1
|
Chelvanambi M, Fecek RJ, Taylor JL, Storkus WJ. STING agonist-based treatment promotes vascular normalization and tertiary lymphoid structure formation in the therapeutic melanoma microenvironment. J Immunother Cancer 2021; 9:e001906. [PMID: 33526609 PMCID: PMC7852948 DOI: 10.1136/jitc-2020-001906] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The degree of immune infiltration in tumors, especially CD8+ T cells, greatly impacts patient disease course and response to interventional immunotherapy. Enhancement of tumor infiltrating lymphocyte (TIL) is a critical element of efficacious therapy and one that may be achieved via administration of agents that promote tumor vascular normalization (VN) and/or induce the development of tertiary lymphoid structures (TLS) within the tumor microenvironment (TME). METHODS Low-dose stimulator of interferon genes (STING) agonist ADU S-100 (5 µg/mouse) was delivered intratumorally to established subcutaneous B16.F10 melanomas on days 10, 14 and 17 post-tumor inoculation. Treated and control tumors were isolated at various time points to assess transcriptional changes associated with VN and TLS formation via quantitative PCR (qPCR), with corollary immune cell composition changes in isolated tissues determined using flow cytometry and immunofluorescence microscopy. In vitro assays were performed on CD11c+ BMDCs treated with 2.5 µg/mL ADU S-100 or CD11c+ DCs isolated from tumor digests and associated transcriptional changes analyzed via qPCR or profiled using DNA microarrays. For T cell repertoireβ-CDR3 analyses, T cell CDR3 was sequenced from gDNA isolated from splenocytes and enzymatically digested tumors. RESULTS We report that activation of STING within the TME leads to slowed melanoma growth in association with increased production of antiangiogenic factors including Tnfsf15 (Vegi) and Cxcl10, and TLS-inducing factors including Ccl19, Ccl21, Lta, Ltb and Light. Therapeutic responses resulting from intratumoral STING activation were characterized by improved VN, enhanced tumor infiltration by CD8+ T cells and CD11c+ DCs and local TLS neogenesis, all of which were dependent on host expression of STING. Consistent with a central role for DC in TLS formation, ADU S-100-activated mCD11c+ DCs also exhibited upregulated expression of TLS promoting factors including lymphotoxin-α (LTA), interleukin (IL)-36, inflammatory chemokines and type I interferons in vitro and in vivo. TLS formation in ADU S-100-treated mice was associated with the development of a highly oligoclonal TIL repertoire enriched in expanded T cell clonotypes unique to the TME and not detected in the periphery. CONCLUSIONS Our data support the premise that i.t. delivery of low-dose STING agonist promotes VN and a proinflammatory TME supportive of TLS formation, enrichment in the TIL repertoire and tumor growth control.
Collapse
MESH Headings
- Angiogenic Proteins/genetics
- Angiogenic Proteins/metabolism
- Animals
- Antineoplastic Agents/pharmacology
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Line, Tumor
- Cytokines/genetics
- Cytokines/metabolism
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Female
- Lymphocytes, Tumor-Infiltrating/drug effects
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Melanoma, Experimental/drug therapy
- Melanoma, Experimental/immunology
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/pathology
- Membrane Proteins/agonists
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Neovascularization, Pathologic
- Signal Transduction
- Skin Neoplasms/drug therapy
- Skin Neoplasms/immunology
- Skin Neoplasms/metabolism
- Skin Neoplasms/pathology
- Tertiary Lymphoid Structures/immunology
- Tertiary Lymphoid Structures/metabolism
- Tertiary Lymphoid Structures/pathology
- Tumor Burden/drug effects
- Tumor Microenvironment
- Mice
Collapse
|
Research Support, N.I.H., Extramural |
4 |
99 |
2
|
Razzo BM, Ludwig N, Hong CS, Sharma P, Fabian KP, Fecek RJ, Storkus WJ, Whiteside TL. Tumor-derived exosomes promote carcinogenesis of murine oral squamous cell carcinoma. Carcinogenesis 2020; 41:625-633. [PMID: 31245809 DOI: 10.1093/carcin/bgz124] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/12/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023] Open
Abstract
Circulating tumor-derived exosomes (TEX) interact with a variety of cells in cancer-bearing hosts, leading to cellular reprogramming which promotes disease progression. To study TEX effects on the development of solid tumors, immunosuppressive exosomes carrying PD-L1 and FasL were isolated from supernatants of murine or human HNSCC cell lines. TEX were delivered (IV) to immunocompetent C57BL/6 mice bearing premalignant oral/esophageal lesions induced by the carcinogen, 4-nitroquinoline 1-oxide (4NQO). Progression of the premalignant oropharyngeal lesions to malignant tumors was monitored. A single TEX injection increased the number of developing tumors (6.2 versus 3.2 in control mice injected with phosphate-buffered saline; P < 0.0002) and overall tumor burden per mouse (P < 0.037). The numbers of CD4+ and CD8+ T lymphocytes infiltrating the developing tumors were coordinately reduced (P < 0.01) in mice injected with SCCVII-derived TEX relative to controls. Notably, TEX isolated from mouse or human tumors had similar effects on tumor development and immune cells. A single IV injection of TEX was sufficient to condition mice harboring premalignant OSCC lesions for accelerated tumor progression in concert with reduced immune cell migration to the tumor.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
64 |
3
|
Choi J, Beaino W, Fecek RJ, Fabian KPL, Laymon CM, Kurland BF, Storkus WJ, Anderson CJ. Combined VLA-4-Targeted Radionuclide Therapy and Immunotherapy in a Mouse Model of Melanoma. J Nucl Med 2018; 59:1843-1849. [PMID: 29959213 PMCID: PMC6278902 DOI: 10.2967/jnumed.118.209510] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/31/2018] [Indexed: 12/21/2022] Open
Abstract
Very late antigen-4 (VLA-4; also known as integrin α4β1) is expressed at high levels in aggressive and metastatic melanoma tumors and may provide an ideal target for imaging and targeted radionuclide therapy (TRT). 177Lu-DOTA-PEG4-LLP2A (177Lu-LLP2A) is a TRT that shows high affinity for VLA-4 and high uptake in B16F10 mouse melanoma tumors in vivo. Here, we report efficacy studies of 177Lu-LLP2A, alone and combined with immune checkpoint inhibitors (ICIs) (anti-PD-1, anti-PD-L1, and anti-CTLA-4 antibodies), in B16F10 tumor-bearing mice. Methods: Tumor cells (1 × 106) were implanted subcutaneously in C57BL/6 mice. After 8-10 d, the mice were randomized into 8 groups. 177Lu-LLP2A was injected intravenously on day 8 or 9 (single dose), and ICI antibodies were administered intraperitoneally in 3 doses. Tumor growth was monitored over time via calipers. Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining for apoptosis was performed on fixed tumors. In a separate study, Cy3-LLP2A or Cy3-scrambled LLP2A was injected in tumor-bearing mice, and tumors were collected 4 h after injection and then analyzed by flow cytometry and immunofluorescence microscopy using different immune cell markers. Results: TRT alone showed efficacy comparable to the dual-ICI anti-PD-1 + anti-CTLA-4 or anti-PD-L1 + anti-CTLA-4, whereas TRT + ICIs significantly enhanced survival. TUNEL staining showed that the highest levels of apoptosis were in the TRT + ICI groups. In addition to targeting tumor cells, TRT also bound immune cells in the tumor microenvironment. Flow cytometry data showed that the tumors consisted of about 77% tumor cells and fibroblasts (CD45-negative/CD49d-positive) and about 23% immune cells (CD45-positive/CD49d-positive) and that immune cells expressed higher levels of VLA-4. Cy3-LLP2A and CD49d colocalized with macrophages (CD68), T cells (CD8, CD4), and B cells (CD19). Immunohistochemical analysis identified a significant colocalization of Cy3-LLP2A and CD68. Conclusion: Combination treatment with TRT + ICIs targets both tumor cells and immune cells and has potential as a therapeutic agent in patients with metastatic melanoma.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
47 |
4
|
Zaccard CR, Watkins SC, Kalinski P, Fecek RJ, Yates AL, Salter RD, Ayyavoo V, Rinaldo CR, Mailliard RB. CD40L induces functional tunneling nanotube networks exclusively in dendritic cells programmed by mediators of type 1 immunity. THE JOURNAL OF IMMUNOLOGY 2014; 194:1047-56. [PMID: 25548234 DOI: 10.4049/jimmunol.1401832] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The ability of dendritic cells (DC) to mediate CD4(+) T cell help for cellular immunity is guided by instructive signals received during DC maturation, as well as the resulting pattern of DC responsiveness to the Th signal, CD40L. Furthermore, the professional transfer of antigenic information from migratory DC to lymph node-residing DC is critical for the effective induction of cellular immune responses. In this study we report that, in addition to their enhanced IL-12p70 producing capacity, human DC matured in the presence of inflammatory mediators of type 1 immunity are uniquely programmed to form networks of tunneling nanotube-like structures in response to CD40L-expressing Th cells or rCD40L. This immunologic process of DC reticulation facilitates intercellular trafficking of endosome-associated vesicles and Ag, but also pathogens such HIV-1, and is regulated by the opposing roles of IFN-γ and IL-4. The initiation of DC reticulation represents a novel helper function of CD40L and a superior mechanism of intercellular communication possessed by type 1 polarized DC, as well as a target for exploitation by pathogens to enhance direct cell-to-cell spread.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
43 |
5
|
Mailliard RB, Smith KN, Fecek RJ, Rappocciolo G, Nascimento EJM, Marques ET, Watkins SC, Mullins JI, Rinaldo CR. Selective induction of CTL helper rather than killer activity by natural epitope variants promotes dendritic cell-mediated HIV-1 dissemination. THE JOURNAL OF IMMUNOLOGY 2013; 191:2570-80. [PMID: 23913962 DOI: 10.4049/jimmunol.1300373] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The ability of HIV-1 to rapidly accumulate mutations provides the virus with an effective means of escaping CD8(+) CTL responses. In this study, we describe how subtle alterations in CTL epitopes expressed by naturally occurring HIV-1 variants can result in an incomplete escape from CTL recognition, providing the virus with a selective advantage. Rather than paralyzing the CTL response, these epitope modifications selectively induce the CTL to produce proinflammatory cytokines in the absence of target killing. Importantly, instead of dampening the immune response through CTL elimination of variant Ag-expressing immature dendritic cells (DC), a positive CTL-to-DC immune feedback loop dominates whereby the immature DC differentiate into mature proinflammatory DC. Moreover, these CTL-programmed DC exhibit a superior capacity to mediate HIV-1 trans-infection of T cells. This discordant induction of CTL helper activity in the absence of killing most likely contributes to the chronic immune activation associated with HIV-1 infection, and can be used by HIV-1 to promote viral dissemination and persistence. Our findings highlight the need to address the detrimental potential of eliciting dysfunctional cross-reactive memory CTL responses when designing and implementing anti-HIV-1 immunotherapies.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
32 |
6
|
Storkus WJ, Maurer D, Lin Y, Ding F, Bose A, Lowe D, Rose A, DeMark M, Karapetyan L, Taylor JL, Chelvanambi M, Fecek RJ, Filderman JN, Looney TJ, Miller L, Linch E, Lowman GM, Kalinski P, Butterfield LH, Tarhini A, Tawbi H, Kirkwood JM. Dendritic cell vaccines targeting tumor blood vessel antigens in combination with dasatinib induce therapeutic immune responses in patients with checkpoint-refractory advanced melanoma. J Immunother Cancer 2021; 9:jitc-2021-003675. [PMID: 34782430 PMCID: PMC8593702 DOI: 10.1136/jitc-2021-003675] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2021] [Indexed: 01/12/2023] Open
Abstract
Background A first-in-human, randomized pilot phase II clinical trial combining vaccines targeting overexpressed, non-mutated tumor blood vessel antigens (TBVA) and tyrosine kinase inhibitor dasatinib was conducted in human leukocyte antigen (HLA)-A2+ patients with advanced melanoma. Methods Patient monocyte-derived type-1-polarized dendritic cells were loaded with HLA-A2-presented peptides derived from TBVA (DLK1, EphA2, HBB, NRP1, RGS5, TEM1) and injected intradermally as a vaccine into the upper extremities every other week. Patients were randomized into one of two treatment arms receiving oral dasatinib (70 mg two times per day) beginning in week 5 (Arm A) or in week 1 (Arm B). Trial endpoints included T cell response to vaccine peptides (interferon-γ enzyme-linked immunosorbent spot), objective clinical response (Response Evaluation Criteria in Solid Tumors V.1.1) and exploratory tumor, blood and serum profiling of immune-associated genes/proteins. Results Sixteen patients with advanced-stage cutaneous (n=10), mucosal (n=1) or uveal (n=5) melanoma were accrued, 15 of whom had previously progressed on programmed cell death protein 1 (PD-1) blockade. Of 13 evaluable patients, 6 patients developed specific peripheral blood T cell responses against ≥3 vaccine-associated peptides, with further evidence of epitope spreading. All six patients with specific CD8+ T cell response to vaccine-targeted antigens exhibited evidence of T cell receptor (TCR) convergence in association with preferred clinical outcomes (four partial response and two stabilization of disease (SD)). Seven patients failed to respond to vaccination (one SD and six progressive disease). Patients in Arm B (immediate dasatinib) outperformed those in Arm A (delayed dasatinib) for immune response rate (IRR; 66.7% vs 28.6%), objective response rate (ORR) (66.7% vs 0%), overall survival (median 15.45 vs 3.47 months; p=0.0086) and progression-free survival (median 7.87 vs 1.97 months; p=0.063). IRR (80% vs 25%) and ORR (60% vs 12.5%) was greater for females versus male patients. Tumors in patients exhibiting response to treatment displayed (1) evidence of innate and adaptive immune-mediated inflammation and TCR convergence at baseline, (2) on-treatment transcriptional changes associated with reduced hypoxia/acidosis/glycolysis, and (3) increased inflammatory immune cell infiltration and tertiary lymphoid structure neogenesis. Conclusions Combined vaccination against TBVA plus dasatinib was safe and resulted in coordinating immunologic and/or objective clinical responses in 6/13 (46%) evaluable patients with melanoma, particularly those initiating treatment with both agents. Trial registration number NCT01876212.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
29 |
7
|
Hwang MP, Fecek RJ, Qin T, Storkus WJ, Wang Y. Single injection of IL-12 coacervate as an effective therapy against B16-F10 melanoma in mice. J Control Release 2020; 318:270-278. [PMID: 31866503 PMCID: PMC7045464 DOI: 10.1016/j.jconrel.2019.12.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/31/2022]
Abstract
Melanoma is the deadliest type of skin cancer with one of the fastest increasing incidence rates among solid tumors. The use of checkpoint inhibitors (e.g. αPD-1 antibody) has recently emerged as a viable alternative to conventional modes of therapy. However, increasing evidence points towards the need for a tumor priming step to improve intratumoral immune cell infiltration. IL-12 is an immune-activating cytokine with such potential and was explored in earlier clinical trials as a highly concentrated systemic infusion. This unfortunately led to severe adverse effects. From this perspective, the localization and gradual release of such a potent immunotherapeutic agent in the tumor microenvironment is desired. This manuscript reports the use of a heparin-based complex coacervate to deliver IL-12, in which heparin-binding motifs on IL-12 allow for its effective encapsulation. IL-12-encapsulated complex coacervates significantly improved the bioactivity of IL-12 and provided protection from proteolytic cleavage in-vitro. Indeed, a single injection of IL-12 coacervate significantly inhibits the in-vivo growth of treated and untreated, contralateral tumor growth in a syngeneic B16F10 mouse melanoma model. Furthermore, tumors in mice receiving IL-12 complex coacervate treatment displayed increased infiltration by natural killer (NK) cells and CD8α+ T cells, and a decreased presence of CD4+Foxp3+ regulatory T cells. This study provides proof-of-concept data supporting the use of complex coacervates for sustained delivery of immunostimulatory proteins as an effective therapeutic strategy against disseminated tumors.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
18 |
8
|
Raïch-Regué D, Fabian KP, Watson AR, Fecek RJ, Storkus WJ, Thomson AW. Intratumoral delivery of mTORC2-deficient dendritic cells inhibits B16 melanoma growth by promoting CD8(+) effector T cell responses. Oncoimmunology 2016; 5:e1146841. [PMID: 27471613 DOI: 10.1080/2162402x.2016.1146841] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 01/19/2016] [Accepted: 01/21/2016] [Indexed: 12/24/2022] Open
Abstract
Dendritic cells (DC) play a pivotal role in the induction and regulation of immune responses. In cancer, DC-based vaccines have proven to be safe and to elicit protective and therapeutic immunological responses. Recently, we showed that specific mTORC2 (mechanistic target of rapamycin complex 2) deficiency in DC enhances their ability to promote Th1 and Th17 responses after LPS stimulation. In the present study, bone marrow-derived mTORC2-deficient (Rictor(-/-)) DC were evaluated as a therapeutic modality in the murine B16 melanoma model. Consistent with their pro-inflammatory profile (enhanced IL-12p70 production and low PD-L1 expression versus control DC), intratumoral (i.t.) injection of LPS-activated Rictor(-/-) DC slowed B16 melanoma growth markedly in WT C57BL/6 recipient mice. This antitumor effect was abrogated when Rictor(-/-) DC were injected i.t. into B16-bearing Rag(-/-) mice, and also after selective CD8(+) T cell depletion in wild-type hosts in vivo, indicating that CD8(+) T cells were the principal regulators of tumor growth after Rictor(-/-) DC injection. I.t. administration of Rictor(-/-) DC also reduced the frequency of myeloid-derived suppressor cells within tumors, and enhanced numbers of IFNγ(+) and granzyme-B(+) cytotoxic CD8(+) T cells both in the spleens and tumors of treated animals. These data suggest that selective inhibition of mTORC2 activity in activated DC augments their pro-inflammatory and T cell stimulatory profile, in association with their enhanced capacity to promote protective CD8(+) T cell responses in vivo, leading to slowed B16 melanoma progression. These novel findings may contribute to the design of more effective DC-based vaccines for cancer immunotherapy.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
18 |
9
|
Fecek RJ, Busch R, Lin H, Pal K, Cunningham CA, Cuff CF. Production of Alexa Fluor 488-labeled reovirus and characterization of target cell binding, competence, and immunogenicity of labeled virions. J Immunol Methods 2006; 314:30-7. [PMID: 16822520 DOI: 10.1016/j.jim.2006.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Revised: 05/10/2006] [Accepted: 05/10/2006] [Indexed: 10/24/2022]
Abstract
Respiratory enteric orphan virus (reovirus) has been used to study many aspects of the biology and genetics of viruses, viral infection, pathogenesis, and the immune response to virus infection. This report describes the functional activity of virus labeled with Alexa Fluor 488, a stable fluorescent dye. Matrix assisted laser desorption-time of flight analysis indicated that Alexa Fluor 488 labeled the outer capsid proteins of reovirus. Labeled virus bound to murine L929 fibroblasts as determined by flow cytometry and fluorescence microscopy, and the specificity of binding were demonstrated by competitive inhibition with non-labeled virus. Labeled reovirus induced apoptosis and cytopathic effect in infected L929 cells. Mice infected with labeled virus mounted robust serum antibody and CD8(+) T-cell responses, indicating that labeled virus retained immunogenicity in vivo. These results indicate that Alexa Fluor 488-labeled virus provides a powerful new tool to analyze reovirus infection in vitro and in vivo.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
12 |
10
|
Fecek RJ, Storkus WJ. Combination strategies to enhance the potency of monocyte-derived dendritic cell-based cancer vaccines. Immunotherapy 2017; 8:1205-18. [PMID: 27605069 DOI: 10.2217/imt-2016-0071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Dendritic cells (DCs) are potent inducers of adaptive immunity and their clinical use in cancer vaccine formulations remains an area of active translational and clinical investigation. Although cancer vaccines applied as monotherapies have had a modest history of clinical success, there is great enthusiasm for novel therapeutic strategies combining DC-based cancer vaccines with agents that 'normalize' immune function in the tumor microenvironment (TME). Broadly, these combination vaccines are designed to antagonize/remove immunosuppressive networks within the TME that serve to limit the antitumor action of vaccine-induced T cells and/or to condition the TME to facilitate the recruitment and optimal function and durability of vaccine-induced T cells. Such combination regimens are expected to dramatically enhance the clinical potency of DC-based cancer vaccine platforms.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
10 |
11
|
Fecek RJ, Marcondes Rezende M, Busch R, Hassing I, Pieters R, Cuff CF. Enteric reovirus infection stimulates peanut-specific IgG2a responses in a mouse food allergy model. Immunobiology 2010; 215:941-8. [PMID: 20356650 DOI: 10.1016/j.imbio.2010.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 02/18/2010] [Accepted: 02/18/2010] [Indexed: 11/29/2022]
Abstract
IgE-mediated food allergies are an important cause of life-threatening hypersensitivity reactions. Orally administered peanut antigens mixed with the mucosal adjuvant cholera toxin (CT) induce a strong peanut extract (PE)-specific serum IgE response that is correlated with T-helper type 1 (Th1) and type 2 (Th2)-like T-cell responses. This study was conducted to determine if respiratory enteric orphan virus (reovirus), a non-pathogenic virus that induces robust Th1-mediated mucosal and systemic responses could modulate induction of PE-specific allergic responses when co-administered with PE. Young mice were orally exposed to PE mixed with CT, reovirus, or both CT and reovirus. As expected, CT promoted PE-specific serum IgE, IgG1, and IgG2a and intestinal IgA production as well as splenic Th1- and Th2-associated cytokine recall responses. Reovirus did not alter PE-specific serum IgE and IgG1 levels, but substantially increased the PE-specific IgG2a response when co-administered with PE with or without CT. Additionally, reovirus significantly decreased the percentage of the Peyer's patch CD8+ T-cells and Foxp3+CD4+ T-regulatory cells when co-administered with PE. These results demonstrate that an acute mucosal reovirus infection and subsequent Th1 immune response is capable of modulating the Th1/Th2 controlled humoral response to PE. The reovirus-mediated increase in the PE-specific IgG2a antibody response may have therapeutic implications as increased levels of non-allergenic PE-specific IgG2a could block PE antigens from binding to IgE-sensitized mast cells.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
7 |
12
|
Salem D, Chelvanambi M, Storkus WJ, Fecek RJ. Cutaneous Melanoma: Mutational Status and Potential Links to Tertiary Lymphoid Structure Formation. Front Immunol 2021; 12:629519. [PMID: 33746966 PMCID: PMC7970117 DOI: 10.3389/fimmu.2021.629519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 02/11/2021] [Indexed: 12/21/2022] Open
Abstract
Recent advances in immunotherapy have enabled rapid evolution of novel interventional approaches designed to reinvigorate and expand patient immune responses against cancer. An emerging approach in cancer immunology involves the conditional induction of tertiary lymphoid structures (TLS), which are non-encapsulated ectopic lymphoid structures forming at sites of chronic, pathologic inflammation. Cutaneous melanoma (CM), a highly-immunogenic form of solid cancer, continues to rise in both incidence and mortality rate, with recent reports supporting a positive correlation between the presence of TLS in melanoma and beneficial treatment outcomes amongst advanced-stage patients. In this context, TLS in CM are postulated to serve as dynamic centers for the initiation of robust anti-tumor responses within affected regions of active disease. Given their potential importance to patient outcome, significant effort has been recently devoted to gaining a better understanding of TLS neogenesis and the influence these lymphoid organs exert within the tumor microenvironment. Here, we briefly review TLS structure, function, and response to treatment in the setting of CM. To uncover potential tumor-intrinsic mechanisms that regulate TLS formation, we have taken the novel perspective of evaluating TLS induction in melanomas impacted by common driver mutations in BRAF, PTEN, NRAS, KIT, PRDM1, and MITF. Through analysis of The Cancer Genome Atlas (TCGA), we show expression of DNA repair proteins (DRPs) including BRCA1, PAXIP, ERCC1, ERCC2, ERCC3, MSH2, and PMS2 to be negatively correlated with expression of pro-TLS genes, suggesting DRP loss may favor TLS development in support of improved patient outcome and patient response to interventional immunotherapy.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
5 |
13
|
Bellavia MC, Nyiranshuti L, Latoche JD, Ho KV, Fecek RJ, Taylor JL, Day KE, Nigam S, Pun M, Gallazzi F, Edinger RS, Storkus WJ, Patel RB, Anderson CJ. PET Imaging of VLA-4 in a New BRAF V600E Mouse Model of Melanoma. Mol Imaging Biol 2022; 24:425-433. [PMID: 34694528 PMCID: PMC9183947 DOI: 10.1007/s11307-021-01666-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 01/05/2023]
Abstract
PURPOSE Despite unprecedented responses to immune checkpoint inhibitors and targeted therapy in melanoma, a major subset of patients progresses and have few effective salvage options. We have previously demonstrated robust, selective uptake of the peptidomimetic LLP2A labeled with Cu-64 ([64Cu]-LLP2A) for positron emission tomography (PET) imaging in subcutaneous and metastatic models of B16F10 murine melanoma. LLP2A binds with high affinity to very late antigen-4 (VLA-4, integrin α4β1), a transmembrane protein overexpressed in melanoma and other cancers that facilitates tumor growth and metastasis. Yet B16F10 fails to faithfully reflect human melanoma biology, as it lacks certain oncogenic driver mutations, including BRAF mutations found in ≥ 50 % of clinical specimens. Here, we evaluated the PET tracer [64Cu]-CB-TE1A1P-PEG4-LLP2A ([64Cu]-LLP2A) in novel, translational BRAFV600E mutant melanoma models differing in VLA-4 expression-BPR (VLA-4-) and BPRα (VLA-4+). PROCEDURES BPR cells were transduced with α4 (CD49d) to overexpress intact cell surface VLA-4 (BPRα). The binding affinity of [64Cu]-LLP2A to BPR and BPRα cells was determined by saturation binding assays. [64Cu]-LLP2A internalization into B16F10, BPR, and BPRα cells was quantified via a plate-based assay. Tracer biodistribution and PET/CT imaging were evaluated in mice bearing subcutaneous BPR and BPRα tumors. RESULTS [64Cu]-LLP2A demonstrated high binding affinity to BPRα (Kd = 1.4 nM) but indeterminate binding to BPR cells. VLA-4+ BPRα and B16F10 displayed comparable time-dependent [64Cu]-LLP2A internalization, whereas BPR internalization was undetectable. PET/CT showed increased tracer uptake in BPRα tumors vs. BPR tumors in vivo, which was validated by significantly greater (p < 0.0001) BPRα tumor uptake in biodistribution analyses. CONCLUSIONS [64Cu]-LLP2A discriminates BPRα (VLA-4+) vs. BPR (VLA-4-) melanomas in vivo, supporting translation of these BRAF-mutated melanoma models via prospective imaging and theranostic studies. These results extend the utility of LLP2A to selectively target clinically relevant and therapy-resistant tumor variants toward its use for therapeutic patient care.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
3 |
14
|
Close DA, Kirkwood JM, Fecek RJ, Storkus WJ, Johnston PA. Unbiased High-Throughput Drug Combination Pilot Screening Identifies Synergistic Drug Combinations Effective against Patient-Derived and Drug-Resistant Melanoma Cell Lines. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2021; 26:712-729. [PMID: 33208016 PMCID: PMC8128935 DOI: 10.1177/2472555220970917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We describe the development, optimization, and validation of 384-well growth inhibition assays for six patient-derived melanoma cell lines (PDMCLs), three wild type (WT) for BRAF and three with V600E-BRAF mutations. We conducted a pilot drug combination (DC) high-throughput screening (HTS) of 45 pairwise 4×4 DC matrices prepared from 10 drugs in the PDMCL assays: two B-Raf inhibitors (BRAFi), a MEK inhibitor (MEKi), and a methylation agent approved for melanoma; cytotoxic topoisomerase II and DNA methyltransferase chemotherapies; and drugs targeting the base excision DNA repair enzyme APE1 (apurinic/apyrimidinic endonuclease-1/redox effector factor-1), SRC family tyrosine kinases, the heat shock protein 90 (HSP90) molecular chaperone, and histone deacetylases.Pairwise DCs between dasatinib and three drugs approved for melanoma therapy-dabrafenib, vemurafenib, or trametinib-were flagged as synergistic in PDMCLs. Exposure to fixed DC ratios of the SRC inhibitor dasatinib with the BRAFis or MEKis interacted synergistically to increase PDMCL sensitivity to growth inhibition and enhance cytotoxicity independently of PDMCL BRAF status. These DCs synergistically inhibited the growth of mouse melanoma cell lines that either were dabrafenib-sensitive or had acquired resistance to dabrafenib with cross resistance to vemurafenib, trametinib, and dasatinib. Dasatinib DCs with dabrafenib, vemurafenib, or trametinib activated apoptosis and increased cell death in melanoma cells independently of their BRAF status or their drug resistance phenotypes. These preclinical in vitro studies provide a data-driven rationale for the further investigation of DCs between dasatinib and BRAFis or MEKis as candidates for melanoma combination therapies with the potential to improve outcomes and/or prevent or delay the emergence of disease resistance.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
2 |
15
|
Salem D, Fecek RJ. Role of microtubule actin crosslinking factor 1 (MACF1) in bipolar disorder pathophysiology and potential in lithium therapeutic mechanism. Transl Psychiatry 2023; 13:221. [PMID: 37353479 DOI: 10.1038/s41398-023-02483-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/05/2023] [Accepted: 05/23/2023] [Indexed: 06/25/2023] Open
Abstract
Bipolar affective disorder (BPAD) are life-long disorders that account for significant morbidity in afflicted patients. The etiology of BPAD is complex, combining genetic and environmental factors to increase the risk of disease. Genetic studies have pointed toward cytoskeletal dysfunction as a potential molecular mechanism through which BPAD may arise and have implicated proteins that regulate the cytoskeleton as risk factors. Microtubule actin crosslinking factor 1 (MACF1) is a giant cytoskeletal crosslinking protein that can coordinate the different aspects of the mammalian cytoskeleton with a wide variety of actions. In this review, we seek to highlight the functions of MACF1 in the nervous system and the molecular mechanisms leading to BPAD pathogenesis. We also offer a brief perspective on MACF1 and the role it may be playing in lithium's mechanism of action in treating BPAD.
Collapse
|
Review |
2 |
1 |
16
|
Fecek RJ, Wang S, Storkus WJ. Immunotherapeutic targeting of HSP90 client proteins in BRAF-inhibitor resistant melanoma. J Immunother Cancer 2015. [PMCID: PMC4652472 DOI: 10.1186/2051-1426-3-s2-p432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
|
10 |
1 |
17
|
Mailliard RB, Smith KN, Fecek RJ, Zaccard CR, Watkins SC, Rappocciolo G, Mullins JI, Rinaldo CR. HIV-1 selectively exploits cross-reactive CTL “help” to promote dysfunctional programming of pro-inflammatory dendritic cells. Retrovirology 2012. [PMCID: PMC3441256 DOI: 10.1186/1742-4690-9-s2-p282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
|
13 |
|
18
|
Chelvanambi M, Taylor JL, Fecek RJ, Storkus WJ. Therapeutic Induction of Tertiary Lymphoid Structures in Melanoma using STING Agonists. THE JOURNAL OF IMMUNOLOGY 2019. [DOI: 10.4049/jimmunol.202.supp.194.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Abstract
Tertiary lymphoid structures (TLS) are non-encapsulated functional aggregates of T cells, B cells, dendritic cells (DC) and high endothelial venules (HEV) located in peripheral sites of chronic inflammation. TLS may serve as sites of local antigen presentation and immune priming that may protect against tumor progression. Homeostatic chemokines CCL19, CCL21 and CXCL13 produced by DCs and/or stromal cells are known to support secondary lymphoid organogenesis and also play key roles in TLS formation. Other DC-associated pro-inflammatory cytokines including lymphotoxin α, IL-36γ and type I interferons also appear to aid in organizing TLS. Hence, we hypothesize that appropriate therapeutic activation of DCs within the tumor microenvironment may serve to nucleate TLS in vivo, leading to slowed tumor progression. We found that activation of the cytosolic DNA sensor STING using ML-RR-S2-CDA, a murine and human STING agonist, leads to not only an expected increased production of type I interferons by CD11c+ DCs in vitro but also leads to increased transcript levels of TLS-associated cytokines/chemokines via activation of pIRF3 and pIRF7. In mice harboring B16.F10 melanomas, provision of STING agonists slows tumor growth in a host STING dependent manner. Further using immunofluorescence microscopy, we observed increased infiltration and clustering of CD3+ T cells and CD11c+ DCs and the induction of HEVs in treated tumors within tumor-associated TLS as early as 5 days post-treatment. Future studies will determine how TLS shape the local versus systemic protective T cell repertoire in treated animals.
Collapse
|
|
6 |
|