1
|
Tagge CA, Fisher AM, Minaeva OV, Gaudreau-Balderrama A, Moncaster JA, Zhang XL, Wojnarowicz MW, Casey N, Lu H, Kokiko-Cochran ON, Saman S, Ericsson M, Onos KD, Veksler R, Senatorov VV, Kondo A, Zhou XZ, Miry O, Vose LR, Gopaul KR, Upreti C, Nowinski CJ, Cantu RC, Alvarez VE, Hildebrandt AM, Franz ES, Konrad J, Hamilton JA, Hua N, Tripodis Y, Anderson AT, Howell GR, Kaufer D, Hall GF, Lu KP, Ransohoff RM, Cleveland RO, Kowall NW, Stein TD, Lamb BT, Huber BR, Moss WC, Friedman A, Stanton PK, McKee AC, Goldstein LE. Concussion, microvascular injury, and early tauopathy in young athletes after impact head injury and an impact concussion mouse model. Brain 2018; 141:422-458. [PMID: 29360998 PMCID: PMC5837414 DOI: 10.1093/brain/awx350] [Citation(s) in RCA: 279] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 10/02/2017] [Accepted: 10/29/2017] [Indexed: 12/14/2022] Open
Abstract
The mechanisms underpinning concussion, traumatic brain injury, and chronic traumatic encephalopathy, and the relationships between these disorders, are poorly understood. We examined post-mortem brains from teenage athletes in the acute-subacute period after mild closed-head impact injury and found astrocytosis, myelinated axonopathy, microvascular injury, perivascular neuroinflammation, and phosphorylated tau protein pathology. To investigate causal mechanisms, we developed a mouse model of lateral closed-head impact injury that uses momentum transfer to induce traumatic head acceleration. Unanaesthetized mice subjected to unilateral impact exhibited abrupt onset, transient course, and rapid resolution of a concussion-like syndrome characterized by altered arousal, contralateral hemiparesis, truncal ataxia, locomotor and balance impairments, and neurobehavioural deficits. Experimental impact injury was associated with axonopathy, blood-brain barrier disruption, astrocytosis, microgliosis (with activation of triggering receptor expressed on myeloid cells, TREM2), monocyte infiltration, and phosphorylated tauopathy in cerebral cortex ipsilateral and subjacent to impact. Phosphorylated tauopathy was detected in ipsilateral axons by 24 h, bilateral axons and soma by 2 weeks, and distant cortex bilaterally at 5.5 months post-injury. Impact pathologies co-localized with serum albumin extravasation in the brain that was diagnostically detectable in living mice by dynamic contrast-enhanced MRI. These pathologies were also accompanied by early, persistent, and bilateral impairment in axonal conduction velocity in the hippocampus and defective long-term potentiation of synaptic neurotransmission in the medial prefrontal cortex, brain regions distant from acute brain injury. Surprisingly, acute neurobehavioural deficits at the time of injury did not correlate with blood-brain barrier disruption, microgliosis, neuroinflammation, phosphorylated tauopathy, or electrophysiological dysfunction. Furthermore, concussion-like deficits were observed after impact injury, but not after blast exposure under experimental conditions matched for head kinematics. Computational modelling showed that impact injury generated focal point loading on the head and seven-fold greater peak shear stress in the brain compared to blast exposure. Moreover, intracerebral shear stress peaked before onset of gross head motion. By comparison, blast induced distributed force loading on the head and diffuse, lower magnitude shear stress in the brain. We conclude that force loading mechanics at the time of injury shape acute neurobehavioural responses, structural brain damage, and neuropathological sequelae triggered by neurotrauma. These results indicate that closed-head impact injuries, independent of concussive signs, can induce traumatic brain injury as well as early pathologies and functional sequelae associated with chronic traumatic encephalopathy. These results also shed light on the origins of concussion and relationship to traumatic brain injury and its aftermath.awx350media15713427811001.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
279 |
2
|
Senatorov VV, Friedman AR, Milikovsky DZ, Ofer J, Saar-Ashkenazy R, Charbash A, Jahan N, Chin G, Mihaly E, Lin JM, Ramsay HJ, Moghbel A, Preininger MK, Eddings CR, Harrison HV, Patel R, Shen Y, Ghanim H, Sheng H, Veksler R, Sudmant PH, Becker A, Hart B, Rogawski MA, Dillin A, Friedman A, Kaufer D. Blood-brain barrier dysfunction in aging induces hyperactivation of TGFβ signaling and chronic yet reversible neural dysfunction. Sci Transl Med 2019; 11:eaaw8283. [PMID: 31801886 DOI: 10.1126/scitranslmed.aaw8283] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 07/15/2019] [Accepted: 11/07/2019] [Indexed: 12/16/2022]
Abstract
Aging involves a decline in neural function that contributes to cognitive impairment and disease. However, the mechanisms underlying the transition from a young-and-healthy to aged-and-dysfunctional brain are not well understood. Here, we report breakdown of the vascular blood-brain barrier (BBB) in aging humans and rodents, which begins as early as middle age and progresses to the end of the life span. Gain-of-function and loss-of-function manipulations show that this BBB dysfunction triggers hyperactivation of transforming growth factor-β (TGFβ) signaling in astrocytes, which is necessary and sufficient to cause neural dysfunction and age-related pathology in rodents. Specifically, infusion of the serum protein albumin into the young rodent brain (mimicking BBB leakiness) induced astrocytic TGFβ signaling and an aged brain phenotype including aberrant electrocorticographic activity, vulnerability to seizures, and cognitive impairment. Furthermore, conditional genetic knockdown of astrocytic TGFβ receptors or pharmacological inhibition of TGFβ signaling reversed these symptomatic outcomes in aged mice. Last, we found that this same signaling pathway is activated in aging human subjects with BBB dysfunction. Our study identifies dysfunction in the neurovascular unit as one of the earliest triggers of neurological aging and demonstrates that the aging brain may retain considerable latent capacity, which can be revitalized by therapeutic inhibition of TGFβ signaling.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
164 |
3
|
Bar-Klein G, Lublinsky S, Kamintsky L, Noyman I, Veksler R, Dalipaj H, Senatorov VV, Swissa E, Rosenbach D, Elazary N, Milikovsky DZ, Milk N, Kassirer M, Rosman Y, Serlin Y, Eisenkraft A, Chassidim Y, Parmet Y, Kaufer D, Friedman A. Imaging blood-brain barrier dysfunction as a biomarker for epileptogenesis. Brain 2017; 140:1692-1705. [PMID: 28444141 DOI: 10.1093/brain/awx073] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 01/31/2017] [Indexed: 12/30/2022] Open
Abstract
A biomarker that will enable the identification of patients at high-risk for developing post-injury epilepsy is critically required. Microvascular pathology and related blood-brain barrier dysfunction and neuroinflammation were shown to be associated with epileptogenesis after injury. Here we used prospective, longitudinal magnetic resonance imaging to quantitatively follow blood-brain barrier pathology in rats following status epilepticus, late electrocorticography to identify epileptic animals and post-mortem immunohistochemistry to confirm blood-brain barrier dysfunction and neuroinflammation. Finally, to test the pharmacodynamic relevance of the proposed biomarker, two anti-epileptogenic interventions were used; isoflurane anaesthesia and losartan. Our results show that early blood-brain barrier pathology in the piriform network is a sensitive and specific predictor (area under the curve of 0.96, P < 0.0001) for epilepsy, while diffused pathology is associated with a lower risk. Early treatments with either isoflurane anaesthesia or losartan prevented early microvascular damage and late epilepsy. We suggest quantitative assessment of blood-brain barrier pathology as a clinically relevant predictive, diagnostic and pharmaco!dynamics biomarker for acquired epilepsy.
Collapse
|
Journal Article |
8 |
102 |
4
|
O'Keeffe E, Kelly E, Liu Y, Giordano C, Wallace E, Hynes M, Tiernan S, Meagher A, Greene C, Hughes S, Burke T, Kealy J, Doyle N, Hay A, Farrell M, Grant GA, Friedman A, Veksler R, Molloy MG, Meaney JF, Pender N, Camarillo D, Doherty CP, Campbell M. Dynamic Blood-Brain Barrier Regulation in Mild Traumatic Brain Injury. J Neurotrauma 2020; 37:347-356. [PMID: 31702476 PMCID: PMC10331162 DOI: 10.1089/neu.2019.6483] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Whereas the diagnosis of moderate and severe traumatic brain injury (TBI) is readily visible on current medical imaging paradigms (magnetic resonance imaging [MRI] and computed tomography [CT] scanning), a far greater challenge is associated with the diagnosis and subsequent management of mild TBI (mTBI), especially concussion which, by definition, is characterized by a normal CT. To investigate whether the integrity of the blood-brain barrier (BBB) is altered in a high-risk population for concussions, we studied professional mixed martial arts (MMA) fighters and adolescent rugby players. Additionally, we performed the linear regression between the BBB disruption defined by increased gadolinium contrast extravasation on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) on MRI and multiple biomechanical parameters indicating the severity of impacts recorded using instrumented mouthguards in professional MMA fighters. MMA fighters were examined pre-fight for a baseline and again within 120 h post-competitive fight, whereas rugby players were examined pre-season and again post-season or post-match in a subset of cases. DCE-MRI, serological analysis of BBB biomarkers, and an analysis of instrumented mouthguard data, was performed. Here, we provide pilot data that demonstrate disruption of the BBB in both professional MMA fighters and rugby players, dependent on the level of exposure. Our data suggest that biomechanical forces in professional MMA and adolescent rugby can lead to BBB disruption. These changes on imaging may serve as a biomarker of exposure of the brain to repetitive subconcussive forces and mTBI.
Collapse
|
research-article |
5 |
85 |
5
|
Weissberg I, Veksler R, Kamintsky L, Saar-Ashkenazy R, Milikovsky DZ, Shelef I, Friedman A. Imaging blood-brain barrier dysfunction in football players. JAMA Neurol 2015; 71:1453-5. [PMID: 25383774 DOI: 10.1001/jamaneurol.2014.2682] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
Research Support, Non-U.S. Gov't |
10 |
72 |
6
|
Milikovsky DZ, Ofer J, Senatorov VV, Friedman AR, Prager O, Sheintuch L, Elazari N, Veksler R, Zelig D, Weissberg I, Bar-Klein G, Swissa E, Hanael E, Ben-Arie G, Schefenbauer O, Kamintsky L, Saar-Ashkenazy R, Shelef I, Shamir MH, Goldberg I, Glik A, Benninger F, Kaufer D, Friedman A. Paroxysmal slow cortical activity in Alzheimer's disease and epilepsy is associated with blood-brain barrier dysfunction. Sci Transl Med 2020; 11:11/521/eaaw8954. [PMID: 31801888 DOI: 10.1126/scitranslmed.aaw8954] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 07/13/2019] [Accepted: 10/09/2019] [Indexed: 12/12/2022]
Abstract
A growing body of evidence shows that epileptic activity is frequent but often undiagnosed in patients with Alzheimer's disease (AD) and has major therapeutic implications. Here, we analyzed electroencephalogram (EEG) data from patients with AD and found an EEG signature of transient slowing of the cortical network that we termed paroxysmal slow wave events (PSWEs). The occurrence per minute of the PSWEs was correlated with level of cognitive impairment. Interictal (between seizures) PSWEs were also found in patients with epilepsy, localized to cortical regions displaying blood-brain barrier (BBB) dysfunction, and in three rodent models with BBB pathology: aged mice, young 5x familial AD model, and status epilepticus-induced epilepsy in young rats. To investigate the potential causative role of BBB dysfunction in network modifications underlying PSWEs, we infused the serum protein albumin directly into the cerebral ventricles of naïve young rats. Infusion of albumin, but not artificial cerebrospinal fluid control, resulted in high incidence of PSWEs. Our results identify PSWEs as an EEG manifestation of nonconvulsive seizures in patients with AD and suggest BBB pathology as an underlying mechanism and as a promising therapeutic target.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
66 |
7
|
Kamintsky L, Cairns KA, Veksler R, Bowen C, Beyea SD, Friedman A, Calkin C. Blood-brain barrier imaging as a potential biomarker for bipolar disorder progression. Neuroimage Clin 2019; 26:102049. [PMID: 31718955 PMCID: PMC7229352 DOI: 10.1016/j.nicl.2019.102049] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/05/2019] [Accepted: 10/21/2019] [Indexed: 11/29/2022]
Abstract
Bipolar disorder affects approximately 2% of the population and is typically characterized by recurrent episodes of mania and depression. While some patients achieve remission using mood-stabilizing treatments, a significant proportion of patients show progressive changes in symptomatology over time. Bipolar progression is diverse in nature and may include a treatment-resistant increase in the frequency and severity of episodes, worse psychiatric and functional outcomes, and a greater risk of suicide. The mechanisms underlying bipolar disorder progression remain poorly understood and there are currently no biomarkers for identifying patients at risk. The objective of this study was to explore the potential of blood-brain barrier (BBB) imaging as such a biomarker, by acquiring the first imaging data of BBB leakage in bipolar patients, and evaluating the potential association between BBB dysfunction and bipolar symptoms. To this end, a cohort of 36 bipolar patients was recruited through the Mood Disorders Clinic (Nova Scotia Health Authority, Canada). All patients, along with 14 control subjects (matched for sex, age and metabolic status), underwent contrast-enhanced dynamic MRI scanning for quantitative assessment of BBB leakage as well as clinical and psychiatric evaluations. Outlier analysis has identified a group of 10 subjects with significantly higher percentages of brain volume with BBB leakage (labeled the "extensive BBB leakage" group). This group consisted exclusively of bipolar patients, while the "normal BBB leakage" group included the entire control cohort and the remaining 26 bipolar subjects. Among the bipolar cohort, patients with extensive BBB leakage were found to have more severe depression and anxiety, and a more chronic course of illness. Furthermore, all bipolar patients within this group were also found to have co-morbid insulin resistance, suggesting that insulin resistance may increase the risk of BBB dysfunction in bipolar patients. Our findings demonstrate a clear link between BBB leakage and greater psychiatric morbidity in bipolar patients and highlight the potential of BBB imaging as a mechanism-based biomarker for bipolar disorder progression.
Collapse
|
research-article |
6 |
64 |
8
|
Chassidim Y, Veksler R, Lublinsky S, Pell GS, Friedman A, Shelef I. Quantitative imaging assessment of blood-brain barrier permeability in humans. Fluids Barriers CNS 2013; 10:9. [PMID: 23388348 PMCID: PMC3570379 DOI: 10.1186/2045-8118-10-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 02/04/2013] [Indexed: 12/18/2022] Open
Abstract
The blood-brain barrier (BBB) is a functional and structural barrier separating the intravascular and neuropil compartments of the brain. It characterizes the vascular bed and is essential for normal brain functions. Dysfunction in the BBB properties have been described in most common neurological disorders, such as stroke, traumatic injuries, intracerebral hemorrhage, tumors, epilepsy and neurodegenerative disorders. It is now obvious that the BBB plays an important role in normal brain activity, stressing the need for applicable imaging and assessment methods. Recent advancements in imaging techniques now make it possible to establish sensitive and quantitative methods for the assessment of BBB permeability. However, most of the existing techniques require complicated and demanding dynamic scanning protocols that are impractical and cannot be fulfilled in some cases. We review existing methods for the evaluation of BBB permeability, focusing on quantitative magnetic resonance-based approaches and discuss their drawbacks and limitations. In light of those limitations we propose two new approaches for BBB assessment with less demanding imaging sequences: the "post-pre" and the "linear dynamic" methods, both allow semi-quantitative permeability assessment and localization of dysfunctional BBB with simple/partial dynamic imaging protocols and easy-to-apply analysis algorithms. We present preliminary results and show an example which compares these new methods with the existing standard assessment method. We strongly believe that the establishment of such "easy to use" and reliable imaging methods is essential before BBB assessment can become a routine clinical tool. Large clinical trials are awaited to fully understand the significance of BBB permeability as a biomarker and target for treatment in neurological disorders.
Collapse
|
Journal Article |
12 |
56 |
9
|
Veksler R, Vazana U, Serlin Y, Prager O, Ofer J, Shemen N, Fisher AM, Minaeva O, Hua N, Saar-Ashkenazy R, Benou I, Riklin-Raviv T, Parker E, Mumby G, Kamintsky L, Beyea S, Bowen CV, Shelef I, O'Keeffe E, Campbell M, Kaufer D, Goldstein LE, Friedman A. Slow blood-to-brain transport underlies enduring barrier dysfunction in American football players. Brain 2021; 143:1826-1842. [PMID: 32464655 PMCID: PMC7297017 DOI: 10.1093/brain/awaa140] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 02/27/2020] [Accepted: 03/11/2020] [Indexed: 12/14/2022] Open
Abstract
Repetitive mild traumatic brain injury in American football players has garnered increasing public attention following reports of chronic traumatic encephalopathy, a progressive tauopathy. While the mechanisms underlying repetitive mild traumatic brain injury-induced neurodegeneration are unknown and antemortem diagnostic tests are not available, neuropathology studies suggest a pathogenic role for microvascular injury, specifically blood–brain barrier dysfunction. Thus, our main objective was to demonstrate the effectiveness of a modified dynamic contrast-enhanced MRI approach we have developed to detect impairments in brain microvascular function. To this end, we scanned 42 adult male amateur American football players and a control group comprising 27 athletes practicing a non-contact sport and 26 non-athletes. MRI scans were also performed in 51 patients with brain pathologies involving the blood–brain barrier, namely malignant brain tumours, ischaemic stroke and haemorrhagic traumatic contusion. Based on data from prolonged scans, we generated maps that visualized the permeability value for each brain voxel. Our permeability maps revealed an increase in slow blood-to-brain transport in a subset of amateur American football players, but not in sex- and age-matched controls. The increase in permeability was region specific (white matter, midbrain peduncles, red nucleus, temporal cortex) and correlated with changes in white matter, which were confirmed by diffusion tensor imaging. Additionally, increased permeability persisted for months, as seen in players who were scanned both on- and off-season. Examination of patients with brain pathologies revealed that slow tracer accumulation characterizes areas surrounding the core of injury, which frequently shows fast blood-to-brain transport. Next, we verified our method in two rodent models: rats and mice subjected to repeated mild closed-head impact injury, and rats with vascular injury inflicted by photothrombosis. In both models, slow blood-to-brain transport was observed, which correlated with neuropathological changes. Lastly, computational simulations and direct imaging of the transport of Evans blue-albumin complex in brains of rats subjected to recurrent seizures or focal cerebrovascular injury suggest that increased cellular transport underlies the observed slow blood-to-brain transport. Taken together, our findings suggest dynamic contrast-enhanced-MRI can be used to diagnose specific microvascular pathology after traumatic brain injury and other brain pathologies.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
42 |
10
|
Benou A, Veksler R, Friedman A, Riklin Raviv T. Ensemble of expert deep neural networks for spatio-temporal denoising of contrast-enhanced MRI sequences. Med Image Anal 2017; 42:145-159. [DOI: 10.1016/j.media.2017.07.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 07/13/2017] [Accepted: 07/25/2017] [Indexed: 12/23/2022]
|
|
8 |
40 |
11
|
Veksler R, Shelef I, Friedman A. Blood-brain barrier imaging in human neuropathologies. Arch Med Res 2014; 45:646-52. [PMID: 25453223 DOI: 10.1016/j.arcmed.2014.11.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 11/20/2014] [Indexed: 01/22/2023]
Abstract
The blood-brain barrier (BBB) is essential for normal function of the brain, and its role in many brain pathologies has been the focus of numerous studies during the last decades. Dysfunction of the BBB is not only being shown in numerous brain diseases, but animal studies have indicated that it plays a direct key role in the genesis of neurovascular dysfunction and associated neurodegeneration. As such evidence accumulates, the need for robust and clinically applicable methods for minimally invasive assessment of BBB integrity is becoming urgent. This review provides an introduction to BBB imaging methods in the clinical scenario. First, imaging modalities are reviewed, with a focus on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). We then proceed to review image analysis methods, including quantitative and semi-quantitative methods. The advantages and limitations of each approach are discussed, and future directions and questions are highlighted.
Collapse
|
Review |
11 |
37 |
12
|
Hanael E, Veksler R, Friedman A, Bar-Klein G, Senatorov VV, Kaufer D, Konstantin L, Elkin M, Chai O, Peery D, Shamir MH. Blood-brain barrier dysfunction in canine epileptic seizures detected by dynamic contrast-enhanced magnetic resonance imaging. Epilepsia 2020; 60:1005-1016. [PMID: 31032909 DOI: 10.1111/epi.14739] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Dogs with spontaneous or acquired epilepsy exhibit resemblance in etiology and disease course to humans, potentially offering a translational model of the human disease. Blood-brain barrier dysfunction (BBBD) has been shown to partake in epileptogenesis in experimental models of epilepsy. To test the hypothesis that BBBD can be detected in dogs with naturally occurring seizures, we developed a linear dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) analysis algorithm that was validated in clinical cases of seizing dogs and experimental epileptic rats. METHODS Forty-six dogs with naturally occurring seizures of different etiologies and 12 induced epilepsy rats were imaged using DCE-MRI. Six healthy dogs and 12 naive rats served as control. DCE-MRI was analyzed by linear-dynamic method. BBBD scores were calculated in whole brain and in specific brain regions. Immunofluorescence analysis for transforming growth factor beta (TGF-β) pathway proteins was performed on the piriform cortex of epileptic dogs. RESULTS We found BBBD in 37% of dogs with seizures. A significantly higher cerebrospinal fluid to serum albumin ratio was found in dogs with BBBD relative to dogs with intact blood-brain barrier (BBB). A significant difference was found between epileptic and control rats when BBBD scores were calculated for the piriform cortex at 48 hours and 1 month after status epilepticus. Mean BBBD score of the piriform lobe in idiopathic epilepsy (IE) dogs was significantly higher compared to control. Immunohistochemistry results suggested active TGF-β signaling and neuroinflammation in the piriform cortex of dogs with IE, showing increased levels of serum albumin colocalized with glial acidic fibrillary protein and pSMAD2 in an area where BBBD had been detected by linear DCE-MRI. SIGNIFICANCE Detection of BBBD in dogs with naturally occurring epilepsy provides the ground for future studies for evaluation of novel treatment targeting the disrupted BBB. The involvement of the piriform lobe seen using our linear DCE-MRI protocol and algorithm emphasizes the possibility of using dogs as a translational model for the human disease.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
25 |
13
|
Serlin Y, Ofer J, Ben-Arie G, Veksler R, Ifergane G, Shelef I, Minuk J, Horev A, Friedman A. Blood-Brain Barrier Leakage: A New Biomarker in Transient Ischemic Attacks. Stroke 2020; 50:1266-1269. [PMID: 31009340 DOI: 10.1161/strokeaha.119.025247] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Background and Purpose- The diagnosis of transient ischemic attack is challenging. Evidence of acute ischemia on MRI diffusion-weighted imaging is highly variable and confirmed in only about one-third of patients. This study investigated the significance of blood-brain barrier dysfunction (BBBD) mapping in patients with transient neurological deficits, as a diagnostic and prognostic biomarker required for risk stratification and stroke prevention. Methods- We used dynamic contrast-enhanced MRI to quantitatively map BBBD in a prospective cohort study of 57 patients diagnosed with transient ischemic attack/minor stroke and 50 healthy controls. Results- Brain volume with BBBD was significantly higher in patients compared with controls ( P=0.002). BBBD localization corresponded with the clinical presentation in 41 patients (72%) and was more extensive in patients with acute infarct on diffusion-weighted imaging ( P=0.05). Patients who developed new stroke during follow-up had a significantly greater BBBD at the initial presentation ( P=0.03) with a risk ratio of 5.35 for recurrent stroke. Conclusions- This is the first description of the extent and localization of BBBD in patients with transient ischemic attack/minor stroke. We propose BBBD mapping as a valuable tool for detection of subtle brain ischemia and a promising predictive biomarker required for risk stratification and stroke prevention.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
24 |
14
|
Saar-Ashkenazy R, Veksler R, Guez J, Jacob Y, Shelef I, Shalev H, Friedman A, Cohen JE. Breakdown of Inter-Hemispheric Connectivity Is Associated with Posttraumatic Symptomatology and Memory Impairment. PLoS One 2016; 11:e0144766. [PMID: 26863536 PMCID: PMC4749292 DOI: 10.1371/journal.pone.0144766] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 11/23/2015] [Indexed: 11/18/2022] Open
Abstract
Altered brain anatomy in specific gray-matter regions has been shown in patients with posttraumatic stress disorder (PTSD). Recently, white-matter tracts have become a focus of research in PTSD. The corpus callosum (CC) is the principal white-matter fiber bundle, crucial in relaying sensory, motor and cognitive information between hemispheres. Alterations in CC fibers have been reported in PTSD and might be assumed to underlie substantial behavioral and cognitive sequelae; however most diffusion tensor imaging (DTI) studies in adult-onset PTSD failed to address the clinical correlates between imaging and PTSD symptoms severity, behavioral manifestation and cognitive functions. In the current study we examined (a) to what extent microstructural integrity of the CC is associated with memory performance and (b) whether imaging and cognitive parameters are associated with PTSD symptom severity. DTI data were obtained and fractional anisotropy (FA) values were computed for 16 patients and 14 controls. PTSD symptom severity was assessed by employing the clinician administered PTSD scale (CAPS) and memory was tested using a task probing item and associative memory for words and pictures. Significant correlations were found between PTSD symptoms severity, memory accuracy and reaction-time to CC FA values in the PTSD group. This study demonstrates meaningful clinical and cognitive correlates of microstructural connectivity. These results have implications for diagnostic tools and future studies aimed at identifying individuals at risk for PTSD.
Collapse
|
research-article |
9 |
15 |
15
|
Chassidim Y, Vazana U, Prager O, Veksler R, Bar-Klein G, Schoknecht K, Fassler M, Lublinsky S, Shelef I. Analyzing the blood-brain barrier: the benefits of medical imaging in research and clinical practice. Semin Cell Dev Biol 2014; 38:43-52. [PMID: 25455024 DOI: 10.1016/j.semcdb.2014.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 11/23/2014] [Accepted: 11/24/2014] [Indexed: 01/03/2023]
Abstract
A dysfunctional BBB is a common feature in a variety of brain disorders, a fact stressing the need for diagnostic tools designed to assess brain vessels' permeability in space and time. Biological research has benefited over the years various means to analyze BBB integrity. The use of biomarkers for improper BBB functionality is abundant. Systemic administration of BBB impermeable tracers can both visualize brain regions characterized by BBB impairment, as well as lead to its quantification. Additionally, locating molecular, physiological content in regions from which it is restricted under normal BBB functionality undoubtedly indicates brain pathology-related BBB disruption. However, in-depth research into the BBB's phenotype demands higher analytical complexity than functional vs. pathological BBB; criteria which biomarker based BBB permeability analyses do not meet. The involvement of accurate and engineering sciences in recent brain research, has led to improvements in the field, in the form of more accurate, sensitive imaging-based methods. Improvements in the spatiotemporal resolution of many imaging modalities and in image processing techniques, make up for the inadequacies of biomarker based analyses. In pre-clinical research, imaging approaches involving invasive procedures, enable microscopic evaluation of BBB integrity, and benefit high levels of sensitivity and accuracy. However, invasive techniques may alter normal physiological function, thus generating a modality-based impact on vessel's permeability, which needs to be corrected for. Non-invasive approaches do not affect proper functionality of the inspected system, but lack in spatiotemporal resolution. Nevertheless, the benefit of medical imaging, even in pre-clinical phases, outweighs its disadvantages. The innovations in pre-clinical imaging and the development of novel processing techniques, have led to their implementation in clinical use as well. Specialized analyses of vessels' permeability add valuable information to standard anatomical inspections which do not take the latter into consideration.
Collapse
|
Review |
11 |
14 |
16
|
Parker E, Aboghazleh R, Mumby G, Veksler R, Ofer J, Newton J, Smith R, Kamintsky L, Jones CMA, O'Keeffe E, Kelly E, Doelle K, Roach I, Yang LT, Moradi P, Lin JM, Gleason AJ, Atkinson C, Bowen C, Brewer KD, Doherty CP, Campbell M, Clarke DB, van Hameren G, Kaufer D, Friedman A. Concussion susceptibility is mediated by spreading depolarization-induced neurovascular dysfunction. Brain 2021; 145:2049-2063. [PMID: 34927674 PMCID: PMC9246711 DOI: 10.1093/brain/awab450] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/17/2021] [Accepted: 11/14/2021] [Indexed: 11/21/2022] Open
Abstract
The mechanisms underlying the complications of mild traumatic brain injury, including post-concussion syndrome, post-impact catastrophic death, and delayed neurodegeneration remain poorly understood. This limited pathophysiological understanding has hindered the development of diagnostic and prognostic biomarkers and has prevented the advancement of treatments for the sequelae of mild traumatic brain injury. We aimed to characterize the early electrophysiological and neurovascular alterations following repetitive mild traumatic brain injury and sought to identify new targets for the diagnosis and treatment of individuals at risk of severe post-impact complications. We combined behavioural, electrophysiological, molecular, and neuroimaging techniques in a rodent model of repetitive mild traumatic brain injury. In humans, we used dynamic contrast-enhanced MRI to quantify blood–brain barrier dysfunction after exposure to sport-related concussive mild traumatic brain injury. Rats could clearly be classified based on their susceptibility to neurological complications, including life-threatening outcomes, following repetitive injury. Susceptible animals showed greater neurological complications and had higher levels of blood–brain barrier dysfunction, transforming growth factor β (TGFβ) signalling, and neuroinflammation compared to resilient animals. Cortical spreading depolarizations were the most common electrophysiological events immediately following mild traumatic brain injury and were associated with longer recovery from impact. Triggering cortical spreading depolarizations in mild traumatic brain injured rats (but not in controls) induced blood–brain barrier dysfunction. Treatment with a selective TGFβ receptor inhibitor prevented blood–brain barrier opening and reduced injury complications. Consistent with the rodent model, blood–brain barrier dysfunction was found in a subset of human athletes following concussive mild traumatic brain injury. We provide evidence that cortical spreading depolarization, blood–brain barrier dysfunction, and pro-inflammatory TGFβ signalling are associated with severe, potentially life-threatening outcomes following repetitive mild traumatic brain injury. Diagnostic-coupled targeting of TGFβ signalling may be a novel strategy in treating mild traumatic brain injury.
Collapse
|
|
4 |
14 |
17
|
Klein KM, Pendziwiat M, Cohen R, Appenzeller S, de Kovel CGF, Rosenow F, Koeleman BPC, Kuhlenbäumer G, Sheintuch L, Veksler R, Friedman A, Afawi Z, Helbig I. Autosomal dominant epilepsy with auditory features: a new LGI1 family including a phenocopy with cortical dysplasia. J Neurol 2015; 263:11-6. [PMID: 26459092 DOI: 10.1007/s00415-015-7921-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/23/2015] [Accepted: 09/23/2015] [Indexed: 12/31/2022]
Abstract
We report a new family with autosomal dominant epilepsy with auditory features (ADEAF) including focal cortical dysplasia (FCD) in the proband. We aim to identify the molecular cause in this family and clarify the relationship between FCD and ADEAF. A large Iranian Jewish family including 14 individuals with epileptic seizures was phenotyped including high-resolution 3-T MRI. We performed linkage analysis and exome sequencing. LGI1, KANK1 and RELN were Sanger sequenced. Seizure semiology of 11 individuals was consistent with ADEAF. The proband underwent surgery for right mesiotemporal FCD. 3-T MRIs in four individuals were unremarkable. Linkage analysis revealed peaks on chromosome 9p24 (LOD 2.43) and 10q22-25 (LOD 2.04). A novel heterozygous LGI1 mutation was identified in all affected individuals except for the proband indicating a phenocopy. Exome sequencing did not reveal variants within the chromosome 9p24 region. Closely located variants in KANK1 and a RELN variant did not segregate with the phenotype. We provide detailed description of the phenotypic spectrum within a large ADEAF family with a novel LGI1 mutation that was conspicuously absent in the proband with FCD, demonstrating that despite identical clinical symptoms, phenocopies in ADEAF families may exist. This family illustrates that rare epilepsy syndromes within a single family can have both genetic and structural etiologies.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
10 |
18
|
Benou I, Veksler R, Friedman A, Raviv TR. Combining white matter diffusion and geometry for tract-specific alignment and variability analysis. Neuroimage 2019; 200:674-689. [PMID: 31096057 DOI: 10.1016/j.neuroimage.2019.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 04/22/2019] [Accepted: 05/02/2019] [Indexed: 02/01/2023] Open
Abstract
We present a framework for along-tract analysis of white matter (WM) fiber bundles based on diffusion tensor imaging (DTI) and tractography. We introduce the novel concept of fiber-flux density for modeling fiber tracts' geometry, and combine it with diffusion-based measures to define vector descriptors called Fiber-Flux Diffusion Density (FFDD). The proposed model captures informative features of WM tracts at both the microscopic (diffusion-related) and macroscopic (geometry-related) scales, thus enabling improved sensitivity to subtle structural abnormalities that are not reflected by either diffusion or geometrical properties alone. A key step in this framework is the construction of an FFDD dissimilarity measure for sub-voxel alignment of fiber bundles, based on the fast marching method (FMM). The obtained aligned WM tracts enable meaningful inter-subject comparisons and group-wise statistical analysis. Moreover, we show that the FMM alignment can be generalized in a straight forward manner to a single-shot co-alignment of multiple fiber bundles. The proposed alignment technique is shown to outperform a well-established, commonly used DTI registration algorithm. We demonstrate the FFDD framework on the Human Connectome Project (HCP) diffusion MRI dataset, as well as on two different datasets of contact sports players. We test our method using longitudinal scans of a basketball player diagnosed with a traumatic brain injury, showing compatibility with structural MRI findings. We further perform a group study comparing mid- and post-season scans of 13 active football players exposed to repetitive head trauma, to 17 non-player control (NPC) subjects. Results reveal statistically significant FFDD differences (p-values<0.05) between the groups, as well as increased abnormalities over time at spatially-consistent locations within several major fiber tracts of football players.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
8 |
19
|
Cohen ZZ, Arend I, Yuen K, Naparstek S, Gliksman Y, Veksler R, Henik A. Tactile enumeration: A case study of acalculia. Brain Cogn 2018; 127:60-71. [PMID: 30340181 DOI: 10.1016/j.bandc.2018.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/30/2018] [Accepted: 10/07/2018] [Indexed: 10/28/2022]
Abstract
Enumeration is one of the building blocks of arithmetic and fingers are used as a counting tool in early steps. Subitizing-fast and accurate enumeration of small quantities-has been vastly studied in the visual modality, but less in the tactile modality. We explored tactile enumeration using fingers, and gray matter (GM) changes using voxel-based morphometry (VBM), in acalculia. We examined JD, a 22-year-old female with acalculia following a stroke to the left inferior parietal cortex. JD and a neurologically healthy normal comparison (NC) group reported how many fingers were stimulated. JD was tested at several time points, including at acute and chronic phases. Using the sensory intact hand for tactile enumeration, JD showed deficit in the acute phase, compared to the NC group, and improvement in the chronic phase of (1) the RT slope of enumerating up to four stimuli, (2) enumerating neighboring fingers, and (3) arithmetic fluency performance. Moreover, VBM analysis showed a larger GM volume for JD relative to the NC group in the right middle occipital cortex, most profoundly in the chronic phase. JD's performance serves as a first glance of tactile enumeration in acalculia. Pattern-recognition-based results support the suggestion of subitizing being the enumeration process when using one hand. Moreover, the increase in GM in the occipital cortex lays the groundwork for studying the innate and primitive ability to perceive and evaluate sizes or amounts-"sense of magnitude"- as a multisensory magnitude area and as part of a recovery path for deficits in basic numerical abilities.
Collapse
|
Case Reports |
7 |
8 |
20
|
Katz G, El Zhalka F, Veksler R, Ayalon A, Moisseiev E. The Role of Anterior Chamber Depth on Post-operative Refractive Error After Phacovitrectomy. Clin Ophthalmol 2021; 15:2111-2115. [PMID: 34045847 PMCID: PMC8144168 DOI: 10.2147/opth.s309302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 03/22/2021] [Indexed: 12/28/2022] Open
Abstract
Purpose To investigate the effect of phacovitrectomy on the post-operative anterior chamber depth (ACD) and refractive outcomes, and to analyze the potential differences between vitreous filling with BSS, air and gas. Methods Patients who underwent phacovitrectomy were included in this study and invited for repeated post-operative examination including refraction and biometry at least 3 months after the surgery. Data retrieved included demographic information, indication for phacovitrectomy, surgical details, type of vitreous filling (BSS, air or gas), pre-operative and post-operative biometric data including K-readings, axial length (AL), and ACD, as well as spherical equivalent (SE) values of the target and final refraction. Results Forty-three eyes of 43 patients were included in this study, including 10 eyes filled with BSS, 18 with air and 15 with gas. The mean difference between the final measured spherical equivalent (SE) and the SE of the intended target refraction was 0.61±0.68 D (p = 0.019). Only 58.1% of eyes had a final SE within ±0.5D of the target refraction. Following surgery, AL remained unchanged, while mean pre-operative ACD increased significantly from 3.11±0.34 mm to 4.77±0.47 mm (p < 0.001). There was no difference in refractive error between the vitreous fillings and no correlation with AL or ACD. Conclusions Phacovitrectomy is associated with lower accuracy of post-operative refraction compared to cataract surgery. This may be attributed to a significant change in ACD, influencing the effective lens position of the IOL, and may require adjustment of the pre-operative calculations.
Collapse
|
Journal Article |
4 |
2 |
21
|
Małecki A, Skipor-Lahuta J, Toborek M, Abbott NJ, Antonetti DA, Su EJ, Lawrence DA, Atış M, Akcan U, Yılmaz CU, Orhan N, Düzgün P, Ceylan UD, Arıcan N, Karahüseyinoğlu S, Şahin GN, Ahıshalı B, Kaya M, Aydin S, Klopstein A, Engelhardt B, Baumann J, Tsao CC, Huang SF, Ogunshola O, Boytsova EB, Morgun AV, Khilazheva ED, Pozhilenkova EA, Gorina YV, Martynova GP, Salmina AB, Bueno D, Garcia-Fernàndez J, Castro V, Skowronska M, Toborek M, Chupel MU, Minuzzi LG, Filaire E, Teixeira AM, Corsi M, Versele R, Fuso A, Sevin E, Di Lorenzo C, Businaro R, Fenart L, Gosselet F, Candela P, Deli MA, Delaney C, O’Keefe E, Farrell M, Doyle S, Campbell M, Drewes LR, Appelt-Menzel A, Cubukova A, Metzger M, Fischer R, Francisco DMF, Bruggmann R, Fries A, Blecharz KG, Wagner J, Winkler L, Schneider U, Vajkoczy P, Furuse M, Gabbert L, Dilling C, Sisario D, Soukhoroukov V, Burek M, Guérit S, Fidan E, Devraj K, Czupalla CJ, Macas J, Thom S, Plate KH, Gerhardt H, Liebner S, Harazin A, Bocsik A, Váradi J, Fenyvesi F, Tubak V, Vecsernyés M, Helms HC, Waagepetersen HS, Nielsen CU, Brodin B, Hoyk Z, Tóth ME, Lénárt N, Dukay B, Kittel Á, Vígh J, et alMałecki A, Skipor-Lahuta J, Toborek M, Abbott NJ, Antonetti DA, Su EJ, Lawrence DA, Atış M, Akcan U, Yılmaz CU, Orhan N, Düzgün P, Ceylan UD, Arıcan N, Karahüseyinoğlu S, Şahin GN, Ahıshalı B, Kaya M, Aydin S, Klopstein A, Engelhardt B, Baumann J, Tsao CC, Huang SF, Ogunshola O, Boytsova EB, Morgun AV, Khilazheva ED, Pozhilenkova EA, Gorina YV, Martynova GP, Salmina AB, Bueno D, Garcia-Fernàndez J, Castro V, Skowronska M, Toborek M, Chupel MU, Minuzzi LG, Filaire E, Teixeira AM, Corsi M, Versele R, Fuso A, Sevin E, Di Lorenzo C, Businaro R, Fenart L, Gosselet F, Candela P, Deli MA, Delaney C, O’Keefe E, Farrell M, Doyle S, Campbell M, Drewes LR, Appelt-Menzel A, Cubukova A, Metzger M, Fischer R, Francisco DMF, Bruggmann R, Fries A, Blecharz KG, Wagner J, Winkler L, Schneider U, Vajkoczy P, Furuse M, Gabbert L, Dilling C, Sisario D, Soukhoroukov V, Burek M, Guérit S, Fidan E, Devraj K, Czupalla CJ, Macas J, Thom S, Plate KH, Gerhardt H, Liebner S, Harazin A, Bocsik A, Váradi J, Fenyvesi F, Tubak V, Vecsernyés M, Helms HC, Waagepetersen HS, Nielsen CU, Brodin B, Hoyk Z, Tóth ME, Lénárt N, Dukay B, Kittel Á, Vígh J, Veszelka S, Walter F, Zvara Á, Puskás L, Sántha M, Engelhardt S, Ogunshola OO, Huber A, Reitner A, Osmen S, Hahn K, Bounzina N, Gerhartl A, Schönegger A, Steinkellner H, Laccone F, Neuhaus W, Hudson N, Celkova L, Iltzsche A, Drndarski S, Begley DJ, Janiurek MM, Kucharz K, Christoffersen C, Nielsen LB, Lauritzen M, Johnson RH, Kho DT, O’Carroll SJ, Angel CE, Graham ES, Pereira J, Karali CS, Cheng V, Zarghami N, Soto MS, Couch Y, Anthony DC, Sibson NR, Kealy J, Keep RF, Routhe LJ, Xiang J, Ye H, Hua Y, Moos T, Xi G, Kristensen M, Bach A, Strømgaard K, Kutuzov N, Lopes-Pinheiro MA, Lim J, Kamermans A, van Horssen J, Unger WW, Fontijn R, de Vries HE, Majerova P, Garruto RM, Marchetti L, Francisco D, Gruber I, Lyck R, Mészáros M, Porkoláb G, Kiss L, Pilbat AM, Török Z, Bozsó Z, Fülöp L, Michalicova A, Galba J, Mihaljevic S, Novak M, Kovac A, Morofuji Y, Fujimoto T, Watanabe D, Nakagawa S, Ujifuku K, Horie N, Izumo T, Anda T, Matsuo T, Niu F, Buch S, Nyúl-Tóth Á, Kozma M, Nagyőszi P, Nagy K, Fazakas C, Haskó J, Molnár K, Farkas AE, Galajda P, Wilhelm I, Krizbai IA, Kelly E, Wallace E, Greene C, Hughes S, Kealy J, Doyle N, Humphries MM, Grant GA, Friedman A, Veksler R, Molloy MG, Meaney JF, Pender N, Doherty CP, Park M, Liskiewicz A, Przybyla M, Kasprowska-Liśkiewicz D, Nowacka-Chmielewska M, Malecki A, Pombero A, Garcia-Lopez R, Martinez-Morga M, Martinez S, Prager O, Solomon-Kamintsky L, Schoknecht K, Bar-Klein G, Milikovsky D, Vazana U, Rosenbach D, Kovács R, Friedman A, Radak Z, Rodríguez-Lorenzo S, Bruggmann R, Kooij G, de Vries HE, Oxana SG, Denis B, Elena V, Anna A, Alla S, Vladimir S, Andrey M, Nataliya M, Elena K, Elizaveta B, Alexander S, Nikita N, Alla B, Yirong Y, Arkady A, Artem G, Mariya U, Anastasia S, Madina B, Artem S, Alexander K, Esmat SA, Valery P, Artem T, Jürgen K, de Abreu MS, Calpena AC, Espina M, García ML, Romero IA, Male D, Storck S, Hartz A, Pahnke J, Surma CU, Surma M, Giżejewski Z, Zieliński H, Szczepkowska A, Kowalewska M, Krawczynska A, Herman AP, Skipor J, Kachappilly N, Veenstra M, Rivera RL, Williams DW, Morgello S, Berman JW, Wyneken U, Batiz LF, Temizyürek A, Khodadust R, Küçük M, Gürses C, Emik S, Zielińska M, Obara-Michlewska M, Milewski K, Skonieczna E, Fręśko I, Neuwelt EA, Maria ARS, Bras AR, Lipka D, Valkai S, Kincses A, Dér A, Deli MA. Abstracts from the 20th International Symposium on Signal Transduction at the Blood-Brain Barriers. Fluids Barriers CNS 2017. [PMCID: PMC5667590 DOI: 10.1186/s12987-017-0071-4] [Show More Authors] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
|
8 |
1 |
22
|
Katz G, El Zhalka F, Veksler R, Ayalon A, Moisseiev E. "Anterior Chamber Depth After Phacovitrectomy" - Response to Letter to the Editor [Response to Letter]. Clin Ophthalmol 2021; 15:2813-2814. [PMID: 34234403 PMCID: PMC8253889 DOI: 10.2147/opth.s324737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 11/23/2022] Open
|
Comment |
4 |
|
23
|
Tran I, Galbraith K, Zhao G, Borsuk R, Varkey J, Gardner S, Allen J, Harter D, Wisoff J, Hidalgo ET, Deochand S, Maloney D, Afterman D, Lauterman T, Friedman N, Bourzgui I, Ramaraj N, Donenhirsh Z, Veksler R, Rosenfeld J, Kandasamy R, Tavassoly I, Oklander B, Raju GP, Nicolaides T, Zviran A, Snuderl M. Abstract 3401: Whole genome cell-free tumor DNA mutational signatures for noninvasive monitoring of pediatric brain cancers. Cancer Res 2022. [DOI: 10.1158/1538-7445.am2022-3401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Introduction: Liquid biopsy offers a noninvasive approach to monitor cancer burden during therapy and surveillance period. However, in pediatric brain cancers, liquid biopsy methods from the blood have been unsuccessful due to a low tumor burden and low number of mutations in coding regions. We hypothesized that a whole genome sequencing (WGS)-derived patient specific mutational signature from a matched tumor-normal WGS can provide a sensitive and specific approach to detect mutations in circulating cell free tumor DNA (ctDNA) and provide blood-based monitoring in pediatric patients with brain tumor.
Methods: All tumors were analyzed and molecularly subclassified using whole genome DNA methylation profiling and machine learning classifier. Tumor DNA was extracted from pathology tissue and normal germline DNA from the white blood cells, while ctDNA was extracted from 1-2 mL of post-surgery or follow-up plasma samples, WGS was applied to sequence DNA from matched tumor-normal and plasma samples. WGS coverage was 40x for matched tumor-normal DNA and 20x for ctDNA. Using the C2i assay, we derived a personalized mutational pattern for each tumor and used an AI-based error suppression model for quantification and ultra-sensitive detection of ctDNA in plasma samples. A patient-specific personalized genome-wide compendium of somatic mutations was established and ctDNA tested at 1 to 3 available time points during the therapy or surveillance period. An AI-based error suppression model was implemented to filter out the noise in the cell free DNA (cfDNA) while the personalized mutational signature was used to detect the ctDNA in the cfDNA and to amplify the somatic signal contained in it. The ctDNA Tumor Fraction (TF) was compared to the clinical status and MR-based imaging.
Results: We profiled 7 pediatric brain tumors, including 2 medulloblastomas (one Group 3, one Group 4), 3 pediatric glioblastomas IDH wild-type, 1 ependymoma PFA subtype and one low grade ganglioglioma. Tumor specific signatures were identified and detected in the plasma of 5 patients with clinical disease with a TF range 0.02-0.0005 but not in 2 patients with no tumor at the time of blood collection. In two children with a medulloblastoma and glioblastoma, the decrease of tumor fraction in ctDNA over 2 (TF: 0.002 to 0.0009) and 3 time points (TF: 0.0005 to undetectable), respectively, correlated with response to therapy based on imaging.
Conclusions: Patient-specific WGS tumor signature in ctDNA from blood can be used for sensitive monitoring of children with brain tumors.
Citation Format: Ivy Tran, Kristyn Galbraith, Guisheng Zhao, Robyn Borsuk, Joyce Varkey, Sharon Gardner, Jeffrey Allen, David Harter, Jeffrey Wisoff, Eveline T. Hidalgo, Sunil Deochand, Dillon Maloney, Danielle Afterman, Tomer Lauterman, Noah Friedman, Imane Bourzgui, Nidhi Ramaraj, Zohar Donenhirsh, Ronel Veksler, Jonathan Rosenfeld, Ravi Kandasamy, Iman Tavassoly, Boris Oklander, G. Praveen Raju, Theodore Nicolaides, Asaf Zviran, Matija Snuderl. Whole genome cell-free tumor DNA mutational signatures for noninvasive monitoring of pediatric brain cancers [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 3401.
Collapse
|
|
3 |
|
24
|
Frydendahl A, Reinert T, Nors J, Deochand S, Maloney D, Friedman N, Lauterman T, Afterman D, Bourzgui I, Ramaraj N, Donenhirsh Z, Veksler R, Kandasamy R, Tavassoly I, Rosenfeld J, Andersen AH, Løve US, Andersen PV, Thorlacius-Ussing O, Iversen LH, Gotschalck KA, Oklander B, Zviran A, Andersen CL. Abstract 1959: Sensitive detection of circulating tumor DNA by whole genome sequencing: Validation of MRDetect using serial blood samples from stage III colorectal cancer patients. Cancer Res 2022. [DOI: 10.1158/1538-7445.am2022-1959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Background: While detection of circulating tumor DNA (ctDNA) is associated with poor cancer prognosis, the clinical utility for guiding treatment decisions is unresolved. Patients with minimal residual disease (MRD) often have less than one genome equivalent of ctDNA per 10 mL blood. Consequently, it is stochastic whether a 10 mL sample contains ctDNA from a particular genomic locus. Consequently, the sensitivity of ctDNA detection methods targeting a limited number of tumor loci is heavily affected by sampling bias. To overcome this challenge, we developed MRDetect; a whole genome sequencing (WGS) approach, which detects ctDNA using the patient-specific cumulative signal from tens of thousands of mutations throughout the genome. Recently, we showed how MRDetect found ctDNA fractions down to 10-4. Here, we performed a validation study to confirm the prognostic impact of MRDetect.
Aim: Validation of MRDetect for sensitive ctDNA detection to monitor residual disease in stage III colorectal cancer (CRC) patients treated with curative intent.
Methods: From a large, uniform cohort of stage III CRC patients n = 146), we had plasma samples collected every third month (n = 938, median = 9 per patient) and a median follow-up of 34 months. For each patient, a genome-wide mutational signature was established by WGS of tumor and matched normal DNA. Enhanced by an AI-based error suppression model, this signature was used to detect ctDNA in 1-2 mL plasma samples using WGS (20x coverage). We used de-novo point mutation and copy number variation analysis to investigate cancer evolution after treatment. To evaluate the reproducibility of MRDetect, aliquot samples (n = 2x190 samples) from 5 recurrence and 10 non-recurrence patients were processed and sequenced at two independent laboratories. Outcome measures: ctDNA status, tumor fraction, false positive rate, Time To ctDNA Recurrence (TTcR), and Time To radiological Recurrence (TTrR).
Results: Analysis of paired samples showed great reproducibility with high agreement between both ctDNA status calls (Cohens Kappa = 0.81) and the estimated tumor fractions (r2 = 0.99). MRDetect revealed post-operative ctDNA in all recurrence patients (5/5) with detected tumor fractions down to 2 x 10-4. Median TTcR was 0.9 month (range 0.5 - 7.3 months) while median TTrR was 12.8 months (range 11.3 - 31.1 months). The false positive rate was 1% (1/100), assessed in longitudinal samples from the 10 non-relapsing patients. Tumor evolution dynamics in plasma samples revealed novel amplification and deletions, which were absent in the primary tissue but confirmed in metachronous metastases. We will present results from the full cohort at AACR 2022.
Conclusion: MRDetect detects ctDNA with high sensitivity and specificity and enables effective postoperative assessment of MRD, cancer evolution dynamics and early relapse detection.
Citation Format: Amanda Frydendahl, Thomas Reinert, Jesper Nors, Sunil Deochand, Dillon Maloney, Noah Friedman, Tomer Lauterman, Danielle Afterman, Imane Bourzgui, Nidhi Ramaraj, Zohar Donenhirsh, Ronel Veksler, Ravi Kandasamy, Iman Tavassoly, Jonathan Rosenfeld, Anders Husted Andersen, Uffe S. Løve, Per V. Andersen, Ole Thorlacius-Ussing, Lene Hjerrild Iversen, Kåre Andersson Gotschalck, Boris Oklander, Asaf Zviran, Claus Lindbjerg Andersen. Sensitive detection of circulating tumor DNA by whole genome sequencing: Validation of MRDetect using serial blood samples from stage III colorectal cancer patients [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 1959.
Collapse
|
|
3 |
|
25
|
Kandasamy R, White E, Strycharz JP, Hansen S, Hamby C, Waterhouse S, Salkeld A, Mannke K, Valliere C, Phillips S, Ramaraj N, Stanley C, Ananth U, Deochand S, Veksler R, Lauterman T, Afterman D, Tavassoly I, Oklander B, Zviran A. Lab validation of an ultrasensitive ctDNA pan-cancer MRD assay using whole-genome sequencing. J Clin Oncol 2022. [DOI: 10.1200/jco.2022.40.16_suppl.e13582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
e13582 Background: Minimal residual disease (MRD) monitoring using liquid biopsy for solid tumors requires a highly sensitive and specific assay that can overcome the limitation of low abundance cfDNA in a standard blood draw. We developed a whole-genome sequencing (WGS)-based assay to detect the presence of circulating tumor DNA (ctDNA) in plasma. The C2i assay is a tumor-informed assay that uses personalized tumor signature, advanced noise models, and artificial intelligence (AI) modalities to interrogate plasma for the presence of ctDNA longitudinally. Methods: The C2i test was developed in accordance with CAP/CLIA and New York state validation principles. We used contrived samples to establish analytical validation of the assay performance, which was then validated with a large clinical cohort of early-stage patients across various cancer types. Briefly, aggregated tumor signatures derived from cancer cell lines were fragmented and spiked into a contrived healthy plasma pool; the mixed samples were used to assess the presence of tumor DNA signature down to tumor fractions of 10e-4. Positive samples are identified by tumor-derived variants detected above the noise levels. Noise modeling was established using a panel of normal (PON) approach. We assessed the analytical sensitivity, specificity, and accuracy using 348 contrived samples derived from five different cancer cell lines. Reproducibility and precision were assessed with multiple replicates, and statistical concordance was reported. This validation was complemented by a cohort of 200 patients and ̃1000 plasma samples across a variety of cancer types including, NSCLC, MIBC, CRC, GBM, Breast Cancer, and a mixture of other cancer types. Results: Cancer cell lines, representing the five most prevalent disease indications, used for determining analytical sensitivity are as follows: CRC HT-29, Breast SK-BR3, Bladder HT-1376, Lung HCI-H526, and Prostate LNCaP. The cell line DNA was enzymatically fragmented and size-selected to mimic ctDNA. This ctDNA was spiked into cfDNA extracted from healthy volunteers at various dilution levels, varying from 10e0 to 10e-4. The 95% probability of detecting ctDNA was established at 10e-4. The reproducibility of tumor signature between replicates was assessed to be greater than 90%. The assay was performed using both normal and maximum input amounts. These performance estimates were then validated on a cohort of plasma collected from early-stage (stage I-III) patients across various cancer types. Conclusions: C2i MRD test is an ultrasensitive pan-cancer MRD monitoring assay used in several clinical trials across the world. We present an extensive analytical and clinical validation of the assay supporting its high performance.
Collapse
|
|
3 |
|