwood RH. Protection by green tea, black tea, and indole-3-carbinol against 2-amino-3-methylimidazo[4,5-f]quinoline-induced DNA adducts and colonic aberrant crypts in the F344 rat. Carcinogenesis 1996; 17:1429-34. [PMID: 8706244 DOI: 10.1093/carcin/17.7.1429] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Male F344 rats were exposed for 8 weeks to extracts of green tea (2% w/v) or black tea (1% w/v), or to 0.1% dietary indole-3-carbinol (I3C). In weeks 3 and 4 of the study, rats were given 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) every other day by oral gavage (50 mg/kg body wt) in order to induce aberrant crypt foci (ACF) in the colon. Compared with controls given IQ alone, all three inhibitors reduced the number of total aberrant crypts per colon, and green tea and I3C inhibited significantly the mean number of ACF (P < 0.05). Rats pre-treated with green tea, black tea, or I3C and given a single p.o. injection of 50 mg IQ/kg body wt 24-48 h before sacrifice had reduced levels of IQ-DNA adducts in the liver, and excreted lower amounts of IQ and other promutagens in the urine and feces. Inhibitors also reduced the excretion of IQ-sulfamate in the urine, but increased the relative amounts of IQ-5-O-sulfate and IQ-5-O-glucuronide. Western blotting together with assays for 7-ethoxyresorufin O-deethylase and methoxyresorufin O-demethylase established that I3C preferentially induced cytochrome P4501A1 over 1A2, consistent with the altered profile of urinary metabolites. However, both teas caused slight induction of cytochrome P4501A2 versus 1A1, which would be predicted to enhance the activation of IQ. Thus, green tea and black tea are likely to protect against IQ-DNA adducts and ACF by mechanisms other than induction of cytochromes P450, such as inhibition of enzymes which activate IQ or the scavenging of reactive intermediates.
Collapse
|
Comparative Study |
29 |
105 |
18
|
Atwell LL, Hsu A, Wong CP, Stevens JF, Bella D, Yu TW, Pereira CB, Löhr CV, Christensen JM, Dashwood RH, Williams DE, Shannon J, Ho E. Absorption and chemopreventive targets of sulforaphane in humans following consumption of broccoli sprouts or a myrosinase-treated broccoli sprout extract. Mol Nutr Food Res 2015; 59:424-33. [PMID: 25522265 DOI: 10.1002/mnfr.201400674] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 11/17/2014] [Accepted: 11/18/2014] [Indexed: 01/28/2023]
Abstract
SCOPE Sulforaphane (SFN), an isothiocyanate derived from crucifers, has numerous health benefits. SFN bioavailability from dietary sources is a critical determinant of its efficacy in humans. A key factor in SFN absorption is the release of SFN from its glucosinolate precursor, glucoraphanin, by myrosinase. Dietary supplements are used in clinical trials to deliver consistent SFN doses, but myrosinase is often inactivated in available supplements. We evaluated SFN absorption from a myrosinase-treated broccoli sprout extract (BSE) and are the first to report effects of twice daily, oral dosing on SFN exposure in healthy adults. METHODS AND RESULTS Subjects consumed fresh broccoli sprouts or the BSE, each providing 200 μmol SFN daily, as a single dose and as two 100-μmol doses taken 12 h apart. Using HPLC-MS/MS, we detected ∼3 x higher SFN metabolite levels in plasma and urine of sprout consumers, indicating enhanced SFN absorption from sprouts. Twelve-hour dosing retained higher plasma SFN metabolite levels at later time points than 24-hour dosing. No dose responses were observed for molecular targets of SFN (i.e. heme oxygenase-1, histone deacetylase activity, p21). CONCLUSION We conclude that the dietary form and dosing schedule of SFN may impact SFN absorption and efficacy in human trials.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
103 |
19
|
Ashktorab H, Belgrave K, Hosseinkhah F, Brim H, Nouraie M, Takkikto M, Hewitt S, Lee EL, Dashwood RH, Smoot D. Global histone H4 acetylation and HDAC2 expression in colon adenoma and carcinoma. Dig Dis Sci 2009; 54:2109-17. [PMID: 19057998 PMCID: PMC2737733 DOI: 10.1007/s10620-008-0601-7] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 10/22/2008] [Indexed: 12/20/2022]
Abstract
Chromatin remodeling and activation of transcription are important aspects of gene regulation, but these often go awry in disease progression, including during colon cancer development. We investigated the status of global histone acetylation (by measuring H3, H4 acetylation of lysine residues, which also occur over large regions of chromatin including coding regions and non-promoter sequences) and expression of histone deacetylase 2 (HDAC2) in colorectal cancer (CRC) tissue microarrays using immunohistochemical staining. Specifically, HDAC2 and the acetylation of histones H4K12 and H3K18 were evaluated in 134 colonic adenomas, 55 moderate to well differentiated carcinomas, and 4 poorly differentiated carcinomas compared to matched normal tissue. In addition, the correlation between expression of these epigenetic biomarkers and various clinicopathological factors including, age, location, and stage of the disease were analyzed. HDAC2 nuclear expression was detected at high levels in 81.9%, 62.1%, and 53.1% of CRC, adenomas, and normal tissue, respectively (P = 0.002). The corresponding nuclear global expression levels in moderate to well differentiated tumors for H4K12 and H3K18 acetylation were increased while these levels were decreased in poorly differentiated tumors (P = 0.02). HDAC2 expression was correlated significantly with progression of adenoma to carcinoma (P = 0.002), with a discriminative power of 0.74, when comparing cancer and non-cancer cases. These results suggest HDAC2 expression is significantly associated with CRC progression.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
101 |
20
|
Rajendran P, Delage B, Dashwood WM, Yu TW, Wuth B, Williams DE, Ho E, Dashwood RH. Histone deacetylase turnover and recovery in sulforaphane-treated colon cancer cells: competing actions of 14-3-3 and Pin1 in HDAC3/SMRT corepressor complex dissociation/reassembly. Mol Cancer 2011; 10:68. [PMID: 21624135 PMCID: PMC3127849 DOI: 10.1186/1476-4598-10-68] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Accepted: 05/30/2011] [Indexed: 02/08/2023] Open
Abstract
Background Histone deacetylase (HDAC) inhibitors are currently undergoing clinical evaluation as anti-cancer agents. Dietary constituents share certain properties of HDAC inhibitor drugs, including the ability to induce global histone acetylation, turn-on epigenetically-silenced genes, and trigger cell cycle arrest, apoptosis, or differentiation in cancer cells. One such example is sulforaphane (SFN), an isothiocyanate derived from the glucosinolate precursor glucoraphanin, which is abundant in broccoli. Here, we examined the time-course and reversibility of SFN-induced HDAC changes in human colon cancer cells. Results Cells underwent progressive G2/M arrest over the period 6-72 h after SFN treatment, during which time HDAC activity increased in the vehicle-treated controls but not in SFN-treated cells. There was a time-dependent loss of class I and selected class II HDAC proteins, with HDAC3 depletion detected ahead of other HDACs. Mechanism studies revealed no apparent effect of calpain, proteasome, protease or caspase inhibitors, but HDAC3 was rescued by cycloheximide or actinomycin D treatment. Among the protein partners implicated in the HDAC3 turnover mechanism, silencing mediator for retinoid and thyroid hormone receptors (SMRT) was phosphorylated in the nucleus within 6 h of SFN treatment, as was HDAC3 itself. Co-immunoprecipitation assays revealed SFN-induced dissociation of HDAC3/SMRT complexes coinciding with increased binding of HDAC3 to 14-3-3 and peptidyl-prolyl cis/trans isomerase 1 (Pin1). Pin1 knockdown blocked the SFN-induced loss of HDAC3. Finally, SFN treatment for 6 or 24 h followed by SFN removal from the culture media led to complete recovery of HDAC activity and HDAC protein expression, during which time cells were released from G2/M arrest. Conclusion The current investigation supports a model in which protein kinase CK2 phosphorylates SMRT and HDAC3 in the nucleus, resulting in dissociation of the corepressor complex and enhanced binding of HDAC3 to 14-3-3 or Pin1. In the cytoplasm, release of HDAC3 from 14-3-3 followed by nuclear import is postulated to compete with a Pin1 pathway that directs HDAC3 for degradation. The latter pathway predominates in colon cancer cells exposed continuously to SFN, whereas the former pathway is likely to be favored when SFN has been removed within 24 h, allowing recovery from cell cycle arrest.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
101 |
21
|
Hsu A, Wong CP, Yu Z, Williams DE, Dashwood RH, Ho E. Promoter de-methylation of cyclin D2 by sulforaphane in prostate cancer cells. Clin Epigenetics 2011; 3:3. [PMID: 22303414 PMCID: PMC3257546 DOI: 10.1186/1868-7083-3-3] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 10/26/2011] [Indexed: 12/11/2022] Open
Abstract
Sulforaphane (SFN), an isothiocyanate derived from cruciferous vegetables, induces potent anti-proliferative effects in prostate cancer cells. One mechanism that may contribute to the anti-proliferative effects of SFN is the modulation of epigenetic marks, such as inhibition of histone deacetylase (HDAC) enzymes. However, the effects of SFN on other common epigenetic marks such as DNA methylation are understudied. Promoter hyper-methylation of cyclin D2, a major regulator of cell cycle, is correlated with prostate cancer progression, and restoration of cyclin D2 expression exerts anti-proliferative effects on LnCap prostate cancer cells. Our study aimed to investigate the effects of SFN on DNA methylation status of cyclin D2 promoter, and how alteration in promoter methylation impacts cyclin D2 gene expression in LnCap cells. We found that SFN significantly decreased the expression of DNA methyltransferases (DNMTs), especially DNMT1 and DNMT3b. Furthermore, SFN significantly decreased methylation in cyclin D2 promoter regions containing c-Myc and multiple Sp1 binding sites. Reduced methlyation of cyclin D2 promoter corresponded to an increase in cyclin D2 transcript levels, suggesting that SFN may de-repress methylation-silenced cyclin D2 by impacting epigenetic pathways. Our results demonstrated the ability of SFN to epigenetically modulate cyclin D2 expression, and provide novel insights into the mechanisms by which SFN may regulate gene expression as a prostate cancer chemopreventive agent.
Collapse
|
Journal Article |
14 |
100 |
22
|
Dashwood WM, Orner GA, Dashwood RH. Inhibition of beta-catenin/Tcf activity by white tea, green tea, and epigallocatechin-3-gallate (EGCG): minor contribution of H(2)O(2) at physiologically relevant EGCG concentrations. Biochem Biophys Res Commun 2002; 296:584-8. [PMID: 12176021 DOI: 10.1016/s0006-291x(02)00914-2] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Epigallocatechin-3-gallate (EGCG) is the major polyphenol present in white tea and green tea. Recently, it was reported that the addition of EGCG and other tea polyphenols to cell culture media, minus cells, generated significant levels of H(2)O(2), with the corollary that this might represent an "artifact" in cell culture studies which seek to examine the chemopreventive mechanisms of tea. We show here that in cell growth media with and without serum, and in growth media containing human embryonic kidney 293 (HEK293) cells plus serum, physiologically relevant concentrations of EGCG (< or =25 microM) generated H(2)O(2) with a peak concentration of the order of 10-12 microM. However, addition of 20 microM H(2)O(2) directly to HEK293 cells transiently transfected with wild-type or mutant beta-catenin constructs and TCF-4 had no significant effect on beta-catenin/TCF-4 reporter activity or beta-catenin expression levels. In contrast, 2-25 microM EGCG inhibited beta-catenin/TCF-4 reporter activity in a concentration-dependent fashion and there was a concomitant reduction in beta-catenin protein levels in the cell lysates without changes in TCF-4 expression. The inhibition of reporter activity was recapitulated by white tea and green tea, each tested at a 25 microM EGCG equivalent concentration in the assay, and this was unaffected by the addition of exogenous catalase. The results indicate that physiologically relevant concentrations of tea and EGCG inhibit beta-catenin/TCF-4 reporter activity in HEK293 cells due to reduced expression of beta-catenin and that this is unlikely to be an artifact of H(2)O(2) generation under the assay conditions used here. These data are consistent with the findings from in vivo studies, showing the suppression of intestinal polyps by tea, via an apparent down-regulation of beta-catenin and Wnt target genes.
Collapse
|
|
23 |
98 |
23
|
Mastaloudis A, Yu TW, O'Donnell RP, Frei B, Dashwood RH, Traber MG. Endurance exercise results in DNA damage as detected by the comet assay. Free Radic Biol Med 2004; 36:966-75. [PMID: 15059637 DOI: 10.1016/j.freeradbiomed.2004.01.012] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2003] [Revised: 12/22/2003] [Accepted: 01/15/2004] [Indexed: 12/11/2022]
Abstract
To determine if 6 weeks of supplementation with antioxidants could alleviate exercise-induced DNA damage, we studied 21 runners during a 50 km ultramarathon. Subjects were randomly assigned to one of two groups: (1) placebos (PL) or (2) antioxidants (AO) (1000 mg vitamin C and 400 IU RRR-alpha-tocopheryl acetate). The comet assay was used to assess DNA damage in circulating leukocytes at selected time points: pre-, mid-, and 2 h postrace and daily for 6 days postrace. All subjects completed the race: run time 7.1 +/- 0.1 h, energy expenditure 5008 +/- 80 kcal for women (n = 10) and 6932 +/- 206 kcal for men (n = 11). Overall, the percentage DNA damage increased at midrace (p <.02), but returned to baseline by 2 h postrace, indicating that the exercise bout induced nonpersistent DNA damage. There was a gender x treatment x time interaction (p <.01). One day postrace, women taking AO had 62% less DNA damage than women taking PL (p <.0008). In contrast, there were no statistically significant differences between the two treatment groups of men at any time point. Thus, endurance exercise resulted in DNA damage as shown by the comet assay and AO seemed to enhance recovery in women but not in men.
Collapse
|
Clinical Trial |
21 |
94 |
24
|
Rajendran P, Kidane AI, Yu TW, Dashwood WM, Bisson WH, Löhr CV, Ho E, Williams DE, Dashwood RH. HDAC turnover, CtIP acetylation and dysregulated DNA damage signaling in colon cancer cells treated with sulforaphane and related dietary isothiocyanates. Epigenetics 2013; 8:612-23. [PMID: 23770684 PMCID: PMC3857341 DOI: 10.4161/epi.24710] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Histone deacetylases (HDACs) and acetyltransferases have important roles in the regulation of protein acetylation, chromatin dynamics and the DNA damage response. Here, we show in human colon cancer cells that dietary isothiocyanates (ITCs) inhibit HDAC activity and increase HDAC protein turnover with the potency proportional to alkyl chain length, i.e., AITC < sulforaphane (SFN) < 6-SFN < 9-SFN. Molecular docking studies provided insights into the interactions of ITC metabolites with HDAC3, implicating the allosteric site between HDAC3 and its co-repressor. ITCs induced DNA double-strand breaks and enhanced the phosphorylation of histone H2AX, ataxia telangiectasia and Rad3-related protein (ATR) and checkpoint kinase-2 (CHK2). Depending on the ITC and treatment conditions, phenotypic outcomes included cell growth arrest, autophagy and apoptosis. Coincident with the loss of HDAC3 and HDAC6, as well as SIRT6, ITCs enhanced the acetylation and subsequent degradation of critical repair proteins, such as CtIP, and this was recapitulated in HDAC knockdown experiments. Importantly, colon cancer cells were far more susceptible than non-cancer cells to ITC-induced DNA damage, which persisted in the former case but was scarcely detectable in non-cancer colonic epithelial cells under the same conditions. Future studies will address the mechanistic basis for dietary ITCs preferentially exploiting HDAC turnover mechanisms and faulty DNA repair pathways in colon cancer cells vs. normal cells.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
93 |
25
|
Nian H, Delage B, Pinto JT, Dashwood RH. Allyl mercaptan, a garlic-derived organosulfur compound, inhibits histone deacetylase and enhances Sp3 binding on the P21WAF1 promoter. Carcinogenesis 2008; 29:1816-24. [PMID: 18628250 PMCID: PMC2722850 DOI: 10.1093/carcin/bgn165] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 07/07/2008] [Accepted: 07/08/2008] [Indexed: 12/21/2022] Open
Abstract
Histone deacetylase (HDAC) inhibitors have the potential to derepress epigenetically silenced genes in cancer cells, leading to cell cycle arrest and apoptosis. In the present study, we screened several garlic-derived small organosulfur compounds for their ability to inhibit HDAC activity in vitro. Among the organosulfur compounds examined, allyl mercaptan (AM) was the most potent HDAC inhibitor. Molecular modeling, structure activity and enzyme kinetics studies with purified human HDAC8 provided evidence for a competitive mechanism (K(i) = 24 microM AM). In AM-treated human colon cancer cells, HDAC inhibition was accompanied by a rapid and sustained accumulation of acetylated histones in total cellular chromatin. Chromatin immunoprecipitation assays confirmed the presence of hyperacetylated histone H3 on the P21WAF1 gene promoter within 4 h of AM exposure, and there was increased binding of the transcription factor Sp3. At a later time, 24 h after AM treatment, there was enhanced binding of p53 in the distal enhancer region of the P21WAF1 gene promoter. These findings suggest a primary role for Sp3 in driving P21 gene expression after HDAC inhibition by AM, followed by the subsequent recruitment of p53. Induction of p21Waf1 protein expression was detected at time points between 3 and 72 h after AM treatment and coincided with growth arrest in G(1) of the cell cycle. The results are discussed in the context of other anticarcinogenic mechanisms ascribed to garlic organosulfur compounds and the metabolic conversion of such compounds to potential HDAC inhibitors in situ.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
88 |