1
|
Ouvrard-Pascaud A, Sainte-Marie Y, Bénitah JP, Perrier R, Soukaseum C, Nguyen Dinh Cat A, Royer A, Le Quang K, Charpentier F, Demolombe S, Mechta-Grigoriou F, Beggah AT, Maison-Blanche P, Oblin ME, Delcayre C, Fishman GI, Farman N, Escoubet B, Jaisser F. Conditional mineralocorticoid receptor expression in the heart leads to life-threatening arrhythmias. Circulation 2005; 111:3025-33. [PMID: 15939817 PMCID: PMC3635833 DOI: 10.1161/circulationaha.104.503706] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Life-threatening cardiac arrhythmia is a major source of mortality worldwide. Besides rare inherited monogenic diseases such as long-QT or Brugada syndromes, which reflect abnormalities in ion fluxes across cardiac ion channels as a final common pathway, arrhythmias are most frequently acquired and associated with heart disease. The mineralocorticoid hormone aldosterone is an important contributor to morbidity and mortality in heart failure, but its mechanisms of action are incompletely understood. METHODS AND RESULTS To specifically assess the role of the mineralocorticoid receptor (MR) in the heart, in the absence of changes in aldosteronemia, we generated a transgenic mouse model with conditional cardiac-specific overexpression of the human MR. Mice exhibit a high rate of death prevented by spironolactone, an MR antagonist used in human therapy. Cardiac MR overexpression led to ion channel remodeling, resulting in prolonged ventricular repolarization at both the cellular and integrated levels and in severe ventricular arrhythmias. CONCLUSIONS Our results indicate that cardiac MR triggers cardiac arrhythmias, suggesting novel opportunities for prevention of arrhythmia-related sudden death.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
202 |
2
|
Pereira L, Métrich M, Fernández-Velasco M, Lucas A, Leroy J, Perrier R, Morel E, Fischmeister R, Richard S, Bénitah JP, Lezoualc'h F, Gómez AM. The cAMP binding protein Epac modulates Ca2+ sparks by a Ca2+/calmodulin kinase signalling pathway in rat cardiac myocytes. J Physiol 2007; 583:685-94. [PMID: 17599964 PMCID: PMC2277038 DOI: 10.1113/jphysiol.2007.133066] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
cAMP is a powerful second messenger whose known general effector is protein kinase A (PKA). The identification of a cAMP binding protein, Epac, raises the question of its role in Ca(2+) signalling in cardiac myocytes. In this study, we analysed the effects of Epac activation on Ca(2+) handling by using confocal microscopy in isolated adult rat cardiomyocytes. [Ca(2+)](i) transients were evoked by electrical stimulation and Ca(2+) sparks were measured in quiescent myocytes. Epac was selectively activated by the cAMP analogue 8-(4-chlorophenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphate (8-CPT). Patch-clamp was used to record the L-type calcium current (I(Ca)), and Western blot to evaluate phosphorylated ryanodine receptor (RyR). [Ca(2+)](i) transients were slightly reduced by 10 microm 8-CPT (F/F(0): decreased from 4.7 +/- 0.5 to 3.8 +/- 0.4, P < 0.05), an effect that was boosted when cells were previously infected with an adenovirus encoding human Epac. I(Ca) was unaltered by Epac activation, so this cannot explain the decreased [Ca(2+)](i) transients. Instead, a decrease in the sarcoplasmic reticulum (SR) Ca(2+) load underlies the decrease in the [Ca(2+)](i) transients. This decrease in the SR Ca(2+) load was provoked by the increase in the SR Ca(2+) leak induced by Epac activation. 8-CPT significantly increased Ca(2+) spark frequency (Ca(2+) sparks s(-1) (100 microm)(-1): from 2.4 +/- 0.6 to 6.9 +/- 1.5, P < 0.01) while reducing their amplitude (F/F(0): 1.8 +/- 0.02 versus 1.6 +/- 0.01, P < 0.001) in a Ca(2+)/calmodulin kinase II (CaMKII)-dependent and PKA-independent manner. Accordingly, we found that Epac increased RyR phosphorylation at the CaMKII site. Altogether, our data reveal a new signalling pathway by which cAMP governs Ca(2+) release and signalling in cardiac myocytes.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
163 |
3
|
Brunati M, Perucca S, Han L, Cattaneo A, Consolato F, Andolfo A, Schaeffer C, Olinger E, Peng J, Santambrogio S, Perrier R, Li S, Bokhove M, Bachi A, Hummler E, Devuyst O, Wu Q, Jovine L, Rampoldi L. The serine protease hepsin mediates urinary secretion and polymerisation of Zona Pellucida domain protein uromodulin. eLife 2015; 4:e08887. [PMID: 26673890 PMCID: PMC4755741 DOI: 10.7554/elife.08887] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 11/02/2015] [Indexed: 12/28/2022] Open
Abstract
Uromodulin is the most abundant protein in the urine. It is exclusively produced by renal epithelial cells and it plays key roles in kidney function and disease. Uromodulin mainly exerts its function as an extracellular matrix whose assembly depends on a conserved, specific proteolytic cleavage leading to conformational activation of a Zona Pellucida (ZP) polymerisation domain. Through a comprehensive approach, including extensive characterisation of uromodulin processing in cellular models and in specific knock-out mice, we demonstrate that the membrane-bound serine protease hepsin is the enzyme responsible for the physiological cleavage of uromodulin. Our findings define a key aspect of uromodulin biology and identify the first in vivo substrate of hepsin. The identification of hepsin as the first protease involved in the release of a ZP domain protein is likely relevant for other members of this protein family, including several extracellular proteins, as egg coat proteins and inner ear tectorins. DOI:http://dx.doi.org/10.7554/eLife.08887.001 Several proteins in humans and other animals contain a region called a 'zona pellucida domain'. This domain enables these proteins to associate with each other and form long filaments. Uromodulin is one such protein that was first identified more than fifty years ago. This protein is known to play a role in human diseases such as hypertension and kidney failure, but uromodulin’s biological purpose still remains elusive. Uromodulin is only made in the kidney and it is the most abundant protein in the urine of healthy individuals. Uromodulin also contains a so-called 'external hydrophobic patch' that must be removed before the zona pellucida domain can start to form filaments. This hydrophobic patch is removed when uromodulin is cut by an unknown enzyme; this cutting releases the rest of the uromodulin protein from the surface of the cells that line the kidney into the urine. Brunati et al. have now tested a panel of candidate enzymes and identified that one called hepsin is able to cut uromodulin. Hepsin is embedded in the cell membrane of the cells that line the kidney. When the level of hepsin was artificially reduced in cells grown in the laboratory, uromodulin remained anchored to the cell surface, its processing was altered and it did not form filaments. Brunati et al. next analysed mice in which the gene encoding hepsin had been deleted. While these animals did not have any major defects in their internal organs, they had much lower levels of uromodulin in their urine. Furthermore, this residual urinary protein was not cut properly and it did not assemble into filaments. Thus, these findings reveal that hepsin is the enzyme that is responsible for releasing uromodulin in the urine. This discovery could be exploited to alter the levels of uromodulin release, and further studies using mice lacking hepsin may also help to understand uromodulin’s biological role. Finally, it will be important to understand if hepsin, or a similar enzyme, is also responsible for the release of other proteins containing the zona pellucida domain. DOI:http://dx.doi.org/10.7554/eLife.08887.002
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
89 |
4
|
Christensen BM, Perrier R, Wang Q, Zuber AM, Maillard M, Mordasini D, Malsure S, Ronzaud C, Stehle JC, Rossier BC, Hummler E. Sodium and potassium balance depends on αENaC expression in connecting tubule. J Am Soc Nephrol 2010; 21:1942-51. [PMID: 20947633 DOI: 10.1681/asn.2009101077] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mutations in α, β, or γ subunits of the epithelial sodium channel (ENaC) can downregulate ENaC activity and cause a severe salt-losing syndrome with hyperkalemia and metabolic acidosis, designated pseudohypoaldosteronism type 1 in humans. In contrast, mice with selective inactivation of αENaC in the collecting duct (CD) maintain sodium and potassium balance, suggesting that the late distal convoluted tubule (DCT2) and/or the connecting tubule (CNT) participates in sodium homeostasis. To investigate the relative importance of ENaC-mediated sodium absorption in the CNT, we used Cre-lox technology to generate mice lacking αENaC in the aquaporin 2-expressing CNT and CD. Western blot analysis of microdissected cortical CD (CCD) and CNT revealed absence of αENaC in the CCD and weak αENaC expression in the CNT. These mice exhibited a significantly higher urinary sodium excretion, a lower urine osmolality, and an increased urine volume compared with control mice. Furthermore, serum sodium was lower and potassium levels were higher in the genetically modified mice. With dietary sodium restriction, these mice experienced significant weight loss, increased urinary sodium excretion, and hyperkalemia. Plasma aldosterone levels were significantly elevated under both standard and sodium-restricted diets. In summary, αENaC expression within the CNT/CD is crucial for sodium and potassium homeostasis and causes signs and symptoms of pseudohypoaldosteronism type 1 if missing.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
85 |
5
|
Gómez AM, Rueda A, Sainte-Marie Y, Pereira L, Zissimopoulos S, Zhu X, Schaub R, Perrier E, Perrier R, Latouche C, Richard S, Picot MC, Jaisser F, Lai FA, Valdivia HH, Benitah JP. Mineralocorticoid modulation of cardiac ryanodine receptor activity is associated with downregulation of FK506-binding proteins. Circulation 2009; 119:2179-87. [PMID: 19364981 DOI: 10.1161/circulationaha.108.805804] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND The mineralocorticoid pathway is involved in cardiac arrhythmias associated with heart failure through mechanisms that are incompletely understood. Defective regulation of the cardiac ryanodine receptor (RyR) is an important cause of the initiation of arrhythmias. Here, we examined whether the aldosterone pathway might modulate RyR function. METHODS AND RESULTS Using the whole-cell patch clamp method, we observed an increase in the occurrence of delayed afterdepolarizations during action potential recordings in isolated adult rat ventricular myocytes exposed for 48 hours to aldosterone 100 nmol/L, in freshly isolated myocytes from transgenic mice with human mineralocorticoid receptor expression in the heart, and in wild-type littermates treated with aldosterone. Sarcoplasmic reticulum Ca(2+) load and RyR expression were not altered; however, RyR activity, visualized in situ by confocal microscopy, was increased in all cells, as evidenced by an increased occurrence and redistribution to long-lasting and broader populations of spontaneous Ca(2+) sparks. These changes were associated with downregulation of FK506-binding proteins (FKBP12 and 12.6), regulatory proteins of the RyR macromolecular complex. CONCLUSIONS We suggest that in addition to modulation of Ca(2+) influx, overstimulation of the cardiac mineralocorticoid pathway in the heart might be a major upstream factor for aberrant Ca(2+) release during diastole, which contributes to cardiac arrhythmia in heart failure.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
81 |
6
|
Ronzaud C, Loffing-Cueni D, Hausel P, Debonneville A, Malsure SR, Fowler-Jaeger N, Boase NA, Perrier R, Maillard M, Yang B, Stokes JB, Koesters R, Kumar S, Hummler E, Loffing J, Staub O. Renal tubular NEDD4-2 deficiency causes NCC-mediated salt-dependent hypertension. J Clin Invest 2013; 123:657-65. [PMID: 23348737 DOI: 10.1172/jci61110] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 11/16/2012] [Indexed: 01/14/2023] Open
Abstract
The E3 ubiquitin ligase NEDD4-2 (encoded by the Nedd4L gene) regulates the amiloride-sensitive epithelial Na+ channel (ENaC/SCNN1) to mediate Na+ homeostasis. Mutations in the human β/γENaC subunits that block NEDD4-2 binding or constitutive ablation of exons 6-8 of Nedd4L in mice both result in salt-sensitive hypertension and elevated ENaC activity (Liddle syndrome). To determine the role of renal tubular NEDD4-2 in adult mice, we generated tetracycline-inducible, nephron-specific Nedd4L KO mice. Under standard and high-Na+ diets, conditional KO mice displayed decreased plasma aldosterone but normal Na+/K+ balance. Under a high-Na+ diet, KO mice exhibited hypercalciuria and increased blood pressure, which were reversed by thiazide treatment. Protein expression of βENaC, γENaC, the renal outer medullary K+ channel (ROMK), and total and phosphorylated thiazide-sensitive Na+Cl- cotransporter (NCC) levels were increased in KO kidneys. Unexpectedly, Scnn1a mRNA, which encodes the αENaC subunit, was reduced and proteolytic cleavage of αENaC decreased. Taken together, these results demonstrate that loss of NEDD4-2 in adult renal tubules causes a new form of mild, salt-sensitive hypertension without hyperkalemia that is characterized by upregulation of NCC, elevation of β/γENaC, but not αENaC, and a normal Na+/K+ balance maintained by downregulation of ENaC activity and upregulation of ROMK.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
76 |
7
|
Malsure S, Wang Q, Charles RP, Sergi C, Perrier R, Christensen BM, Maillard M, Rossier BC, Hummler E. Colon-specific deletion of epithelial sodium channel causes sodium loss and aldosterone resistance. J Am Soc Nephrol 2014; 25:1453-64. [PMID: 24480829 DOI: 10.1681/asn.2013090936] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Aldosterone promotes electrogenic sodium reabsorption through the amiloride-sensitive epithelial sodium channel (ENaC). Here, we investigated the importance of ENaC and its positive regulator channel-activating protease 1 (CAP1/Prss8) in colon. Mice lacking the αENaC subunit in colonic superficial cells (Scnn1a(KO)) were viable, without fetal or perinatal lethality. Control mice fed a regular or low-salt diet had a significantly higher amiloride-sensitive rectal potential difference (∆PDamil) than control mice fed a high-salt diet. In Scnn1a(KO) mice, however, this salt restriction-induced increase in ∆PDamil did not occur, and the circadian rhythm of ∆PDamil was blunted. Plasma and urinary sodium and potassium did not change with regular or high-salt diets or potassium loading in control or Scnn1a(KO) mice. However, Scnn1a(KO) mice fed a low-salt diet lost significant amounts of sodium in their feces and exhibited high plasma aldosterone and increased urinary sodium retention. Mice lacking the CAP1/Prss8 in colonic superficial cells (Prss8(KO)) were viable, without fetal or perinatal lethality. Compared with controls, Prss8(KO) mice fed regular or low-salt diets exhibited significantly reduced ∆PDamil in the afternoon, but the circadian rhythm was maintained. Prss8(KO) mice fed a low-salt diet also exhibited sodium loss through feces and higher plasma aldosterone levels. Thus, we identified CAP1/Prss8 as an in vivo regulator of ENaC in colon. We conclude that, under salt restriction, activation of the renin-angiotensin-aldosterone system in the kidney compensated for the absence of ENaC in colonic surface epithelium, leading to colon-specific pseudohypoaldosteronism type 1 with mineralocorticoid resistance without evidence of impaired potassium balance.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
63 |
8
|
Andre L, Boissière J, Reboul C, Perrier R, Zalvidea S, Meyer G, Thireau J, Tanguy S, Bideaux P, Hayot M, Boucher F, Obert P, Cazorla O, Richard S. Carbon monoxide pollution promotes cardiac remodeling and ventricular arrhythmia in healthy rats. Am J Respir Crit Care Med 2009; 181:587-95. [PMID: 20019346 DOI: 10.1164/rccm.200905-0794oc] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Epidemiologic studies associate atmospheric carbon monoxide (CO) pollution with adverse cardiovascular outcomes and increased cardiac mortality risk. However, there is a lack of data regarding cellular mechanisms in healthy individuals. OBJECTIVES To investigate the chronic effects of environmentally relevant CO levels on cardiac function in a well-standardized healthy animal model. METHODS Wistar rats were exposed for 4 weeks to filtered air (CO < 1 ppm) or air enriched with CO (30 ppm with five peaks of 100 ppm per 24-h period), consistent with urban pollution. Myocardial function was assessed by echocardiography and analysis of surface ECG and in vitro by measuring the excitation-contraction coupling of single left ventricular cardiomyocytes. MEASUREMENTS AND MAIN RESULTS Chronic CO pollution promoted left ventricular interstitial and perivascular fibrosis, with no change in cardiomyocyte size, and had weak, yet significant, effects on in vivo cardiac function. However, both contraction and relaxation of single cardiomyocytes were markedly altered. Several changes occurred, including decreased Ca(2+) transient amplitude and Ca(2+) sensitivity of myofilaments and increased diastolic intracellular Ca(2+) subsequent to decreased SERCA-2a expression and impaired Ca(2+) reuptake. CO pollution increased the number of arrhythmic events. Hyperphosphorylation of Ca(2+)-handling and sarcomeric proteins, and reduced responses to beta-adrenergic challenge were obtained, suggestive of moderate CO-induced hyperadrenergic state. CONCLUSIONS Chronic CO exposure promotes a pathological phenotype of cardiomyocytes in the absence of underlying cardiomyopathy. The less severe phenotype in vivo suggests a role for compensatory mechanisms. Arrhythmia propensity may derive from intracellular Ca(2+) overload.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
60 |
9
|
Gellen B, Fernández-Velasco M, Briec F, Vinet L, LeQuang K, Rouet-Benzineb P, Bénitah JP, Pezet M, Palais G, Pellegrin N, Zhang A, Perrier R, Escoubet B, Marniquet X, Richard S, Jaisser F, Gómez AM, Charpentier F, Mercadier JJ. Conditional FKBP12.6 overexpression in mouse cardiac myocytes prevents triggered ventricular tachycardia through specific alterations in excitation-contraction coupling. Circulation 2008; 117:1778-86. [PMID: 18378612 DOI: 10.1161/circulationaha.107.731893] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Ca(2+) release from the sarcoplasmic reticulum via the ryanodine receptor (RyR2) activates cardiac myocyte contraction. An important regulator of RyR2 function is FKBP12.6, which stabilizes RyR2 in the closed state during diastole. Beta-adrenergic stimulation has been suggested to dissociate FKBP12.6 from RyR2, leading to diastolic sarcoplasmic reticulum Ca(2+) leakage and ventricular tachycardia (VT). We tested the hypothesis that FKBP12.6 overexpression in cardiac myocytes can reduce susceptibility to VT in stress conditions. METHODS AND RESULTS We developed a mouse model with conditional cardiac-specific overexpression of FKBP12.6. Transgenic mouse hearts showed a marked increase in FKBP12.6 binding to RyR2 compared with controls both at baseline and on isoproterenol stimulation (0.2 mg/kg i.p.). After pretreatment with isoproterenol, burst pacing induced VT in 10 of 23 control mice but in only 1 of 14 transgenic mice (P<0.05). In isolated transgenic myocytes, Ca(2+) spark frequency was reduced by 50% (P<0.01), a reduction that persisted under isoproterenol stimulation, whereas the sarcoplasmic reticulum Ca(2+) load remained unchanged. In parallel, peak I(Ca,L) density decreased by 15% (P<0.01), and the Ca(2+) transient peak amplitude decreased by 30% (P<0.001). A 33.5% prolongation of the caffeine-evoked Ca(2+) transient decay was associated with an 18% reduction in the Na(+)-Ca(2+) exchanger protein level (P<0.05). CONCLUSIONS Increased FKBP12.6 binding to RyR2 prevents triggered VT in normal hearts in stress conditions, probably by reducing diastolic sarcoplasmic reticulum Ca(2+) leak. This indicates that the FKBP12.6-RyR2 complex is an important candidate target for pharmacological prevention of VT.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
53 |
10
|
Perrier R, Richard S, Sainte-Marie Y, Rossier BC, Jaisser F, Hummler E, Bénitah JP. A direct relationship between plasma aldosterone and cardiac L-type Ca2+ current in mice. J Physiol 2005; 569:153-62. [PMID: 16166161 PMCID: PMC1464196 DOI: 10.1113/jphysiol.2005.092692] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Aldosterone is involved in a variety of pathophysiological processes that ultimately cause cardiovascular diseases. Despite this, the physiological role of aldosterone in heart function remains elusive. We took advantage of transgenic mouse models characterized by a renal salt-losing (SL) or salt-retaining (SR) phenotype, thus exhibiting chronically high or low plasma aldosterone levels, respectively, to investigate the chronic effects of aldosterone in cardiomyocytes devoid of pathology. On a diet containing normal levels of salt, these animals do not develop any evidence of cardiovascular disease. Using the whole cell patch-clamp technique on freshly isolated adult ventricular cardiomyocytes, we observed that the amplitude of L-type Ca(2)(+) currents (I(Ca)) correlates with plasma aldosterone levels. Larger values of I(Ca) are associated with high aldosterone concentrations in SL models, whereas smaller values of I(Ca) were observed in the SR model. Neither the time- nor the voltage-dependent properties of I(Ca) varied measurably. In parallel, we determined whether modulation of I(Ca) by blood concentration of aldosterone has a major physiological impact on the excitation-contraction coupling of the cardiomyocytes. Action potential duration, [Ca(2)(+)](i) transient amplitude and contraction are increased in the SL model and decreased in the SR model. In conclusion, we demonstrate that the blood concentration of aldosterone exerts chronic regulation of I(Ca) in mouse cardiomyocytes. This regulation has important consequences for excitation-contraction coupling and, potentially, for other Ca(2)(+)-regulated functions in cardiomyocytes.
Collapse
|
Journal Article |
20 |
52 |
11
|
Heredia MDP, Delgado C, Pereira L, Perrier R, Richard S, Vassort G, Bénitah JP, Gómez AM. Neuropeptide Y rapidly enhances [Ca2+]i transients and Ca2+ sparks in adult rat ventricular myocytes through Y1 receptor and PLC activation. J Mol Cell Cardiol 2004; 38:205-12. [PMID: 15623437 DOI: 10.1016/j.yjmcc.2004.11.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2004] [Revised: 10/20/2004] [Accepted: 11/01/2004] [Indexed: 12/17/2022]
Abstract
Neuropeptide Y (NPY) is the most abundant peptide in the mammalian heart, but its cardiac actions are not fully understood. Here we investigate the effect of NPY in intracellular Ca2+ release, using isolated rat cardiac myocytes and confocal microscopy. Cardiac myocytes were field-stimulated at 1 Hz. The evoked [Ca2+]i transient was of higher amplitude and of faster decay in the presence of 100 nM NPY. Cell contraction was also increased by NPY. We analyzed the occurrence of Ca2+ sparks and their characteristics after NPY application. NPY significantly increased Ca2+ sparks frequency in quiescent cells. The Ca2+ spark amplitude was enhanced by NPY but the other characteristics of Ca2+ sparks were not significantly altered. Because cardiac myocytes express both Y1 and Y2 NPY receptors, we repeated the experiments in the presence of the receptor blockers, BIBP3226 and BIIE0246. We found that Y1 NPY receptor blockade completely inhibited NPY effects on [Ca2+]i transient. PTX-sensitive G-proteins and/or phospholypase C (PLC) have been invoked to mediate NPY effects in other cell types. We tested these two hypotheses. In PTX-treated myocytes NPY was still effective, which suggests that the observed NPY actions are not mediated by PTX-sensitive G-proteins. In contrast, the increase in [Ca2+]i transient by NPY was completely inhibited by the PLC inhibitor U73122. In conclusion, we find that NPY has a positive inotropic effect in isolated rat cardiac myocytes, which involves increase in Ca2+ release after activation of Y1 NPY receptor and subsequent stimulation of PLC.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
50 |
12
|
Sainte-Marie Y, Nguyen Dinh Cat A, Perrier R, Mangin L, Soukaseum C, Peuchmaur M, Tronche F, Farman N, Escoubet B, Benitah JP, Jaisser F. Conditional glucocorticoid receptor expression in the heart induces atrio-ventricular block. FASEB J 2007; 21:3133-41. [PMID: 17517920 DOI: 10.1096/fj.07-8357com] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Corticosteroid hormones (aldosterone and glucocorticoids) and their receptors are now recognized as major modulators of cardiovascular pathophysiology, but their specific roles remain elusive. Glucocorticoid hormones (GCs), which are widely used to treat acute and chronic diseases, often have adverse cardiovascular effects such as heart failure, hypertension, atherosclerosis, or metabolic alterations. The direct effects of GC on the heart are difficult to evaluate, as changes in plasma GC concentrations have multiple consequences due to the ubiquitous expression of the glucocorticoid receptor (GR), resulting in secondary effects on cardiac function. We evaluated the effects of GR on the heart in a conditional mouse model in which the GR was overexpressed solely in cardiomyocytes. The transgenic mice displayed electrocardiogram (ECG) abnormalities: a long PQ interval, increased QRS and QTc duration as well as chronic atrio-ventricular block, without cardiac hypertrophy or fibrosis. The ECG alterations were reversible on GR expression shutoff. Isolated ventricular cardiomyocytes showed major ion channel remodeling, with decreases in I(Na), I(to), and I(Kslow) activity and changes in cell calcium homeostasis (increase in C(al), in Ca2+ transients and in sarcoplasmic reticulum Ca2+ load). This phenotype differs from that observed in mice overexpressing the mineralocorticoid receptor in the heart, which displayed ventricular arrhythmia. Our mouse model highlights novel effects of GR activation in the heart indicating that GR has direct and specific cardiac effects in the mouse.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
49 |
13
|
Richard S, Perrier E, Fauconnier J, Perrier R, Pereira L, Gõmez AM, Bénitah JP. ‘Ca2+-induced Ca2+ entry’ or how the L-type Ca2+ channel remodels its own signalling pathway in cardiac cells. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2006; 90:118-35. [PMID: 15987656 DOI: 10.1016/j.pbiomolbio.2005.05.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The adjustment of Ca(2+) entry in cardiac cells is critical to the generation of the force necessary for the myocardium to meet the physiological needs of the body. In this review, we present the concept that Ca(2+) can promote its own entry through Ca(2+) channels by different mechanisms. We refer to it under the general term of 'Ca(2+)-induced Ca(2+) entry' (CICE). We review short-term mechanisms (usually termed facilitation) that involve a stimulating effect of Ca(2+) on the L-type Ca(2+) current (I(Ca-L)) amplitude (positive staircase) or a lessening of Ca(2+)-dependent inactivation of I(Ca-L). This latter effect is related to the amount of Ca(2+) released by ryanodine receptors (RyR2) of the sarcoplasmic reticulum (SR). Both effects are involved in the control of action potential (AP) duration. We also describe a long-term mechanism based on Ca(2+)-dependent down-regulation of the Kv4.2 gene controlling functional expression of the repolarizing transient outward K(+) current (I(to)) and, thereby, AP duration. This mechanism, which might occur very early during the onset of hypertrophy, enhances Ca(2+) entry by maintaining Ca(2+) channel activation during prolonged AP. Both Ca(2+)-dependent facilitation and Ca(2+)-dependent down-regulation of I(to) expression favour AP prolongation and, thereby, promote sustained voltage-gated Ca(2+) entry used to enhance excitation-contraction (EC) coupling (with no change in the density of Ca(2+) channels per se). These self-maintaining mechanisms of Ca(2+) entry have significant functions in remodelling Ca(2+) signalling during the cardiac AP. They might support a prominent role of Ca(2+) channels in the establishment and progression of abnormal Ca(2+) signalling during cardiac hypertrophy and congestive heart failure.
Collapse
|
|
19 |
45 |
14
|
Perrier E, Perrier R, Richard S, Bénitah JP. Ca2+ Controls Functional Expression of the Cardiac K+ Transient Outward Current via the Calcineurin Pathway. J Biol Chem 2004; 279:40634-9. [PMID: 15280354 DOI: 10.1074/jbc.m407470200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transient outward K+ current (Ito) modulates transmembrane Ca2+ influx into cardiomyocytes, which, in turn, might act on Ito. Here, we investigated whether Ca2+ modifies functional expression of Ito. Whole-cell Ito were recorded using the patch clamp technique in single right ventricular myocytes isolated from adult rats and incubated for 24 h at 37 degrees C in a serum-free medium containing various Ca2+ concentrations ([Ca2+]o). Increasing the [Ca2+]o from 0.5 to 1.0 and 2.5 mM produced a gradual decrease in Ito density without change in current kinetics. Quantitativereverse transcriptase-PCR showed that a decrease of the Kv4.2 mRNA could account for this decrease. In the acetoxymethyl ester form of 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA-AM)-loaded myocytes (a permeant Ca2+ chelator), Ito density increased significantly when cells were exposed for 24 h to either 1 or 2.5 mM [Ca2+]o. Moreover, 24-h exposure to the Ca2+ channel agonist, Bay K8644, in 1 mM [Ca2+]o induced a decrease in Ito density, whereas the Ca2+ channel antagonist, nifedipine, blunted Ito decrease in 2.5 mM [Ca2+]o. The decrease of Ito in 2.5 mM [Ca2+]o was also prevented by co-incubation with either the calmodulin inhibitor W7 or the calcineurin inhibitors FK506 or cyclosporin A. Furthermore, in myocytes incubated for 24 h with 2.5 mM [Ca2+]o, calcineurin activity was significantly increased compared with 1 mM [Ca2+]o. Our data suggest that modulation of [Ca2+]i via L-type Ca2+ channels, which appears to involve the Ca2+/calmodulin-regulated protein phosphatase calcineurin, down-regulates the functional expression of Ito. This effect might be involved in many physiological and pathological modulations of Ito channel expression in cardiac cells, as well other cell types.
Collapse
MESH Headings
- 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology
- Animals
- Calcineurin/metabolism
- Calcineurin/pharmacology
- Calcium/chemistry
- Calcium/metabolism
- Calcium Channel Agonists/pharmacology
- Calmodulin/metabolism
- Cells, Cultured
- Chelating Agents/pharmacology
- Culture Media, Serum-Free/pharmacology
- Cyclosporine/pharmacology
- Down-Regulation
- Egtazic Acid/analogs & derivatives
- Egtazic Acid/pharmacology
- Electrophysiology
- Kinetics
- Models, Biological
- Nifedipine/pharmacology
- Potassium/metabolism
- Potassium Channels/metabolism
- Potassium Channels, Voltage-Gated
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Reverse Transcriptase Polymerase Chain Reaction
- Shal Potassium Channels
- Signal Transduction
- Tacrolimus/pharmacology
- Temperature
- Time Factors
Collapse
|
|
21 |
38 |
15
|
Perrier R, Boscardin E, Malsure S, Sergi C, Maillard MP, Loffing J, Loffing-Cueni D, Sørensen MV, Koesters R, Rossier BC, Frateschi S, Hummler E. Severe Salt-Losing Syndrome and Hyperkalemia Induced by Adult Nephron-Specific Knockout of the Epithelial Sodium Channel α-Subunit. J Am Soc Nephrol 2015; 27:2309-18. [PMID: 26701978 DOI: 10.1681/asn.2015020154] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 10/28/2015] [Indexed: 11/03/2022] Open
Abstract
Systemic pseudohypoaldosteronism type 1 (PHA-1) is a severe salt-losing syndrome caused by loss-of-function mutations of the amiloride-sensitive epithelial sodium channel (ENaC) and characterized by neonatal life-threatening hypovolemia and hyperkalemia. The very high plasma aldosterone levels detected under hypovolemic or hyperkalemic challenge can lead to increased or decreased sodium reabsorption, respectively, through the Na(+)/Cl(-) cotransporter (NCC). However, the role of ENaC deficiency remains incompletely defined, because constitutive inactivation of individual ENaC subunits is neonatally lethal in mice. We generated adult inducible nephron-specific αENaC-knockout mice (Scnn1a(Pax8/LC1)) that exhibit hyperkalemia and body weight loss when kept on a regular-salt diet, thus mimicking PHA-1. Compared with control mice fed a regular-salt diet, knockout mice fed a regular-salt diet exhibited downregulated expression and phosphorylation of NCC protein, despite high plasma aldosterone levels. In knockout mice fed a high-sodium and reduced-potassium diet (rescue diet), although plasma aldosterone levels remained significantly increased, NCC expression returned to control levels, and body weight, plasma and urinary electrolyte concentrations, and excretion normalized. Finally, shift to a regular diet after the rescue diet reinstated the symptoms of severe PHA-1 syndrome and significantly reduced NCC phosphorylation. In conclusion, lack of ENaC-mediated sodium transport along the nephron cannot be compensated for by other sodium channels and/or transporters, only by a high-sodium and reduced-potassium diet. We further conclude that hyperkalemia becomes the determining factor in regulating NCC activity, regardless of sodium loss, in the ENaC-mediated salt-losing PHA-1 phenotype.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
35 |
16
|
Benitah JP, Perrier R, Mercadier JJ, Pereira L, Gómez AM. RyR2 and Calcium Release in Heart Failure. Front Physiol 2021; 12:734210. [PMID: 34690808 PMCID: PMC8533677 DOI: 10.3389/fphys.2021.734210] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/30/2021] [Indexed: 12/24/2022] Open
Abstract
Heart Failure (HF) is defined as the inability of the heart to efficiently pump out enough blood to maintain the body's needs, first at exercise and then also at rest. Alterations in Ca2+ handling contributes to the diminished contraction and relaxation of the failing heart. While most Ca2+ handling protein expression and/or function has been shown to be altered in many models of experimental HF, in this review, we focus in the sarcoplasmic reticulum (SR) Ca2+ release channel, the type 2 ryanodine receptor (RyR2). Various modifications of this channel inducing alterations in its function have been reported. The first was the fact that RyR2 is less responsive to activation by Ca2+ entry through the L-Type calcium channel, which is the functional result of an ultrastructural remodeling of the ventricular cardiomyocyte, with fewer and disorganized transverse (T) tubules. HF is associated with an elevated sympathetic tone and in an oxidant environment. In this line, enhanced RyR2 phosphorylation and oxidation have been shown in human and experimental HF. After several controversies, it is now generally accepted that phosphorylation of RyR2 at the Calmodulin Kinase II site (S2814) is involved in both the depressed contractile function and the enhanced arrhythmic susceptibility of the failing heart. Diminished expression of the FK506 binding protein, FKBP12.6, may also contribute. While these alterations have been mostly studied in the left ventricle of HF with reduced ejection fraction, recent studies are looking at HF with preserved ejection fraction. Moreover, alterations in the RyR2 in HF may also contribute to supraventricular defects associated with HF such as sinus node dysfunction and atrial fibrillation.
Collapse
|
Review |
4 |
25 |
17
|
Yin L, Zahradnikova A, Rizzetto R, Boncompagni S, Rabesahala de Meritens C, Zhang Y, Joanne P, Marqués-Sulé E, Aguilar-Sánchez Y, Fernández-Tenorio M, Villejoubert O, Li L, Wang YY, Mateo P, Nicolas V, Gerbaud P, Lai FA, Perrier R, Álvarez JL, Niggli E, Valdivia HH, Valdivia CR, Ramos-Franco J, Zorio E, Zissimopoulos S, Protasi F, Benitah JP, Gómez AM. Impaired Binding to Junctophilin-2 and Nanostructural Alteration in CPVT Mutation. Circ Res 2021; 129:e35-e52. [PMID: 34111951 DOI: 10.1161/circresaha.121.319094] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
[Figure: see text].
Collapse
|
Journal Article |
4 |
23 |
18
|
Boscardin E, Perrier R, Sergi C, Maillard MP, Loffing J, Loffing-Cueni D, Koesters R, Rossier BC, Hummler E. Plasma Potassium Determines NCC Abundance in Adult Kidney-Specific γENaC Knockout. J Am Soc Nephrol 2018; 29:977-990. [PMID: 29371419 DOI: 10.1681/asn.2017030345] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 11/30/2017] [Indexed: 12/18/2022] Open
Abstract
The amiloride-sensitive epithelial sodium channel (ENaC) and the thiazide-sensitive sodium chloride cotransporter (NCC) are key regulators of sodium and potassium and colocalize in the late distal convoluted tubule of the kidney. Loss of the αENaC subunit leads to a perinatal lethal phenotype characterized by sodium loss and hyperkalemia resembling the human syndrome pseudohypoaldosteronism type 1 (PHA-I). In adulthood, inducible nephron-specific deletion of αENaC in mice mimics the lethal phenotype observed in neonates, and as in humans, this phenotype is prevented by a high sodium (HNa+)/low potassium (LK+) rescue diet. Rescue reflects activation of NCC, which is suppressed at baseline by elevated plasma potassium concentration. In this study, we investigated the role of the γENaC subunit in the PHA-I phenotype. Nephron-specific γENaC knockout mice also presented with salt-wasting syndrome and severe hyperkalemia. Unlike mice lacking αENaC or βΕΝaC, an HNa+/LK+ diet did not normalize plasma potassium (K+) concentration or increase NCC activation. However, when K+ was eliminated from the diet at the time that γENaC was deleted, plasma K+ concentration and NCC activity remained normal, and progressive weight loss was prevented. Loss of the late distal convoluted tubule, as well as overall reduced βENaC subunit expression, may be responsible for the more severe hyperkalemia. We conclude that plasma K+ concentration becomes the determining and limiting factor in regulating NCC activity, regardless of Na+ balance in γENaC-deficient mice.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
23 |
19
|
Perrier R, Pirog A, Jaffredo M, Gaitan J, Catargi B, Renaud S, Raoux M, Lang J. Bioelectronic organ-based sensor for microfluidic real-time analysis of the demand in insulin. Biosens Bioelectron 2018; 117:253-259. [PMID: 29909196 DOI: 10.1016/j.bios.2018.06.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 12/31/2022]
Abstract
On-line and real-time analysis of micro-organ activity permits to use the endogenous analytical power of cellular signal transduction algorithms as biosensors. We have developed here such a sensor using only a few pancreatic endocrine islets and the avoidance of transgenes or chemical probes reduces bias and procures general usage. Nutrient and hormone-induced changes in islet ion fluxes through channels provide the first integrative read-out of micro-organ activity. Using extracellular electrodes we captured this read-out non-invasively as slow potentials which reflect glucose concentration-dependent (3-15 mM) micro-organ activation and coupling. Custom-made PDMS-based microfluidics with platinum black micro-electrode arrays required only some tens of islets and functioned at flow rates of 1-10 µl/min which are compatible with microdialysis. We developed hardware solutions for on-line real-time analysis on a reconfigurable Field-Programmable Gate Array (FPGA) that offered resource-efficient architecture and storage of intermediary processing stages. Moreover, real-time adaptive and reconfigurable algorithms accounted for signal disparities and noise distribution. Based on islet slow potentials, this integrated set-up allowed within less than 40 μs the discrimination and precise automatic ranking of small increases (2 mM steps) of glucose concentrations in real time and within the physiological glucose range. This approach shall permit further development in continuous monitoring of the demand for insulin in type 1 diabetes as well as monitoring of organs-on-chip or maturation of stem-cell derived islets.
Collapse
|
Journal Article |
7 |
23 |
20
|
Innes AM, Boycott KM, Puffenberger EG, Redl D, MacDonald IM, Chudley AE, Beaulieu C, Perrier R, Gillan T, Wade A, Parboosingh JS. A founder mutation in BBS2 is responsible for Bardet-Biedl syndrome in the Hutterite population: utility of SNP arrays in genetically heterogeneous disorders. Clin Genet 2011; 78:424-31. [PMID: 20618352 DOI: 10.1111/j.1399-0004.2010.01481.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bardet-Biedl syndrome (BBS) is a multisystem genetically heterogeneous disorder, the clinical features of which are largely the consequence of ciliary dysfunction. BBS is typically inherited in an autosomal recessive fashion, and mutations in at least 14 genes have been identified. Here, we report the identification of a founder mutation in the BBS2 gene as the cause for the increased incidence of this developmental disorder in the Hutterite population. To ascertain the Hutterite BBS locus, we performed a genome-wide single nucleotide polymorphism (SNP) analysis on a single patient and his three unaffected siblings from a Hutterite family. The analysis identified two large SNP blocks that were homozygous in the patient but not in his unaffected siblings, one of these regions contained the BBS2 gene. Sequence analysis and subsequent RNA studies identified and confirmed a novel splice site mutation, c.472-2A>G, in BBS2. This mutation was also found in homozygous form in three subsequently studied Hutterite BBS patients from two different leuts, confirming that this is a founder mutation in the Hutterite population. Further studies are required to determine the frequency of this mutation and its role, if any, in the expression of other ciliopathies in this population.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
16 |
21
|
Pedraza E, Karajić A, Raoux M, Perrier R, Pirog A, Lebreton F, Arbault S, Gaitan J, Renaud S, Kuhn A, Lang J. Guiding pancreatic beta cells to target electrodes in a whole-cell biosensor for diabetes. LAB ON A CHIP 2015; 15:3880-3890. [PMID: 26282013 DOI: 10.1039/c5lc00616c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We are developing a cell-based bioelectronic glucose sensor that exploits the multi-parametric sensing ability of pancreatic islet cells for the treatment of diabetes. These cells sense changes in the concentration of glucose and physiological hormones and immediately react by generating electrical signals. In our sensor, signals from multiple cells are recorded as field potentials by a micro-electrode array (MEA). Thus, cell response to various factors can be assessed rapidly and with high throughput. However, signal quality and consequently overall sensor performance rely critically on close cell-electrode proximity. Therefore, we present here a non-invasive method of further exploiting the electrical properties of these cells to guide them towards multiple micro-electrodes via electrophoresis. Parameters were optimized by measuring the cell's zeta potential and modeling the electric field distribution. Clonal and primary mouse or human β-cells migrated directly to target electrodes during the application of a 1 V potential between MEA electrodes for 3 minutes. The morphology, insulin secretion, and electrophysiological characteristics were not altered compared to controls. Thus, cell manipulation on standard MEAs was achieved without introducing any external components and while maintaining the performance of the biosensor. Since the analysis of the cells' electrical activity was performed in real time via on-chip recording and processing, this work demonstrates that our biosensor is operational from the first step of electrically guiding cells to the final step of automatic recognition. Our favorable results with pancreatic islets, which are highly sensitive and fragile cells, are encouraging for the extension of this technique to other cell types and microarray devices.
Collapse
|
|
10 |
16 |
22
|
Boscardin E, Perrier R, Sergi C, Maillard M, Loffing J, Loffing-Cueni D, Koesters R, Rossier BC, Hummler E. Severe hyperkalemia is rescued by low-potassium diet in renal βENaC-deficient mice. Pflugers Arch 2017; 469:1387-1399. [DOI: 10.1007/s00424-017-1990-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 04/07/2017] [Accepted: 04/26/2017] [Indexed: 12/31/2022]
|
|
8 |
13 |
23
|
Perrier R, Ferchal E, Durier C, Doreau M. Effect of undernutrition on the ability of the sheep rumen to absorb volatile fatty acids. REPRODUCTION, NUTRITION, DEVELOPMENT 1994; 34:341-7. [PMID: 7986351 DOI: 10.1051/rnd:19940406] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The ability of the rumen to absorb the same quantity of VFA with 4 animals previously fed with 2 levels of intake was tested. Animals received maintenance (P1) and half maintenance (P2) energy and nitrogen requirements successively. Absorption was measured with the empty washed rumen technique. Three litres of a solution buffered at pH 6.30 containing VFA (C2:57.1, C3:49.2 and C4:7.4 mM or C2:79.8, C3:23.5 and C4:11.5 mM) and CoEDTA (7.1 mg Co/l) were introduced in the rumen and regularly sampled for 3 h. VFA absorption was linear during the trials. Rates of absorption were expressed as mmol/h or percentage of initial quantity/h for the comparison between VFA. The order of absorption rate (%/h) was C4 > C3 > C2. Water absorption was not significantly different between the periods whereas VFA absorption rates (mmol/h) were significantly reduced after undernutrition. Composition of the solution had no significant effect on VFA absorption rate (%/h).
Collapse
|
|
31 |
11 |
24
|
Ligier Y, Ratib O, Logean M, Girard C, Perrier R, Scherrer JR. Object-oriented design of medical imaging software. Comput Med Imaging Graph 1994; 18:125-35. [PMID: 8168050 DOI: 10.1016/0895-6111(94)90020-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A special software package for interactive display and manipulation of medical images was developed at the University Hospital of Geneva, as part of a hospital wide Picture Archiving and Communication System (PACS). This software package, called Osiris, was especially designed to be easily usable and adaptable to the needs of noncomputer-oriented physicians. The Osiris software has been developed to allow the visualization of medical images obtained from any imaging modality. It provides generic manipulation tools, processing tools, and analysis tools more specific to clinical applications. This software, based on an object-oriented paradigm, is portable and extensible. Osiris is available on two different operating systems: the Unix X-11/OSF-Motif based workstations, and the Macintosh family.
Collapse
|
|
31 |
11 |
25
|
Abarkan M, Gaitan J, Lebreton F, Perrier R, Jaffredo M, Mulle C, Magnan C, Raoux M, Lang J. The glutamate receptor GluK2 contributes to the regulation of glucose homeostasis and its deterioration during aging. Mol Metab 2019; 30:152-160. [PMID: 31767166 PMCID: PMC6807305 DOI: 10.1016/j.molmet.2019.09.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/04/2019] [Accepted: 09/27/2019] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVE Islets secrete neurotransmitters including glutamate which participate in fine regulation of islet function. The excitatory ionotropic glutamate receptor GluK2 of the kainate receptor family is widely expressed in brain and also found in islets, mainly in α and γ cells. α cells co-release glucagon and glutamate and the latter increases glucagon release via ionotropic glutamate receptors. However, neither the precise nature of the ionotropic glutamate receptor involved nor its role in glucose homeostasis is known. As isoform specific pharmacology is not available, we investigated this question in constitutive GluK2 knock-out mice (GluK2-/-) using adult and middle-aged animals to also gain insight in a potential role during aging. METHODS We compared wild-type GluK2+/+ and knock-out GluK2-/- mice using adult (14-20 weeks) and middle-aged animals (40-52 weeks). Glucose (oral OGTT and intraperitoneal IPGTT) and insulin tolerance as well as pyruvate challenge tests were performed according to standard procedures. Parasympathetic activity, which stimulates hormones secretion, was measured by electrophysiology in vivo. Isolated islets were used in vitro to determine islet β-cell electrical activity on multi-electrode arrays and dynamic secretion of insulin as well as glucagon was determined by ELISA. RESULTS Adult GluK2-/- mice exhibit an improved glucose tolerance (OGTT and IPGTT), and this was also apparent in middle-aged mice, whereas the outcome of pyruvate challenge was slightly improved only in middle-aged GluK2-/- mice. Similarly, insulin sensitivity was markedly enhanced in middle-aged GluK2-/- animals. Basal and glucose-induced insulin secretion in vivo was slightly lower in GluK2-/- mice, whereas fasting glucagonemia was strongly reduced. In vivo recordings of parasympathetic activity showed an increase in basal activity in GluK2-/- mice which represents most likely an adaptive mechanism to counteract hypoglucagonemia rather than altered neuronal mechanism. In vitro recording demonstrated an improvement of glucose-induced electrical activity of β-cells in islets obtained from GluK2-/- mice at both ages. Finally, glucose-induced insulin secretion in vitro was increased in GluK2-/- islets, whereas glucagon secretion at 2 mmol/l of glucose was considerably reduced. CONCLUSIONS These observations indicate a general role for kainate receptors in glucose homeostasis and specifically suggest a negative effect of GluK2 on glucose homeostasis and preservation of islet function during aging. Our observations raise the possibility that blockade of GluK2 may provide benefits in glucose homeostasis especially during aging.
Collapse
|
brief-report |
6 |
9 |