1
|
Němeček J, Steinová J, Špánek R, Pluhař T, Pokorný P, Najmanová P, Knytl V, Černík M. Thermally enhanced in situ bioremediation of groundwater contaminated with chlorinated solvents - A field test. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 622-623:743-755. [PMID: 29223901 DOI: 10.1016/j.scitotenv.2017.12.047] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/04/2017] [Accepted: 12/04/2017] [Indexed: 06/07/2023]
Abstract
In situ bioremediation (ISB) using reductive dechlorination is a widely accepted but relatively slow approach compared to other technologies for the treatment of groundwater contaminated by chlorinated ethenes (CVOCs). Due to the known positive kinetic effect on microbial metabolism, thermal enhancement may be a viable means of accelerating ISB. We tested thermally enhanced ISB in aquifers situated in sandy saprolite and underlying fractured granite. The system comprised pumping, heating and subsequent injection of contaminated groundwater aiming at an aquifer temperature of 20-30°C. A fermentable substrate (whey) was injected in separate batches. The test was monitored using hydrochemical and molecular tools (qPCR and NGS). The addition of the substrate and increase in temperature resulted in a rapid increase in the abundance of reductive dechlorinators (e.g., Dehalococcoides mccartyi, Dehalobacter sp. and functional genes vcrA and bvcA) and a strong increase in CVOC degradation. On day 34, the CVOC concentrations decreased by 87% to 96% in groundwater from the wells most affected by the heating and substrate. On day 103, the CVOC concentrations were below the LOQ resulting in degradation half-lives of 5 to 6days. Neither an increase in biomarkers nor a distinct decrease in the CVOC concentrations was observed in a deep well affected by the heating but not by the substrate. NGS analysis detected Chloroflexi dechlorinating genera (Dehalogenimonas and GIF9 and MSBL5 clades) and other genera capable of anaerobic metabolic degradation of CVOCs. Of these, bacteria of the genera Acetobacterium, Desulfomonile, Geobacter, Sulfurospirillum, Methanosarcina and Methanobacterium were stimulated by the substrate and heating. In contrast, groundwater from the deep well (affected by heating only) hosted representatives of aerobic metabolic and aerobic cometabolic CVOC degraders. The test results document that heating of the treated aquifer significantly accelerated the treatment process but only in the case of an abundant substrate.
Collapse
|
|
7 |
27 |
2
|
Němeček J, Dolinová I, Macháčková J, Špánek R, Ševců A, Lederer T, Černík M. Stratification of chlorinated ethenes natural attenuation in an alluvial aquifer assessed by hydrochemical and biomolecular tools. CHEMOSPHERE 2017; 184:1157-1167. [PMID: 28672697 DOI: 10.1016/j.chemosphere.2017.06.100] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 06/07/2023]
Abstract
Biomolecular and hydrochemical tools were used to evaluate natural attenuation of chlorinated ethenes in a Quaternary alluvial aquifer located close to a historical source of large-scale tetrachloroethylene (PCE) contamination. Distinct stratification of redox zones was observed, despite the aquifer's small thickness (2.8 m). The uppermost zone of the target aquifer was characterised by oxygen- and nitrate-reducing conditions, with mixed iron- to sulphate-reducing conditions dominant in the lower zone, along with indications of methanogenesis. Natural attenuation of PCE was strongly influenced by redox heterogeneity, while higher levels of PCE degradation coincided with iron- to sulphate reducing conditions. Next generation sequencing of the middle and/or lower zones identified anaerobic bacteria (Firmicutes, Chloroflexi, Actinobacteria and Bacteroidetes) associated with reductive dechlorination. The relative abundance of dechlorinators (Dehalococcoides mccartyi, Dehalobacter sp.) identified by real-time PCR in soil from the lower levels supports the hypothesis that there is a significant potential for reductive dechlorination of PCE. Local conditions were insufficiently reducing for rapid complete dechlorination of PCE to harmless ethene. For reliable assessment of natural attenuation, or when designing monitoring or remedial systems, vertical stratification of key biological and hydrochemical markers should be analysed as standard, even in shallow aquifers.
Collapse
|
|
8 |
21 |
3
|
Semerád J, Ševců A, Nguyen NHA, Hrabák P, Špánek R, Bobčíková K, Pospíšková K, Filip J, Medřík I, Kašlík J, Šafařík I, Filipová A, Nosek J, Pivokonský M, Cajthaml T. Discovering the potential of an nZVI-biochar composite as a material for the nanobioremediation of chlorinated solvents in groundwater: Degradation efficiency and effect on resident microorganisms. CHEMOSPHERE 2021; 281:130915. [PMID: 34029963 DOI: 10.1016/j.chemosphere.2021.130915] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/22/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
Abiotic and biotic remediation of chlorinated ethenes (CEs) in groundwater from a real contaminated site was studied using biochar-based composites containing nanoscale zero-valent iron (nZVI/BC) and natural resident microbes/specific CE degraders supported by a whey addition. The material represented by the biochar matrix decorated by isolated iron nanoparticles or their aggregates, along with the added whey, was capable of a stepwise dechlorination of CEs. The tested materials (nZVI/BC and BC) were able to decrease the original TCE concentration by 99% in 30 days. Nevertheless, regarding the transformation products, it was clear that biotic as well as abiotic transformation mechanisms were involved in the transformation process when nonchlorinated volatiles (i.e., methane, ethane, ethene, and acetylene) were detected after the application of nZVI/BC and nZVI/BC with whey. The whey addition caused a massive increase in bacterial biomass in the groundwater samples (monitored by 16S rRNA sequencing and qPCR) that corresponded with the transformation of trichloro- and dichloro-CEs, and this process was accompanied by the formation of less chlorinated products. Moreover, the biostimulation step also eliminated the adverse effect caused by nZVI/BC (decrease in microbial biomass after nZVI/BC addition). The nZVI/BC material or its aging products, and probably together with vinyl chloride-respiring bacteria, were able to continue the further reductive dechlorination of dichlorinated CEs into nonhalogenated volatiles. Overall, the results of the present study demonstrate the potential, feasibility, and environmental safety of this nanobioremediation approach.
Collapse
|
|
4 |
17 |
4
|
Shrestha R, Černoušek T, Stoulil J, Kovářová H, Sihelská K, Špánek R, Ševců A, Steinová J. Anaerobic microbial corrosion of carbon steel under conditions relevant for deep geological repository of nuclear waste. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149539. [PMID: 34392220 DOI: 10.1016/j.scitotenv.2021.149539] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
We examined microbial corrosion of carbon steel in synthetic bentonite pore water inoculated with natural underground water containing microorganisms over a period of 780-days under sterile and anaerobic conditions. Corrosion behaviour was determined using the mass loss method, SEM-EDS analysis and Raman spectroscopy, while qualitative and quantitative changes in the microbial community were analysed using molecular-biological tools (16S rDNA amplicon sequencing and qPCR analysis, respectively). Corrosion rates were significantly higher in the biotic environment (compared with an abiotic environment), with significant localisation of corrosion attacks of up to 1 mm arising within 12-months. Nitrate reducing bacteria, such as Pseudomonas, Brevundimonas and Methyloversatilis, dominated the microbial consortium, the high abundance of Methyloversatilis correlating with periods of highest localised corrosion penetrations, suggesting that this bacterium plays an important role in microbially influenced corrosion. Our results indicate that nitrate-reducing bacteria could represent a potential threat to waste canisters under nuclear repository conditions.
Collapse
|
|
4 |
12 |
5
|
Nebeská D, Trögl J, Ševců A, Špánek R, Marková K, Davis L, Burdová H, Pidlisnyuk V. Miscanthus x giganteus role in phytodegradation and changes in bacterial community of soil contaminated by petroleum industry. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112630. [PMID: 34392149 DOI: 10.1016/j.ecoenv.2021.112630] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/05/2021] [Accepted: 08/10/2021] [Indexed: 05/27/2023]
Abstract
The second generation energy crop Miscanthus x giganteus (Mxg) was cultivated in pots with mixtures of clean and petroleum industry contaminated soil affected by petroleum, Pb, Zn contamination and high salinity. The survival rate reached 100%, nevertheless the biomass parameters were negatively affected even in the lowest proportion of contaminated soil. In the lowest contamination, where the plant grew still quite successfully, C10-C40 degradation was significantly enhanced compared to the unplanted control with degradation of 58 ± 14%. The plant contribution to aliphatics degradation was significantly correlated with biomass, thus it was negligible in higher contamination. A similar pattern was documented in development of the soil bacterial community. The shift in community structure after Mxg cultivation was observed mainly in the soil with the lowest contaminant proportion, though an increase of bacterial diversity in the miscanthus rhizosphere was observed in all cases. Relative abundance of Actinobacteria was reduced on behalf of several less abundant phyla (Verrucomicrobia, Bacterioides, Acidobacteria). The majority of genera identified as potential petroleum degraders (Pseudomonas, Shinella, Altererythrobacter, Azospirillum, Mesorhizobium, Dyella) were more abundant in contaminated soil with miscanthus, suggesting that Mxg could be a promising crop for phytomanagement of petroleum contaminated soils but salt phytotoxicity needs to be mitigated first.
Collapse
|
|
4 |
8 |
6
|
Němeček J, Nechanická M, Špánek R, Eichler F, Zeman J, Černík M. Engineered in situ biogeochemical transformation as a secondary treatment following ISCO - A field test. CHEMOSPHERE 2019; 237:124460. [PMID: 31374391 DOI: 10.1016/j.chemosphere.2019.124460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/13/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
ISCO using activated sodium persulphate is a widely used technology for treating chlorinated solvent source zones. In sensitive areas, however, high groundwater sulphate concentrations following treatment may be a drawback. In situ biogeochemical transformation, a technology that degrades contaminants via reduced iron minerals formed by microbial activity, offers a potential solution for such sites, the bioreduction of sulphate and production of iron sulphides that abiotically degrade chlorinated ethenes acting as a secondary technology following ISCO. This study assesses this approach in the field using hydrochemical and molecular tools, solid phase analysis and geochemical modelling. Following a neutralisation and bioaugmentation, favourable conditions for iron- and sulphate-reducers were created, resulting in a remarkable increase in their relative abundance. The abundance of dechlorinating bacteria (Dehalococcoides mccartyi, Dehalobacter sp. and Desulfitobacterium spp.) remained low throughout this process. The activity of iron- and sulphate-reducers was further stimulated through application of magnetite plus starch and microiron plus starch, resulting in an increase in ferrous iron concentration (from <LOQ to 337 mg/l), a decrease in sulphate concentration by 74-95% and production of hydrogen sulphide (from <LOQ to 25.9 mg/l). At the same time, a gradual revival of dechlorinators and an increase in ethene concentration was also observed. Tetrachloroethene and trichloroethene concentrations decreased by 98.5-99.98% and 75.4-98.5%, respectively. A decline in chlorine number indicated that biological dechlorination contributed to CVOC removal. This study brings new insights into biogeochemical processes that, when properly engineered, could provide a viable solution for secondary treatment.
Collapse
|
|
6 |
3 |
7
|
Nechanická M, Dolinová I, Špánek R, Tomešová D, Dvořák L. Application of nanofiber carriers for sampling of microbial biomass from contaminated groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146518. [PMID: 34030297 DOI: 10.1016/j.scitotenv.2021.146518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Sampling of microbial biomass is crucial for understanding and controlling remediation processes ongoing at contaminated sites in general, particularly when molecular genetic analyses are employed. In this study, fiber-based carriers with a nanofiber layer were developed and tested as a method to sample microbial biomass in groundwater for molecular genetic analysis. Nanofiber carriers, varying in the shape and the linear density of nanofibers, were examined throughout a 27-month monitoring period in groundwater contaminated with benzene, toluene, ethylbenzene and xylene isomers (BTEX), and chlorinated ethenes. The effect of carrier shape and nanofiber layer density on the microbial surface colonization and composition of the microbial biofilm was determined using real-time PCR and next-generation sequencing (NGS) analysis. Differences in microbial community composition between nanofiber carriers, groundwater, and soil samples were also analyzed to assess the applicability of carriers for biomass sampling at contaminated sites. The nanofiber carriers showed their applicability as a sampling tool, particularly because of their easy manipulation that facilitates DNA isolation. The majority of taxa (Proteobacteria, Firmicutes, and Bacteroidetes) present on the carrier surfaces were also detected in the groundwater. Moreover, the microbial community on all nanofiber carriers reflected the changes in the chemical composition of groundwater. Although the carrier characteristics (shape, nanofiber layer) did not substantially influence the microbial community on the carrier surface, the circular and planar carriers with a nanofiber layer displayed faster microbial surface colonization. However, the circular carrier was the most suitable for biomass sampling in groundwater because of its high contact area and because it does not require pre-treatment prior to DNA extraction.
Collapse
|
|
4 |
3 |
8
|
Nguyen NHA, Špánek R, Falagan-Lotsch P, Ševců A. Impact of Zero-Valent Iron on Freshwater Bacterioplankton Metabolism as Predicted from 16S rRNA Gene Sequence Libraries. Curr Microbiol 2021; 78:979-991. [PMID: 33521895 DOI: 10.1007/s00284-021-02362-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 01/10/2021] [Indexed: 11/25/2022]
Abstract
The application of zero-valent iron particles (ZVI) for the treatment of heavily polluted environment and its biological effects have been studied for at least two decades. Still, information on the impact on bacterial metabolic pathways is lacking. This study describes the effect of microscale and nanoscale ZVI (mZVI and nZVI) on the abundance of different metabolic pathways in freshwater bacterial communities. The metabolic pathways were inferred from metabolism modelling based on 16S rRNA gene sequence data using paprica pipeline. The nZVI changed the abundance of numerous metabolic pathways compared to a less influencing mZVI. We identified the 50 most affected pathways, where 31 were related to degradation, 17 to biosynthesis, and 2 to detoxification. The linkage between pathways was two times higher in nZVI samples compared to mZVI, and was specifically higher considering the arsenate detoxification II pathway. Limnohabitans and Roseiflexus were linked to the same pathways in both nZVI and mZVI. The prediction of metabolic pathways increases our knowledge of the impacts of nZVI and mZVI on freshwater bacterioplankton.
Collapse
|
Journal Article |
4 |
1 |