1
|
Lu R, Lu J, Liao Y, Luo WJ, Wang M, Lu MJ. [Analysis of risk factors and establishment of prediction model for immune checkpoint inhibitor related myocarditis and major adverse cardiovascular events]. ZHONGHUA XIN XUE GUAN BING ZA ZHI 2024; 52:1290-1295. [PMID: 39557528 DOI: 10.3760/cma.j.cn112148-20231210-00489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Objectives: To explore the risk factors of major adverse cardiovascular events (MACEs) in immune checkpoint inhibitor (ICI) related myocarditis and establish a predictive model. Methods: This was a retrospective case-control study. Tumor patients diagnosed with ICI related myocarditis in the First Affiliated Hospital of Guangzhou Medical University from May 2019 to August 2023 were selected and divided into non-MACE group and MACE group based on whether MACE occurred. Clinical and imaging data of the two groups were collected. Univariate and multivariate logistic regression models were used to analyze the risk factors for MACE in patients with ICI related myocarditis. According to the results of multivariate logistic regression analysis, R 4.1.0 software was used to construct the MACE risk prediction model for these patients and draw a nomogram. The receiver operating characteristic curve was used to evaluate the prediction ability of the prediction model. Results: A total of 35 patients with ICI related myocarditis, aged (63.9±8.2) years, were included, including 28 males (80%). There were 18 patients in the non-MACE group and 17 patients in the MACE group. Multivariate logistic regression analysis showed that elevated neutrophil to lymphocyte ratio (OR=1.115, 95%CI 1.007-1.235, P=0.036) and ST-T segment changes (OR=24.942, 95%CI 1.239-502.194, P=0.036) were risk factors for MACE in patients with ICI related myocarditis. The receiver operating characteristic curve indicated that the area under the curve of the prediction model was 0.967 (95%CI 0.916-1.000, P<0.001), with a sensitivity of 88.2% and specificity of 100%, demonstrating good predictive ability. Conclusion: Elevated neutrophil to lymphocyte ratio and ST-T segment change are independent risk factors for MACE in patients with ICI related myocarditis. Risk prediction model based on the above two indicators can assist in the early identification and individualized intervention of ICI related myocarditis patients.
Collapse
|
2
|
Li XQ, Li Y, Ni YQ, Cao W, Yin TT, Lu R. [A nomogram prediction model for individualized prediction of the risk of covert (minimal) hepatic encephalopathy occurrence in patients with liver cirrhosis]. ZHONGHUA GAN ZANG BING ZA ZHI = ZHONGHUA GANZANGBING ZAZHI = CHINESE JOURNAL OF HEPATOLOGY 2024; 32:828-834. [PMID: 39375104 DOI: 10.3760/cma.j.cn501113-20230806-00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Objective: To construct an individualized nomogram prediction model for predicting the risk of the occurrence of covert hepatic encephalopathy (CHE) in patients with liver cirrhosis. Methods: 325 cases of liver cirrhosis admitted from January 2020 to December 2022 were selected as the study subjects. Patients were divided into training (n=213) and validation (n=112) sets using a cluster randomization method. The risk factors for CHE occurrence in patients with cirrhosis in the training set were analyzed by univariate and multivariate logistic regression. A prediction model related to the nomogram was established. Results: Independent risk factors for the occurrence of CHE in patients with cirrhosis were a history of hepatic encephalopathy, co-infection, gastrointestinal bleeding, severe ascites, prothrombin time ≥16 seconds, high total bilirubin, and high blood ammonia levels (P<0.05). Nomogram model validation results: The model had a net benefit for the training and validation sets, with C-indices of 0.830 (95%CI: 0.802-0.858) and 0.807 (95%CI: 0.877-0.837), respectively, within the range of 0-96%. The calibration curves of both sets were evenly close to the ideal curves. The AUCs for the ROC curves in both sets were 0.827 (95%CI: 0.796-0.858) and 0.811 (95%CI: 0.787-0.836), respectively. Conclusion: Patients with cirrhosis have many risk factors for CHE occurrence. The nomogram model constructed based on these risk factors possesses a good predictive value for assessing CHE occurrence in cirrhotic patients.
Collapse
|
3
|
Cao Z, Aharonian F, An Q, Axikegu, Bai YX, Bao YW, Bastieri D, Bi XJ, Bi YJ, Cai JT, Cao Q, Cao WY, Cao Z, Chang J, Chang JF, Chen AM, Chen ES, Chen L, Chen L, Chen L, Chen MJ, Chen ML, Chen QH, Chen SH, Chen SZ, Chen TL, Chen Y, Cheng N, Cheng YD, Cui MY, Cui SW, Cui XH, Cui YD, Dai BZ, Dai HL, Dai ZG, Danzengluobu, Della Volpe D, Dong XQ, Duan KK, Fan JH, Fan YZ, Fang J, Fang K, Feng CF, Feng L, Feng SH, Feng XT, Feng YL, Gabici S, Gao B, Gao CD, Gao LQ, Gao Q, Gao W, Gao WK, Ge MM, Geng LS, Giacinti G, Gong GH, Gou QB, Gu MH, Guo FL, Guo XL, Guo YQ, Guo YY, Han YA, He HH, He HN, He JY, He XB, He Y, Heller M, Hor YK, Hou BW, Hou C, Hou X, Hu HB, Hu Q, Hu SC, Huang DH, Huang TQ, Huang WJ, Huang XT, Huang XY, Huang Y, Huang ZC, Ji XL, Jia HY, Jia K, Jiang K, Jiang XW, Jiang ZJ, Jin M, Kang MM, Ke T, Kuleshov D, Kurinov K, Li BB, Li C, Li C, Li D, Li F, Li HB, Li HC, Li HY, Li J, Li J, Li J, Li K, Li WL, Li WL, Li XR, Li X, Li YZ, Li Z, Li Z, Liang EW, Liang YF, Lin SJ, Liu B, Liu C, Liu D, Liu H, Liu HD, Liu J, Liu JL, Liu JY, Liu MY, Liu RY, Liu SM, Liu W, Liu Y, Liu YN, Lu R, Luo Q, Lv HK, Ma BQ, Ma LL, Ma XH, Mao JR, Min Z, Mitthumsiri W, Mu HJ, Nan YC, Neronov A, Ou ZW, Pang BY, Pattarakijwanich P, Pei ZY, Qi MY, Qi YQ, Qiao BQ, Qin JJ, Ruffolo D, Sáiz A, Semikoz D, Shao CY, Shao L, Shchegolev O, Sheng XD, Shu FW, Song HC, Stenkin YV, Stepanov V, Su Y, Sun QN, Sun XN, Sun ZB, Tam PHT, Tang QW, Tang ZB, Tian WW, Wang C, Wang CB, Wang GW, Wang HG, Wang HH, Wang JC, Wang K, Wang LP, Wang LY, Wang PH, Wang R, Wang W, Wang XG, Wang XY, Wang Y, Wang YD, Wang YJ, Wang ZH, Wang ZX, Wang Z, Wang Z, Wei DM, Wei JJ, Wei YJ, Wen T, Wu CY, Wu HR, Wu S, Wu XF, Wu YS, Xi SQ, Xia J, Xia JJ, Xiang GM, Xiao DX, Xiao G, Xin GG, Xin YL, Xing Y, Xiong Z, Xu DL, Xu RF, Xu RX, Xu WL, Xue L, Yan DH, Yan JZ, Yan T, Yang CW, Yang F, Yang FF, Yang HW, Yang JY, Yang LL, Yang MJ, Yang RZ, Yang SB, Yao YH, Yao ZG, Ye YM, Yin LQ, Yin N, You XH, You ZY, Yu YH, Yuan Q, Yue H, Zeng HD, Zeng TX, Zeng W, Zha M, Zhang BB, Zhang F, Zhang HM, Zhang HY, Zhang JL, Zhang LX, Zhang L, Zhang PF, Zhang PP, Zhang R, Zhang SB, Zhang SR, Zhang SS, Zhang X, Zhang XP, Zhang YF, Zhang Y, Zhang Y, Zhao B, Zhao J, Zhao L, Zhao LZ, Zhao SP, Zheng F, Zhou B, Zhou H, Zhou JN, Zhou M, Zhou P, Zhou R, Zhou XX, Zhu CG, Zhu FR, Zhu H, Zhu KJ, Zuo X. Constraints on Ultraheavy Dark Matter Properties from Dwarf Spheroidal Galaxies with LHAASO Observations. PHYSICAL REVIEW LETTERS 2024; 133:061001. [PMID: 39178452 DOI: 10.1103/physrevlett.133.061001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/01/2024] [Accepted: 06/12/2024] [Indexed: 08/25/2024]
Abstract
In this Letter we try to search for signals generated by ultraheavy dark matter at the Large High Altitude Air Shower Observatory (LHAASO) data. We look for possible γ rays by dark matter annihilation or decay from 16 dwarf spheroidal galaxies in the field of view of the LHAASO. Dwarf spheroidal galaxies are among the most promising targets for indirect detection of dark matter that have low fluxes of astrophysical γ-ray background while having large amount of dark matter. By analyzing more than 700 days of observational data at LHAASO, no significant dark matter signal from 1 TeV to 1 EeV is detected. Accordingly we derive the most stringent constraints on the ultraheavy dark matter annihilation cross section up to EeV. The constraints on the lifetime of dark matter in decay mode are also derived.
Collapse
|
4
|
Mazzola Poli de Figueiredo S, Tastaldi L, Mao RMD, Lu R. Management of diastasis recti during ventral hernia repair: an analysis of the abdominal core health quality collaborative. Hernia 2024; 28:1063-1068. [PMID: 36745276 DOI: 10.1007/s10029-023-02753-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/29/2023] [Indexed: 02/07/2023]
Abstract
PURPOSE Advancements of minimally invasive techniques leveraged routine repair of concomitant diastasis recti (DR), as those approaches facilitate fascial plication and wide mesh overlap while obviating skin incision and/or undermining. Nevertheless, evidence on the value of such intervention is lacking. We aimed to investigate the management and outcomes of concomitant DR during ventral hernia repair (VHR + DR) from surgeons participating in the Abdominal Core Health Quality Collaborative (ACHQC). METHODS Patients who have undergone VHR + DR with a minimum 30-day follow-up complete were identified. Outcomes of interest included operative details, surgical site occurrences (SSO), medical complications, and readmissions. RESULTS 169 patients (51% female, median age 46, median body mass index 31 kg/m2) were identified. Most hernias were primary (64% umbilical, 28% epigastric). Median hernia width was 3 cm (IQR 2-4) and median diastasis width and length were 4 cm (IQR 3-6) and 15 cm (IQR 10-20), respectively. Most operations were robotic (79%), with a synthetic mesh (92%) placed as a sublay (72%; 59% retromuscular, 13% preperitoneal). DR was repaired with absorbable (92%) and running suture (93%). Considering our cohort's relatively small diastasis and hernia size, a high rate of transversus abdominis release was noted (14.7%). 76% were discharged the same day and the 30-day readmission rate was 2% (2 ileus, 1 pneumonia). SSO rate was 4% (6 seromas, 1 skin necrosis) and only one patient required a procedural intervention. CONCLUSIONS ACHQC participating surgeons usually perform VHR + DR robotically with a retromuscular synthetic mesh and close the DR with running absorbable sutures. Short-term complications occurred in approximately 6% of patients and were mainly managed without interventions. Larger studies with longer-term follow-up are needed to determine the value of VHR + DR.
Collapse
|
5
|
Li Y, Hu XZ, Liu CY, Tao XP, Wang R, Lu R, Li Y, Pu Y, Mu CR, Xu JH, Fu HM. [Clinical characteristics of children with severe SARS-CoV-2 infection in Yunnan]. ZHONGHUA ER KE ZA ZHI = CHINESE JOURNAL OF PEDIATRICS 2024; 62:451-456. [PMID: 38623013 DOI: 10.3760/cma.j.cn112140-20231201-00406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Objective: To investigate the clinical characteristics of 130 children with severe SARS-CoV-2 infection in Yunnan province after the relaxation of non-pharmaceutical interventions, and analyze the risk factors for mortality. Methods: This study is a retrospective case summary that analyzed the demographic data, underlying diseases, clinical diagnoses, disease outcomes, and laboratory results of 130 children with severe COVID-19 infections admitted to nine top-tier hospitals in Yunnan Province from December 2022 to March 2023. According to the prognosis, the patients were divided into survival group and death group. The clinical and laboratory data between the two groups were compared, and the risk factors of death were evaluated. The χ2 test and Mann-Whitney U test were employed to compare between groups, while Spearman correlation test and multiple Logistic regression were used to analyze the risk factors for death. The predictive value of independent risk factors was evaluated by receiver operating characteristic curve. Results: The 130 severe patients included 80 males and 50 females with an onset age of 28.0 (4.5, 79.5) months. There were 97 cases in the survival group and 33 cases in the death group with no significant differences in gender and age between the two groups (P>0.05). Twenty-five cases (19.2%) out of the 130 patients had underlying diseases, and the number with underlying diseases was significantly higher in death group than in survival group (36.4% (12/33) vs. 13.4%(13/97), χ2=8.36, P=0.004). The vaccination rate in the survival group was significantly higher than that in the death group (86.1% (31/36) vs. 7/17, χ2=9.38, P=0.002). A total of 42 cases (32.3%) of the 130 patients were detected to be infected with other pathogens, but there was no significant difference in the incidence of co-infection between the death group and the survival group (39.3%(13/33) vs. 29.9% (29/97), χ2=1.02, P>0.05). Among the 130 cases, severe respiratory cases were the most common 66 cases (50.8%), followed by neurological severe illnesses 34 cases (26.2%) and circulatory severe 13 cases (10%). Compared to the survival group, patients in the death group had a significantly higher levels of neutrophil, ferritin, procalcitonin, alanine aminotransferase, lactate dehydrogenase, creatine kinase isoenzyme, B-type natriuretic peptide, interleukin-6 and 10 (6.7 (4.0, 14.0) vs. 3.0 (1.6, 7.0)×109/L, 479 (298, 594) vs. 268 (124, 424) μg/L, 4.8 (1.7, 10.6) vs. 2.0 (1.1, 3.1) μg/L, 66 (20, 258) vs. 23 (15, 49) U/L, 464 (311, 815) vs. 304 (252, 388) g/L, 71(52, 110) vs. 24(15, 48) U/L, 484 (160, 804) vs. 154 (26, 440) ng/L, 43 (23, 102) vs. 19 (13, 27) ng/L, 216 (114, 318) vs. 86 (45, 128) ng/L, Z=-4.21, -3.67, -3.76, -3.31, -3.75, -5.74, -3.55, -4.65, -5.86, all P<0.05). The correlated indexes were performed by multivariate Logistic regression and the results showed that vaccination was a protective factor from death in severe cases (OR=0.01, 95%CI 0-0.97, P=0.049) while pediatric sequential organ failure assessment (PSOFA) (OR=3.31, 95%CI 1.47-7.47, P=0.004), neutrophil-to-lymphocyte ratio (NLR) (OR=1.56, 95%CI 1.05-2.32, P=0.029) and D dimer (OR=1.49, 95%CI 1.00-1.02, P=0.033) were independent risk factors for death (all P<0.05). The area under the curve of the three independent risk factors for predicting death were 0.86 (95%CI 0.79-0.94), 0.89 (95%CI 0.84-0.95) and 0.87 (95%CI 0.80-0.94), all P<0.001, and the cut-off values were 4.50, 3.66 and 4.69 mg/L, respectively. Conclusions: Severe SARS-CoV-2 infection can occur in children of all ages, primarily affecting the respiratory system, but can also infect the nervous system, circulatory system or other systems. Children who died had more severe inflammation, tissue damage and coagulation disorders. The elevations of PSOFA, NLR and D dimer were independent risk factors for death in severe children.
Collapse
|
6
|
Silveira CAB, de Figueiredo SMP, Rasador ACD, Fernandez MG, Martin RRH, Dias YJM, Lu R. Round ligament management during minimally invasive groin hernia repair in women: a systematic review and meta-analysis. Surg Endosc 2024; 38:1731-1739. [PMID: 38418634 DOI: 10.1007/s00464-024-10721-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/28/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Female sex has been associated with worse outcomes after groin hernia repair (GHR), including a higher rate of chronic pain and recurrence. Most of the studies in GHR are performed in males, and the recommendations for females extrapolate from these studies, even though females have anatomy intricacies. The round ligament of the uterus (RLU) is associated with pelvic stabilization and plays a role in sensory function. Transection of the RLU during GHR is controversial as it can allow easier mesh placement but can favor genitourinary complications and chronic pain. As no previous meta-analysis compared preserving versus transecting the RLU during minimally invasive (MIS) GHR, we aim to perform a systematic review and meta-analysis evaluating surgical outcomes comparing the approaches. METHODS Cochrane Central, Embase, and PubMed databases were systematically searched for studies comparing transection versus preservation of the RLU in MIS groin hernia surgeries. Outcomes assessed were operative time, bleeding, surgical site events, hospital stay, chronic pain, paresthesia, recurrence rates, and genital prolapse rates. Statistical analysis was performed using RevMan 5.4.1. Heterogeneity was assessed with I2 statistics. A review protocol for this meta-analysis was registered at PROSPERO (CRD 42023467146). RESULTS 1738 studies were screened. A total of six studies, comprising 1131 women, were included, of whom 652 (57.6%) had preservation of the RLU during MIS groin hernia repair. We found no statistical difference regarding chronic pain, paresthesia, recurrence rates, and postoperative complications. We found a longer operative time for the preservation group (MD 6.84 min; 95% CI 3.0-10.68; P = 0.0005; I2 = 74%). CONCLUSION Transecting the RLU reduces the operative time during MIS GHR with no difference regarding postoperative complication rates. Although transection appears safe, further prospective randomized studies with long-term follow-up and patient-reported outcomes are necessary to define the optimal management of RLU during MIS GHR.
Collapse
|
7
|
Harvey-Jones E, Raghunandan M, Robbez-Masson L, Magraner-Pardo L, Alaguthurai T, Yablonovitch A, Yen J, Xiao H, Brough R, Frankum J, Song F, Yeung J, Savy T, Gulati A, Alexander J, Kemp H, Starling C, Konde A, Marlow R, Cheang M, Proszek P, Hubank M, Cai M, Trendell J, Lu R, Liccardo R, Ravindran N, Llop-Guevara A, Rodriguez O, Balmana J, Lukashchuk N, Dorschner M, Drusbosky L, Roxanis I, Serra V, Haider S, Pettitt SJ, Lord CJ, Tutt ANJ. Longitudinal profiling identifies co-occurring BRCA1/2 reversions, TP53BP1, RIF1 and PAXIP1 mutations in PARP inhibitor-resistant advanced breast cancer. Ann Oncol 2024; 35:364-380. [PMID: 38244928 DOI: 10.1016/j.annonc.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Resistance to therapies that target homologous recombination deficiency (HRD) in breast cancer limits their overall effectiveness. Multiple, preclinically validated, mechanisms of resistance have been proposed, but their existence and relative frequency in clinical disease are unclear, as is how to target resistance. PATIENTS AND METHODS Longitudinal mutation and methylation profiling of circulating tumour (ct)DNA was carried out in 47 patients with metastatic BRCA1-, BRCA2- or PALB2-mutant breast cancer treated with HRD-targeted therapy who developed progressive disease-18 patients had primary resistance and 29 exhibited response followed by resistance. ctDNA isolated at multiple time points in the patient treatment course (before, on-treatment and at progression) was sequenced using a novel >750-gene intron/exon targeted sequencing panel. Where available, matched tumour biopsies were whole exome and RNA sequenced and also used to assess nuclear RAD51. RESULTS BRCA1/2 reversion mutations were present in 60% of patients and were the most prevalent form of resistance. In 10 cases, reversions were detected in ctDNA before clinical progression. Two new reversion-based mechanisms were identified: (i) intragenic BRCA1/2 deletions with intronic breakpoints; and (ii) intragenic BRCA1/2 secondary mutations that formed novel splice acceptor sites, the latter being confirmed by in vitro minigene reporter assays. When seen before commencing subsequent treatment, reversions were associated with significantly shorter time to progression. Tumours with reversions retained HRD mutational signatures but had functional homologous recombination based on RAD51 status. Although less frequent than reversions, nonreversion mechanisms [loss-of-function (LoF) mutations in TP53BP1, RIF1 or PAXIP1] were evident in patients with acquired resistance and occasionally coexisted with reversions, challenging the notion that singular resistance mechanisms emerge in each patient. CONCLUSIONS These observations map the prevalence of candidate drivers of resistance across time in a clinical setting, information with implications for clinical management and trial design in HRD breast cancers.
Collapse
|
8
|
Cao Z, Aharonian F, An Q, Axikegu, Bai Y, Bao Y, Bastieri D, Bi X, Bi Y, Cai J, Cao Q, Cao W, Cao Z, Chang J, Chang J, Chen A, Chen E, Chen L, Chen L, Chen L, Chen M, Chen M, Chen Q, Chen S, Chen S, Chen T, Chen Y, Cheng N, Cheng Y, Cui M, Cui S, Cui X, Cui Y, Dai B, Dai H, Dai Z, Danzengluobu, della Volpe D, Dong X, Duan K, Fan J, Fan Y, Fang J, Fang K, Feng C, Feng L, Feng S, Feng X, Feng Y, Gabici S, Gao B, Gao C, Gao L, Gao Q, Gao W, Gao W, Ge M, Geng L, Giacinti G, Gong G, Gou Q, Gu M, Guo F, Guo X, Guo Y, Guo Y, Han Y, He H, He H, He J, He X, He Y, Heller M, Hor Y, Hou B, Hou C, Hou X, Hu H, Hu Q, Hu S, Huang D, Huang T, Huang W, Huang X, Huang X, Huang Y, Huang Z, Ji X, Jia H, Jia K, Jiang K, Jiang X, Jiang Z, Jin M, Kang M, Ke T, Kuleshov D, Kurinov K, Li B, Li C, Li C, Li D, Li F, Li H, Li H, Li H, Li J, Li J, Li J, Li K, Li W, Li W, Li X, Li X, Li Y, Li Z, Li Z, Liang E, Liang Y, Lin S, Liu B, Liu C, Liu D, Liu H, Liu H, Liu J, Liu J, Liu J, Liu M, Liu R, Liu S, Liu W, Liu Y, Liu Y, Lu R, Luo Q, Lv H, Ma B, Ma L, Ma X, Mao J, Min Z, Mitthumsiri W, Mu H, Nan Y, Neronov A, Ou Z, Pang B, Pattarakijwanich P, Pei Z, Qi M, Qi Y, Qiao B, Qin J, Ruffolo D, Sáiz A, Semikoz D, Shao C, Shao L, Shchegolev O, Sheng X, Shu F, Song H, Stenkin Y, Stepanov V, Su Y, Sun Q, Sun X, Sun Z, Tam P, Tang Q, Tang Z, Tian W, Wang C, Wang C, Wang G, Wang H, Wang H, Wang J, Wang K, Wang L, Wang L, Wang P, Wang R, Wang W, Wang X, Wang X, Wang Y, Wang Y, Wang Y, Wang Z, Wang Z, Wang Z, Wang Z, Wei D, Wei J, Wei Y, Wen T, Wu C, Wu H, Wu S, Wu X, Wu Y, Xi S, Xia J, Xia J, Xiang G, Xiao D, Xiao G, Xin G, Xin Y, Xing Y, Xiong Z, Xu D, Xu R, Xu R, Xu W, Xue L, Yan D, Yan J, Yan T, Yang C, Yang F, Yang F, Yang H, Yang J, Yang L, Yang M, Yang R, Yang S, Yao Y, Yao Z, Ye Y, Yin L, Yin N, You X, You Z, Yu Y, Yuan Q, Yue H, Zeng H, Zeng T, Zeng W, Zha M, Zhang B, Zhang F, Zhang H, Zhang H, Zhang J, Zhang L, Zhang L, Zhang P, Zhang P, Zhang R, Zhang S, Zhang S, Zhang S, Zhang X, Zhang X, Zhang Y, Zhang Y, Zhang Y, Zhao B, Zhao J, Zhao L, Zhao L, Zhao S, Zheng F, Zhou B, Zhou H, Zhou J, Zhou M, Zhou P, Zhou R, Zhou X, Zhu C, Zhu F, Zhu H, Zhu K, Zuo X. An ultrahigh-energy γ-ray bubble powered by a super PeVatron. Sci Bull (Beijing) 2024; 69:449-457. [PMID: 38171961 DOI: 10.1016/j.scib.2023.12.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/02/2023] [Accepted: 12/17/2023] [Indexed: 01/05/2024]
Abstract
We report the detection of a γ-ray bubble spanning at least 100deg2 in ultra-high energy (UHE) up to a few PeV in the direction of the star-forming region Cygnus X, implying the presence super PeVatron(s) accelerating protons to at least 10 PeV. A log-parabola form with the photon index Γ(E)=(2.71±0.02)+(0.11±0.02)×log10(E/10TeV) is found fitting the gamma-ray energy spectrum of the bubble well. UHE sources, "hot spots" correlated with very massive molecular clouds, and a quasi-spherical amorphous γ-ray emitter with a sharp central brightening are observed in the bubble. In the core of ∼0.5°, spatially associating with a region containing massive OB association (Cygnus OB2) and a microquasar (Cygnus X-3), as well as previously reported multi-TeV sources, an enhanced concentration of UHE γ-rays is observed with 2 photons at energies above 1 PeV. The general feature of the bubble, the morphology, and the energy spectrum, are reasonably reproduced by the assumption of a particle accelerator in the core, continuously injecting protons into the ambient medium.
Collapse
|
9
|
Silveira CAB, Poli de Figueiredo SM, Dias YJM, Martin RRH, Rasador ACD, Fernandez MG, Lu R. Transinguinal preperitoneal (TIPP) versus Lichtenstein for inguinal hernia repair: a systematic review and meta-analysis. Hernia 2023; 27:1375-1385. [PMID: 37715825 DOI: 10.1007/s10029-023-02882-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/03/2023] [Indexed: 09/18/2023]
Abstract
PURPOSE We aimed to perform a systematic review and meta-analysis comparing postoperative outcomes in inguinal hernia repair with TIPP versus Lichtenstein technique. METHODS Cochrane Central, Scopus, and PubMed were systematically searched for studies comparing TIPP and Lichtenstein´s technique for inguinal hernia repair. Outcomes assessed were operative time, bleeding, surgical site events, hospital stay, the Visual Analogue Pain Score, chronic pain, paresthesia rates, and recurrence. Statistical analysis was performed using RevMan 5.4.1. Heterogeneity was assessed with I2 statistics and random-risk effect was used if I2 > 25%. RESULTS 790 studies were screened and 44 were thoroughly reviewed. A total of nine studies, comprising 8428 patients were included, of whom 4185 (49.7%) received TIPP and 4243 (50.3%) received Lichtenstein. We found that TIPP presented less chronic pain (OR 0.43; 95% CI 0.20-0.93 P = 0.03; I2 = 84%) and paresthesia rates (OR 0.27; 95% CI 0.07-0.99; P = 0.05; I2 = 63%) than Lichtenstein group. In addition, TIPP was associated with a lower VAS pain score at 14 postoperative day (MD - 0.93; 95% CI - 1.48 to - 0.39; P = 0.0007; I2 = 99%). The data showed a lower operative time with the TIPP technique (MD - 7.18; 95% CI - 12.50, - 1.87; P = 0.008; I2 = 94%). We found no statistical difference between groups regarding the other outcomes analyzed. CONCLUSION TIPP may be a valuable technique for inguinal hernias. It was associated with lower chronic pain, and paresthesia when compared to Lichtenstein technique. Further long-term randomized studies are necessary to confirm our findings. Study registration A review protocol for this meta-analysis was registered at PROSPERO (CRD42023434909).
Collapse
|
10
|
Marcolin P, Mazzola Poli de Figueiredo S, Moura Fé de Melo V, Walmir de Araújo S, Mota Constante M, Mao RMD, Villasante-Tezanos A, Lu R. Mesh repair versus non-mesh repair for incarcerated and strangulated groin hernia: an updated systematic review and meta-analysis. Hernia 2023; 27:1397-1413. [PMID: 37679548 DOI: 10.1007/s10029-023-02874-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Mesh repair in incarcerated or strangulated groin hernia is controversial, especially when bowel resection is required. We aimed to perform a meta-analysis comparing mesh and non-mesh repair in patients undergoing emergency groin hernia repair. METHODS We performed a literature search of databases to identify studies comparing mesh and primary suture repair of patients with incarcerated or strangulated inguinal or femoral hernias who underwent emergency surgery. Postoperative outcomes were assessed by pooled analysis and meta-analysis. Statistical analysis was performed using RevMan 5.4. Heterogeneity was assessed with I2 statistics. RESULTS 1095 studies were screened and 101 were thoroughly reviewed. Twenty observational studies and four randomized controlled trials comprising 12,402 patients were included. We found that mesh-based repair had reduced recurrence (OR 0.36; 95% CI 0.19, 0.67; P = 0.001; I2 = 35%), length of hospital stay (OR - 1.02; 95% CI - 1.87, - 0.17; P = 0.02; I2 = 94%) and operative time (OR - 9.21; 95% CI - 16.82, - 1.61; P = 0.02; I2 = 95%) without increasing surgical site infection, mortality or postoperative complications such as seroma, chronic, ileus or urinary retention. In the subgroup analysis of patients that underwent bowel resection, we found that mesh repair was associated with an increased risk of surgical site infection (OR 1.74; 95% CI 1.04, 2.91; P = 0.04; I2 = 9%). CONCLUSIONS Mesh repair for incarcerated and strangulated groin hernias reduces recurrence without an increase in postoperative complications and should be considered in clean cases. However, in the setting of bowel resection, mesh repair might increase the incidence of surgical site infection.
Collapse
|
11
|
Cao Z, Aharonian F, An Q, Axikegu, Bai YX, Bao YW, Bastieri D, Bi XJ, Bi YJ, Cai JT, Cao Q, Cao WY, Cao Z, Chang J, Chang JF, Chen AM, Chen ES, Chen L, Chen L, Chen L, Chen MJ, Chen ML, Chen QH, Chen SH, Chen SZ, Chen TL, Chen Y, Cheng N, Cheng YD, Cui MY, Cui SW, Cui XH, Cui YD, Dai BZ, Dai HL, Dai ZG, Danzengluobu, Della Volpe D, Dong XQ, Duan KK, Fan JH, Fan YZ, Fang J, Fang K, Feng CF, Feng L, Feng SH, Feng XT, Feng YL, Gabici S, Gao B, Gao CD, Gao LQ, Gao Q, Gao W, Gao WK, Ge MM, Geng LS, Giacinti G, Gong GH, Gou QB, Gu MH, Guo FL, Guo XL, Guo YQ, Guo YY, Han YA, He HH, He HN, He JY, He XB, He Y, Heller M, Hor YK, Hou BW, Hou C, Hou X, Hu HB, Hu Q, Hu SC, Huang DH, Huang TQ, Huang WJ, Huang XT, Huang XY, Huang Y, Huang ZC, Ji XL, Jia HY, Jia K, Jiang K, Jiang XW, Jiang ZJ, Jin M, Kang MM, Ke T, Kuleshov D, Kurinov K, Li BB, Li C, Li C, Li D, Li F, Li HB, Li HC, Li HY, Li J, Li J, Li J, Li K, Li WL, Li WL, Li XR, Li X, Li YZ, Li Z, Li Z, Liang EW, Liang YF, Lin SJ, Liu B, Liu C, Liu D, Liu H, Liu HD, Liu J, Liu JL, Liu JY, Liu MY, Liu RY, Liu SM, Liu W, Liu Y, Liu YN, Lu R, Luo Q, Lv HK, Ma BQ, Ma LL, Ma XH, Mao JR, Min Z, Mitthumsiri W, Mu HJ, Nan YC, Neronov A, Ou ZW, Pang BY, Pattarakijwanich P, Pei ZY, Qi MY, Qi YQ, Qiao BQ, Qin JJ, Ruffolo D, Sáiz A, Semikoz D, Shao CY, Shao L, Shchegolev O, Sheng XD, Shu FW, Song HC, Stenkin YV, Stepanov V, Su Y, Sun QN, Sun XN, Sun ZB, Tam PHT, Tang QW, Tang ZB, Tian WW, Wang C, Wang CB, Wang GW, Wang HG, Wang HH, Wang JC, Wang K, Wang LP, Wang LY, Wang PH, Wang R, Wang W, Wang XG, Wang XY, Wang Y, Wang YD, Wang YJ, Wang ZH, Wang ZX, Wang Z, Wang Z, Wei DM, Wei JJ, Wei YJ, Wen T, Wu CY, Wu HR, Wu S, Wu XF, Wu YS, Xi SQ, Xia J, Xia JJ, Xiang GM, Xiao DX, Xiao G, Xin GG, Xin YL, Xing Y, Xiong Z, Xu DL, Xu RF, Xu RX, Xu WL, Xue L, Yan DH, Yan JZ, Yan T, Yang CW, Yang F, Yang FF, Yang HW, Yang JY, Yang LL, Yang MJ, Yang RZ, Yang SB, Yao YH, Yao ZG, Ye YM, Yin LQ, Yin N, You XH, You ZY, Yu YH, Yuan Q, Yue H, Zeng HD, Zeng TX, Zeng W, Zha M, Zhang BB, Zhang F, Zhang HM, Zhang HY, Zhang JL, Zhang LX, Zhang L, Zhang PF, Zhang PP, Zhang R, Zhang SB, Zhang SR, Zhang SS, Zhang X, Zhang XP, Zhang YF, Zhang Y, Zhang Y, Zhao B, Zhao J, Zhao L, Zhao LZ, Zhao SP, Zheng F, Zhou B, Zhou H, Zhou JN, Zhou M, Zhou P, Zhou R, Zhou XX, Zhu CG, Zhu FR, Zhu H, Zhu KJ, Zuo X. Measurement of Ultra-High-Energy Diffuse Gamma-Ray Emission of the Galactic Plane from 10 TeV to 1 PeV with LHAASO-KM2A. PHYSICAL REVIEW LETTERS 2023; 131:151001. [PMID: 37897763 DOI: 10.1103/physrevlett.131.151001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/08/2023] [Accepted: 08/18/2023] [Indexed: 10/30/2023]
Abstract
The diffuse Galactic γ-ray emission, mainly produced via interactions between cosmic rays and the interstellar medium and/or radiation field, is a very important probe of the distribution, propagation, and interaction of cosmic rays in the Milky Way. In this Letter, we report the measurements of diffuse γ rays from the Galactic plane between 10 TeV and 1 PeV energies, with the square kilometer array of the Large High Altitude Air Shower Observatory (LHAASO). Diffuse emissions from the inner (15°10 TeV). The energy spectrum in the inner Galaxy regions can be described by a power-law function with an index of -2.99±0.04, which is different from the curved spectrum as expected from hadronic interactions between locally measured cosmic rays and the line-of-sight integrated gas content. Furthermore, the measured flux is higher by a factor of ∼3 than the prediction. A similar spectrum with an index of -2.99±0.07 is found in the outer Galaxy region, and the absolute flux for 10≲E≲60 TeV is again higher than the prediction for hadronic cosmic ray interactions. The latitude distributions of the diffuse emission are consistent with the gas distribution, while the longitude distributions show clear deviation from the gas distribution. The LHAASO measurements imply that either additional emission sources exist or cosmic ray intensities have spatial variations.
Collapse
|
12
|
Cao Z, Aharonian F, An Q, Bai LX, Bai YX, Bao YW, Bastieri D, Bi XJ, Bi YJ, Cai JT, Cao Q, Cao WY, Cao Z, Chang J, Chang JF, Chen ES, Chen L, Chen L, Chen L, Chen MJ, Chen ML, Chen QH, Chen SH, Chen SZ, Chen TL, Chen Y, Cheng HL, Cheng N, Cheng YD, Cui SW, Cui XH, Cui YD, Dai BZ, Dai HL, Dai ZG, Della Volpe D, Dong XQ, Duan KK, Fan JH, Fan YZ, Fang J, Fang K, Feng CF, Feng L, Feng SH, Feng XT, Feng YL, Gao B, Gao CD, Gao LQ, Gao Q, Gao W, Gao WK, Ge MM, Geng LS, Gong GH, Gou QB, Gu MH, Guo FL, Guo XL, Guo YQ, Guo YY, Han YA, He HH, He HN, He JY, He XB, He Y, Heller M, Hor YK, Hou BW, Hou C, Hou X, Hu HB, Hu Q, Hu SC, Huang DH, Huang TQ, Huang WJ, Huang XT, Huang XY, Huang Y, Huang ZC, Ji XL, Jia HY, Jia K, Jiang K, Jiang XW, Jiang ZJ, Jin M, Kang MM, Ke T, Kuleshov D, Kurinov K, Li BB, Li C, Li C, Li D, Li F, Li HB, Li HC, Li HY, Li J, Li J, Li J, Li K, Li WL, Li WL, Li XR, Li X, Li YZ, Li Z, Li Z, Liang EW, Liang YF, Lin SJ, Liu B, Liu C, Liu D, Liu H, Liu HD, Liu J, Liu JL, Liu JL, Liu JS, Liu JY, Liu MY, Liu RY, Liu SM, Liu W, Liu Y, Liu YN, Long WJ, Lu R, Luo Q, Lv HK, Ma BQ, Ma LL, Ma XH, Mao JR, Min Z, Mitthumsiri W, Nan YC, Ou ZW, Pang BY, Pattarakijwanich P, Pei ZY, Qi MY, Qi YQ, Qiao BQ, Qin JJ, Ruffolo D, Sáiz A, Shao CY, Shao L, Shchegolev O, Sheng XD, Song HC, Stenkin YV, Stepanov V, Su Y, Sun QN, Sun XN, Sun ZB, Tam PHT, Tang ZB, Tian WW, Wang C, Wang CB, Wang GW, Wang HG, Wang HH, Wang JC, Wang JS, Wang K, Wang LP, Wang LY, Wang PH, Wang R, Wang W, Wang XG, Wang XY, Wang Y, Wang YD, Wang YJ, Wang ZH, Wang ZX, Wang Z, Wang Z, Wei DM, Wei JJ, Wei YJ, Wen T, Wu CY, Wu HR, Wu S, Wu XF, Wu YS, Xi SQ, Xia J, Xia JJ, Xiang GM, Xiao DX, Xiao G, Xin GG, Xin YL, Xing Y, Xiong Z, Xu DL, Xu RF, Xu RX, Xue L, Yan DH, Yan JZ, Yan T, Yang CW, Yang F, Yang FF, Yang HW, Yang JY, Yang LL, Yang MJ, Yang RZ, Yang SB, Yao YH, Yao ZG, Ye YM, Yin LQ, Yin N, You XH, You ZY, Yu YH, Yuan Q, Yue H, Zeng HD, Zeng TX, Zeng W, Zeng ZK, Zha M, Zhang B, Zhang BB, Zhang F, Zhang HM, Zhang HY, Zhang JL, Zhang LX, Zhang L, Zhang PF, Zhang PP, Zhang R, Zhang SB, Zhang SR, Zhang SS, Zhang X, Zhang XP, Zhang YF, Zhang Y, Zhang Y, Zhao B, Zhao J, Zhao L, Zhao LZ, Zhao SP, Zheng F, Zheng JH, Zhou B, Zhou H, Zhou JN, Zhou P, Zhou R, Zhou XX, Zhu CG, Zhu FR, Zhu H, Zhu KJ, Zuo X. A tera-electron volt afterglow from a narrow jet in an extremely bright gamma-ray burst. Science 2023:eadg9328. [PMID: 37289911 DOI: 10.1126/science.adg9328] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/25/2023] [Indexed: 06/10/2023]
Abstract
Some gamma-ray bursts (GRBs) have a tera-electron volt (TeV) afterglow, but the early onset of this has not been observed. We report observations with the Large High Altitude Air Shower Observatory of the bright GRB 221009A, which serendipitously occurred within the instrument field of view. More than 64,000 photons >0.2 TeV were detected within the first 3000 seconds. The TeV flux began several minutes after the GRB trigger, then rose to a peak about 10 seconds later. This was followed by a decay phase, which became more rapid ~650 seconds after the peak. We interpret the emission using a model of a relativistic jet with half-opening angle ~0.8°. This is consistent with the core of a structured jet and could explain the high isotropic energy of this GRB.
Collapse
|
13
|
Burla MM, Gomes CP, Calvi I, Oliveira ESC, Hora DAB, Mao RD, de Figueiredo SMP, Lu R. Management and outcomes of obturator hernias: a systematic review and meta-analysis. Hernia 2023:10.1007/s10029-023-02808-w. [PMID: 37270718 DOI: 10.1007/s10029-023-02808-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/21/2023] [Indexed: 06/05/2023]
Abstract
PURPOSE Obturator Hernia (OH) is a rare type of abdominal wall hernia. It usually occurs in elderly women with late symptomatic presentation, increasing mortality rates. Surgery is the standard of care for OH, and laparotomy with simple suture closure of the defect is commonly used. Given the rarity of this disease, large studies are lacking, and data to drive management are still limited. This systematic review and meta-analysis aimed to describe current surgical options for OHs, with a focus on comparing the effectiveness and safety of mesh use with primary repair. METHODS PubMed, EMBASE, and Cochrane were searched for studies comparing mesh and non-mesh repair for OH. Postoperative outcomes were assessed by pooled analysis and meta-analysis. Statistical analysis was performed using RevMan 5.4. RESULTS One thousand seven hundred and sixty studies were screened and sixty-seven were thoroughly reviewed. We included 13 observational studies with 351 patients surgically treated for OH with mesh or non-mesh repair. One hundred and twenty (34.2%) patients underwent mesh repair and two hundred and thirty-one (65.81%) underwent non-mesh repair. A total of 145 (41.3%) underwent bowel resection, with the majority having a non-mesh repair performed. Hernia recurrence was significantly higher in patients who underwent hernia repair without mesh (RR 0.31; 95% CI 0.11-0.94; p = 0.04). There were no differences in mortality (RR 0.64; 95% CI 0.25-1.62; p = 0.34; I2 = 0%) or complication rates (RR 0.59; 95% CI 0.28-1.25; p = 0.17; I2 = 50%) between both groups. CONCLUSION Mesh repair in OH was associated with lower recurrence rates without an increase in postoperative complications. While mesh in clean cases is more likely to offer benefits, an overall recommendation regarding its use in OH repair cannot be made due to potential bias across studies. Given that many OH patients are frail and present emergently, the decision to use mesh is complex and should consider the patient's clinical status, comorbidities, and degree of intraoperative contamination.
Collapse
|
14
|
Gamlin CR, Schneider-Mizell CM, Mallory M, Elabbady L, Gouwens N, Williams G, Mukora A, Dalley R, Bodor A, Brittain D, Buchanan J, Bumbarger D, Kapner D, Kinn S, Mahalingam G, Seshamani S, Takeno M, Torres R, Yin W, Nicovich PR, Bae JA, Castro MA, Dorkenwald S, Halageri A, Jia Z, Jordan C, Kemnitz N, Lee K, Li K, Lu R, Macrina T, Mitchell E, Mondal SS, Mu S, Nehoran B, Popovych S, Silversmith W, Turner NL, Wong W, Wu J, Yu S, Berg J, Jarsky T, Lee B, Seung HS, Zeng H, Reid RC, Collman F, da Costa NM, Sorensen SA. Integrating EM and Patch-seq data: Synaptic connectivity and target specificity of predicted Sst transcriptomic types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.22.533857. [PMID: 36993629 PMCID: PMC10055412 DOI: 10.1101/2023.03.22.533857] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Neural circuit function is shaped both by the cell types that comprise the circuit and the connections between those cell types 1 . Neural cell types have previously been defined by morphology 2, 3 , electrophysiology 4, 5 , transcriptomic expression 6-8 , connectivity 9-13 , or even a combination of such modalities 14-16 . More recently, the Patch-seq technique has enabled the characterization of morphology (M), electrophysiology (E), and transcriptomic (T) properties from individual cells 17-20 . Using this technique, these properties were integrated to define 28, inhibitory multimodal, MET-types in mouse primary visual cortex 21 . It is unknown how these MET-types connect within the broader cortical circuitry however. Here we show that we can predict the MET-type identity of inhibitory cells within a large-scale electron microscopy (EM) dataset and these MET-types have distinct ultrastructural features and synapse connectivity patterns. We found that EM Martinotti cells, a well defined morphological cell type 22, 23 known to be Somatostatin positive (Sst+) 24, 25 , were successfully predicted to belong to Sst+ MET-types. Each identified MET-type had distinct axon myelination patterns and synapsed onto specific excitatory targets. Our results demonstrate that morphological features can be used to link cell type identities across imaging modalities, which enables further comparison of connectivity in relation to transcriptomic or electrophysiological properties. Furthermore, our results show that MET-types have distinct connectivity patterns, supporting the use of MET-types and connectivity to meaningfully define cell types.
Collapse
|
15
|
Wang Z, Lu R, Wang W, Tian FB, Feng JJ, Sui Y. A computational model for the transit of a cancer cell through a constricted microchannel. Biomech Model Mechanobiol 2023:10.1007/s10237-023-01705-6. [PMID: 36854992 PMCID: PMC10366299 DOI: 10.1007/s10237-023-01705-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/13/2023] [Indexed: 03/02/2023]
Abstract
We propose a three-dimensional computational model to simulate the transient deformation of suspended cancer cells flowing through a constricted microchannel. We model the cell as a liquid droplet enclosed by a viscoelastic membrane, and its nucleus as a smaller stiffer capsule. The cell deformation and its interaction with the suspending fluid are solved through a well-tested immersed boundary lattice Boltzmann method. To identify a minimal mechanical model that can quantitatively predict the transient cell deformation in a constricted channel, we conduct extensive parametric studies of the effects of the rheology of the cell membrane, cytoplasm and nucleus and compare the results with a recent experiment conducted on human leukaemia cells. We find that excellent agreement with the experiment can be achieved by employing a viscoelastic cell membrane model with the membrane viscosity depending on its mode of deformation (shear versus elongation). The cell nucleus limits the overall deformation of the whole cell, and its effect increases with the nucleus size. The present computational model may be used to guide the design of microfluidic devices to sort cancer cells, or to inversely infer cell mechanical properties from their flow-induced deformation.
Collapse
|
16
|
Cao Z, Aharonian F, An Q, Bai LX, Bai YX, Bao YW, Bastieri D, Bi XJ, Bi YJ, Cai JT, Cao Z, Chang J, Chang JF, Chen ES, Chen L, Chen L, Chen L, Chen MJ, Chen ML, Chen QH, Chen SH, Chen SZ, Chen TL, Chen Y, Cheng HL, Cheng N, Cheng YD, Cui SW, Cui XH, Cui YD, D'Ettorre Piazzoli B, Dai BZ, Dai HL, Dai ZG, Della Volpe D, Duan KK, Fan JH, Fan YZ, Fan ZX, Fang J, Fang K, Feng CF, Feng L, Feng SH, Feng XT, Feng YL, Gao B, Gao CD, Gao LQ, Gao Q, Gao W, Gao WK, Ge MM, Geng LS, Gong GH, Gou QB, Gu MH, Guo FL, Guo JG, Guo XL, Guo YQ, Guo YY, Han YA, He HH, He HN, He SL, He XB, He Y, Heller M, Hor YK, Hou C, Hou X, Hu HB, Hu Q, Hu S, Hu SC, Hu XJ, Huang DH, Huang WH, Huang XT, Huang XY, Huang Y, Huang ZC, Ji XL, Jia HY, Jia K, Jiang K, Jiang ZJ, Jin M, Kang MM, Ke T, Kuleshov D, Levochkin K, Li BB, Li C, Li C, Li F, Li HB, Li HC, Li HY, Li J, Li J, Li J, Li K, Li WL, Li XR, Li X, Li X, Li YZ, Li Z, Li Z, Liang EW, Liang YF, Lin SJ, Liu B, Liu C, Liu D, Liu H, Liu HD, Liu J, Liu JL, Liu JS, Liu JY, Liu MY, Liu RY, Liu SM, Liu W, Liu Y, Liu YN, Long WJ, Lu R, Luo Q, Lv HK, Ma BQ, Ma LL, Ma XH, Mao JR, Masood A, Min Z, Mitthumsiri W, Nan YC, Ou ZW, Pang BY, Pattarakijwanich P, Pei ZY, Qi MY, Qi YQ, Qiao BQ, Qin JJ, Ruffolo D, Sáiz A, Shao CY, Shao L, Shchegolev O, Sheng XD, Shi JY, Song HC, Stenkin YV, Stepanov V, Su Y, Sun QN, Sun XN, Sun ZB, Tam PHT, Tang ZB, Tian WW, Wang BD, Wang C, Wang H, Wang HG, Wang JC, Wang JS, Wang LP, Wang LY, Wang R, Wang RN, Wang W, Wang XG, Wang XY, Wang Y, Wang YD, Wang YJ, Wang YP, Wang ZH, Wang ZX, Wang Z, Wang Z, Wei DM, Wei JJ, Wei YJ, Wen T, Wu CY, Wu HR, Wu S, Wu XF, Wu YS, Xi SQ, Xia J, Xia JJ, Xiang GM, Xiao DX, Xiao G, Xin GG, Xin YL, Xing Y, Xiong Z, Xu DL, Xu RX, Xue L, Yan DH, Yan JZ, Yang CW, Yang FF, Yang HW, Yang JY, Yang LL, Yang MJ, Yang RZ, Yang SB, Yao YH, Yao ZG, Ye YM, Yin LQ, Yin N, You XH, You ZY, Yu YH, Yuan Q, Yue H, Zeng HD, Zeng TX, Zeng W, Zeng ZK, Zha M, Zhai XX, Zhang BB, Zhang F, Zhang HM, Zhang HY, Zhang JL, Zhang LX, Zhang L, Zhang L, Zhang PF, Zhang PP, Zhang R, Zhang SB, Zhang SR, Zhang SS, Zhang X, Zhang XP, Zhang YF, Zhang YL, Zhang Y, Zhang Y, Zhao B, Zhao J, Zhao L, Zhao LZ, Zhao SP, Zheng F, Zheng Y, Zhou B, Zhou H, Zhou JN, Zhou P, Zhou R, Zhou XX, Zhu CG, Zhu FR, Zhu H, Zhu KJ, Zuo X, Ando S, Chianese M, Fiorillo DFG, Miele G, Ng KCY. Constraints on Heavy Decaying Dark Matter from 570 Days of LHAASO Observations. PHYSICAL REVIEW LETTERS 2022; 129:261103. [PMID: 36608208 DOI: 10.1103/physrevlett.129.261103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/19/2022] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
The kilometer square array (KM2A) of the large high altitude air shower observatory (LHAASO) aims at surveying the northern γ-ray sky at energies above 10 TeV with unprecedented sensitivity. γ-ray observations have long been one of the most powerful tools for dark matter searches, as, e.g., high-energy γ rays could be produced by the decays of heavy dark matter particles. In this Letter, we present the first dark matter analysis with LHAASO-KM2A, using the first 340 days of data from 1/2-KM2A and 230 days of data from 3/4-KM2A. Several regions of interest are used to search for a signal and account for the residual cosmic-ray background after γ/hadron separation. We find no excess of dark matter signals, and thus place some of the strongest γ-ray constraints on the lifetime of heavy dark matter particles with mass between 10^{5} and 10^{9} GeV. Our results with LHAASO are robust, and have important implications for dark matter interpretations of the diffuse astrophysical high-energy neutrino emission.
Collapse
|
17
|
Aharonian F, An Q, Axikegu, Bai LX, Bai YX, Bao YW, Bastieri D, Bi XJ, Bi YJ, Cai JT, Cao Z, Cao Z, Chang J, Chang JF, Chen ES, Chen L, Chen L, Chen L, Chen MJ, Chen ML, Chen QH, Chen SH, Chen SZ, Chen TL, Chen Y, Cheng HL, Cheng N, Cheng YD, Cui SW, Cui XH, Cui YD, D’Ettorre Piazzoli B, Dai BZ, Dai HL, Dai ZG, Danzengluobu, della Volpe D, Duan KK, Fan JH, Fan YZ, Fan ZX, Fang J, Fang K, Feng CF, Feng L, Feng SH, Feng XT, Feng YL, Gao B, Gao CD, Gao LQ, Gao Q, Gao W, Gao WK, Ge MM, Geng LS, Gong GH, Gou QB, Gu MH, Guo FL, Guo JG, Guo XL, Guo YQ, Guo YY, Han YA, He HH, He HN, He SL, He XB, He Y, Heller M, Hor YK, Hou C, Hou X, Hu HB, Hu Q, Hu S, Hu SC, Hu XJ, Huang DH, Huang WH, Huang XT, Huang XY, Huang Y, Huang ZC, Ji XL, Jia HY, Jia K, Jiang K, Jiang ZJ, Jin M, Kang MM, Ke T, Kuleshov D, Levochkin K, Li BB, Li C, Li C, Li F, Li HB, Li HC, Li HY, Li J, Li J, Li J, Li K, Li WL, Li XR, Li X, Li X, Li YZ, Li Z, Li Z, Liang EW, Liang YF, Lin SJ, Liu B, Liu C, Liu D, Liu H, Liu HD, Liu J, Liu JL, Liu JS, Liu JY, Liu MY, Liu RY, Liu SM, Liu W, Liu Y, Liu YN, Long WJ, Lu R, Luo Q, Lv HK, Ma BQ, Ma LL, Ma XH, Mao JR, Masood A, Min Z, Mitthumsiri W, Nan YC, Ou ZW, Pang BY, Pattarakijwanich P, Pei ZY, Qi MY, Qi YQ, Qiao BQ, Qin JJ, Ruffolo D, Sáiz A, Shao CY, Shao L, Shchegolev O, Sheng XD, Shi JY, Song HC, Stenkin YV, Stepanov V, Su Y, Sun QN, Sun XN, Sun ZB, Tam PHT, Tang ZB, Tian WW, Wang BD, Wang C, Wang H, Wang HG, Wang JC, Wang JS, Wang LP, Wang LY, Wang R, Wang RN, Wang W, Wang XG, Wang XY, Wang Y, Wang YD, Wang YJ, Wang YP, Wang ZH, Wang ZX, Wang Z, Wang Z, Wei DM, Wei JJ, Wei YJ, Wen T, Wu CY, Wu HR, Wu S, Wu XF, Wu YS, Xi SQ, Xia J, Xia JJ, Xiang GM, Xiao DX, Xiao G, Xin GG, Xin YL, Xing Y, Xiong Z, Xu DL, Xu RX, Xue L, Yan DH, Yan JZ, Yang CW, Yang FF, Yang HW, Yang JY, Yang LL, Yang MJ, Yang RZ, Yang SB, Yao YH, Yao ZG, Ye YM, Yin LQ, Yin N, You XH, You ZY, Yu YH, Yuan Q, Yue H, Zeng HD, Zeng TX, Zeng W, Zeng ZK, Zha M, Zhai XX, Zhang BB, Zhang F, Zhang HM, Zhang HY, Zhang JL, Zhang LX, Zhang L, Zhang L, Zhang PF, Zhang PP, Zhang R, Zhang SB, Zhang SR, Zhang SS, Zhang X, Zhang XP, Zhang YF, Zhang YL, Zhang Y, Zhang Y, Zhao B, Zhao J, Zhao L, Zhao LZ, Zhao SP, Zheng F, Zheng Y, Zhou B, Zhou H, Zhou JN, Zhou P, Zhou R, Zhou XX, Zhu CG, Zhu FR, Zhu H, Zhu KJ, Zuo X. Reconstruction of Cherenkov image by multiple telescopes of LHAASO-WFCTA. RADIATION DETECTION TECHNOLOGY AND METHODS 2022. [DOI: 10.1007/s41605-022-00342-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
18
|
Sun CH, Gao ZL, Lin K, Yang H, Zhao CY, Lu R, Wu LY, Chen Y. [Efficacy analysis of selective genicular artery embolization in the treatment of knee pain secondary to osteoarthritis]. ZHONGHUA YI XUE ZA ZHI 2022; 102:795-800. [PMID: 35325959 DOI: 10.3760/cma.j.cn112137-20210926-02166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Objective: To evaluate the efficacy and safety of selective genicular artery embolization for the treatment of the knee pain secondary to osteoarthritis. Methods: From October 2020 to July 2021, 17 patients (23 knees) aged (68±7) years with moderate to severe knee pain secondary to knee osteoarthritis were prospectively included in the General Hospital of Ningxia Medical University. There were 6 males and 11 females included in this research. Patients were assessed with knee pain, stiffness, and function with the Visual Analogue Scale (VAS) and the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) at baseline, using the Kellgren-Lawrence (K-L) grading to evaluate the severity of KOA, and using the Magnetic Resonance Knee Osteoarthritis Score (MOAKS) to evaluate the MR imaging characteristics of the affected knee. Selective genicular artery embolization (GAE) was performed in all patients. The patients were followed up for 6 months after the procedure. Patients were assessed with the VAS score and WOMAC scale at 1 d, 1 week and 1, 3 and 6 months after the procedure to evaluate the clinical outcomes, including the improvement of knee joint pain, stiffness and function, as well as the occurrence of adverse reactions. Results: Three to seven genicular artery branches were superselected and embolized in 23 knees, and 4 to 7 genicular artery branches were embolized in 7 patients with K-L grade 4. The clinical improvement was 95.6% (22/23) at 1 month, 86.9% (20/23) at 3 months, and 91.3% (21/23) at 6 months. Twenty-three knees completed the 6-month follow-up, and the VAS score, WOMAC pain score, and total WOMAC score at 1, 3, and 6 months after surgery were (2.5±1.3), (3.4±2.4), and (19.7±9.8) points, (3.0±1.8), (4.5±3.4), and (22.3±11.3) points, (2.8±1.5), (4.1±3.0), and (20.5±11.0) points, which were lower than the (6.6±0.9), (11.4±2.6) and (47.0±12.0) points at baseline (all P<0.001). During the follow-up period, 7 patients had adverse reactions: 3 cases had skin ecchymosis in the femoral artery puncture area, 4 cases had knee joint stiffness and pain within 1 day after operation, which were relieved spontaneously in 1 week, 6 patients had joint clicking during extension and flexion activities after operation, of which 3 cases subsided spontaneously within 3 months after operation. None of the patients had major procedure-related adverse events. Conclusion: GAE has a high clinical improvement rate and a low incidence of adverse reactions in the treatment of the pain secondary to knee osteoarthritis, which provides a new treatment option for patients who fail to respond to conservative treatment.
Collapse
|
19
|
Cao Z, Aharonian F, An Q, Bai LX, Bai YX, Bao YW, Bastieri D, Bi XJ, Bi YJ, Cai H, Cai JT, Cao Z, Chang J, Chang JF, Chen BM, Chen ES, Chen J, Chen L, Chen L, Chen L, Chen MJ, Chen ML, Chen QH, Chen SH, Chen SZ, Chen TL, Chen XL, Chen Y, Cheng N, Cheng YD, Cui SW, Cui XH, Cui YD, Piazzoli BD, Dai BZ, Dai HL, Dai ZG, Della Volpe D, Dong XJ, Duan KK, Fan JH, Fan YZ, Fan ZX, Fang J, Fang K, Feng CF, Feng L, Feng SH, Feng YL, Gao B, Gao CD, Gao LQ, Gao Q, Gao W, Ge MM, Geng LS, Gong GH, Gou QB, Gu MH, Guo FL, Guo JG, Guo XL, Guo YQ, Guo YY, Han YA, He HH, He HN, He JC, He SL, He XB, He Y, Heller M, Hor YK, Hou C, Hou X, Hu HB, Hu S, Hu SC, Hu XJ, Huang DH, Huang QL, Huang WH, Huang XT, Huang XY, Huang ZC, Ji F, Ji XL, Jia HY, Jiang K, Jiang ZJ, Jin C, Ke T, Kuleshov D, Levochkin K, Li BB, Li C, Li C, Li F, Li HB, Li HC, Li HY, Li J, Li J, Li K, Li WL, Li XR, Li X, Li X, Li Y, Li YZ, Li Z, Li Z, Liang EW, Liang YF, Lin SJ, Liu B, Liu C, Liu D, Liu H, Liu HD, Liu J, Liu JL, Liu JS, Liu JY, Liu MY, Liu RY, Liu SM, Liu W, Liu Y, Liu YN, Liu ZX, Long WJ, Lu R, Lv HK, Ma BQ, Ma LL, Ma XH, Mao JR, Masood A, Min Z, Mitthumsiri W, Montaruli T, Nan YC, Pang BY, Pattarakijwanich P, Pei ZY, Qi MY, Qi YQ, Qiao BQ, Qin JJ, Ruffolo D, Rulev V, Sáiz A, Shao L, Shchegolev O, Sheng XD, Shi JR, Song HC, Stenkin YV, Stepanov V, Su Y, Sun QN, Sun XN, Sun ZB, Tam PHT, Tang ZB, Tian WW, Wang BD, Wang C, Wang H, Wang HG, Wang JC, Wang JS, Wang LP, Wang LY, Wang RN, Wang W, Wang W, Wang XG, Wang XJ, Wang XY, Wang Y, Wang YD, Wang YJ, Wang YP, Wang ZH, Wang ZX, Wang Z, Wang Z, Wei DM, Wei JJ, Wei YJ, Wen T, Wu CY, Wu HR, Wu S, Wu WX, Wu XF, Xi SQ, Xia J, Xia JJ, Xiang GM, Xiao DX, Xiao G, Xiao HB, Xin GG, Xin YL, Xing Y, Xu DL, Xu RX, Xue L, Yan DH, Yan JZ, Yang CW, Yang FF, Yang JY, Yang LL, Yang MJ, Yang RZ, Yang SB, Yao YH, Yao ZG, Ye YM, Yin LQ, Yin N, You XH, You ZY, Yu YH, Yuan Q, Zeng HD, Zeng TX, Zeng W, Zeng ZK, Zha M, Zhai XX, Zhang BB, Zhang HM, Zhang HY, Zhang JL, Zhang JW, Zhang LX, Zhang L, Zhang L, Zhang PF, Zhang PP, Zhang R, Zhang SR, Zhang SS, Zhang X, Zhang XP, Zhang YF, Zhang YL, Zhang Y, Zhang Y, Zhao B, Zhao J, Zhao L, Zhao LZ, Zhao SP, Zheng F, Zheng Y, Zhou B, Zhou H, Zhou JN, Zhou P, Zhou R, Zhou XX, Zhu CG, Zhu FR, Zhu H, Zhu KJ, Zuo X. Exploring Lorentz Invariance Violation from Ultrahigh-Energy γ Rays Observed by LHAASO. PHYSICAL REVIEW LETTERS 2022; 128:051102. [PMID: 35179919 DOI: 10.1103/physrevlett.128.051102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/06/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Recently, the LHAASO Collaboration published the detection of 12 ultrahigh-energy γ-ray sources above 100 TeV, with the highest energy photon reaching 1.4 PeV. The first detection of PeV γ rays from astrophysical sources may provide a very sensitive probe of the effect of the Lorentz invariance violation (LIV), which results in decay of high-energy γ rays in the superluminal scenario and hence a sharp cutoff of the energy spectrum. Two highest energy sources are studied in this work. No signature of the existence of the LIV is found in their energy spectra, and the lower limits on the LIV energy scale are derived. Our results show that the first-order LIV energy scale should be higher than about 10^{5} times the Planck scale M_{Pl} and that the second-order LIV scale is >10^{-3}M_{Pl}. Both limits improve by at least one order of magnitude the previous results.
Collapse
|
20
|
Shan X, Han D, Ge Y, Zhang H, Lu R. Clinical outcomes of keratinized mucosa augmentation in jaws reconstructed with fibula or iliac bone flaps. Int J Oral Maxillofac Surg 2021; 51:949-956. [PMID: 34924272 DOI: 10.1016/j.ijom.2021.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/25/2021] [Accepted: 11/23/2021] [Indexed: 10/19/2022]
Abstract
This prospective study was undertaken to evaluate the treatment outcomes of keratinized mucosa augmentation (KMA) on the buccal and palatal/lingual sides of implants in jaws reconstructed after oncological surgery. Forty-two implants in 12 patients whose jaws had been reconstructed with a fibula or iliac bone flap were included. KMA was performed at 3 months after implant placement; this included an apically displaced partial-thickness flap and a free gingival graft (FGG) around the implants to increase the keratinized mucosa width (KMW). Patients were followed up for at least 6 months post-surgery. KMW, shrinkage, and patient pain and discomfort measured on a visual analogue scale were analysed. A histological analysis was performed of tissue epithelium from two patients. The results showed that KMW was >2 mm on both the buccal and palatal/lingual sides during follow-up. Before surgery, histological analysis showed epithelium with no epithelial spikes; normal keratinized epithelial spikes were observed at 8 weeks after KMA. Greater KMW was observed around implants in reconstructed maxillae than around those in reconstructed mandibles (P < 0.001). Patients felt more pain at the donor site than at the recipient site during the first 3 days post-surgery. KMA with FGG was predictable in reconstructed jaws and may help maintain the long-term stability of implants.
Collapse
|
21
|
Cao X, Wang HM, Lu R, Zhang XH, Qu YL, Wang L, Wang SL, Bai SW, Liu X, Ma L, Xiong Y, Yang XF, She ZF. Establishment and verification of a nomogram for predicting severe acute pancreatitis. EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES 2021; 25:1455-1461. [PMID: 33629315 DOI: 10.26355/eurrev_202102_24853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE The purpose of this study was to establish a nomogram for predicting the severity of acute pancreatitis (AP) and verify its predictive value. PATIENTS AND METHODS A total of 571 AP patients received by Ordos Central Hospital from January 2015 to December 2018 were included in this study. According to the 2012 Revised Atlanta classification, the included subjects were classified into severe AP (SAP) group and non-severe AP (NSAP) group [including patient with mild AP (MAP) and moderately SAP (MSAP)]. The baseline characteristics, imageological data and pathological data within 24 h after the disease onset between the two groups were analyzed using One-way analysis of variance (one-way ANOVA). R language was used for establishing a predictive nomogram, whose performance was verified by clinical data of 150 AP cases collected from December 2018 to December 2019. RESULTS One-way ANOVA shows that SAP and NSAP patients show significant differences in sex, calcium ions, creatinine, neutrophils ratio, lymphocytes ratio and eosinophils ratio (p<0.05). A predictive nomogram was accordingly established using the six indicators. Validation on this predictive nomogram showed high internal validation concordance index (C-index) of 0.69 (95% CI, 0.64-0.74), and high external validation C-index of 0.71 (95% CI, 0.67-0.76). CONCLUSIONS This nomogram can be used as a clinical tool to predict the severity of SAP.
Collapse
|
22
|
Aharonian F, An Q, Axikegu, Bai LX, Bai YX, Bao YW, Bastieri D, Bi XJ, Bi YJ, Cai H, Cai JT, Cao Z, Cao Z, Chang J, Chang JF, Chang XC, Chen BM, Chen J, Chen L, Chen L, Chen L, Chen MJ, Chen ML, Chen QH, Chen SH, Chen SZ, Chen TL, Chen XL, Chen Y, Cheng N, Cheng YD, Cui SW, Cui XH, Cui YD, Dai BZ, Dai HL, Dai ZG, Danzengluobu, Volpe DD, Piazzoli BD, Dong XJ, Fan JH, Fan YZ, Fan ZX, Fang J, Fang K, Feng CF, Feng L, Feng SH, Feng YL, Gao B, Gao CD, Gao Q, Gao W, Ge MM, Geng LS, Gong GH, Gou QB, Gu MH, Guo JG, Guo XL, Guo YQ, Guo YY, Han YA, He HH, He HN, He JC, He SL, He XB, He Y, Heller M, Hor YK, Hou C, Hou X, Hu HB, Hu S, Hu SC, Hu XJ, Huang DH, Huang QL, Huang WH, Huang XT, Huang Y, Huang ZC, Ji F, Ji XL, Jia HY, Jiang K, Jiang ZJ, Jin C, Kuleshov D, Levochkin K, Li BB, Li C, Li C, Li F, Li HB, Li HC, Li HY, Li J, Li K, Li WL, Li X, Li X, Li XR, Li Y, Li YZ, Li Z, Li Z, Liang EW, Liang YF, Lin SJ, Liu B, Liu C, Liu D, Liu H, Liu HD, Liu J, Liu JL, Liu JS, Liu JY, Liu MY, Liu RY, Liu SM, Liu W, Liu YN, Liu ZX, Long WJ, Lu R, Lv HK, Ma BQ, Ma LL, Ma XH, Mao JR, Masood A, Mitthumsiri W, Montaruli T, Nan YC, Pang BY, Pattarakijwanich P, Pei ZY, Qi MY, Ruffolo D, Rulev V, Sáiz A, Shao L, Shchegolev O, Sheng XD, Shi JR, Song HC, Stenkin YV, Stepanov V, Sun QN, Sun XN, Sun ZB, Tam PHT, Tang ZB, Tian WW, Wang BD, Wang C, Wang H, Wang HG, Wang JC, Wang JS, Wang LP, Wang LY, Wang RN, Wang W, Wang W, Wang XG, Wang XJ, Wang XY, Wang YD, Wang YJ, Wang YP, Wang Z, Wang Z, Wang ZH, Wang ZX, Wei DM, Wei JJ, Wei YJ, Wen T, Wu CY, Wu HR, Wu S, Wu WX, Wu XF, Xi SQ, Xia J, Xia JJ, Xiang GM, Xiao G, Xiao HB, Xin GG, Xin YL, Xing Y, Xu DL, Xu RX, Xue L, Yan DH, Yang CW, Yang FF, Yang JY, Yang LL, Yang MJ, Yang RZ, Yang SB, Yao YH, Yao ZG, Ye YM, Yin LQ, Yin N, You XH, You ZY, Yu YH, Yuan Q, Zeng HD, Zeng TX, Zeng W, Zeng ZK, Zha M, Zhai XX, Zhang BB, Zhang HM, Zhang HY, Zhang JL, Zhang JW, Zhang L, Zhang L, Zhang LX, Zhang PF, Zhang PP, Zhang R, Zhang SR, Zhang SS, Zhang X, Zhang XP, Zhang Y, Zhang Y, Zhang YF, Zhang YL, Zhao B, Zhao J, Zhao L, Zhao LZ, Zhao SP, Zheng F, Zheng Y, Zhou B, Zhou H, Zhou JN, Zhou P, Zhou R, Zhou XX, Zhu CG, Zhu FR, Zhu H, Zhu KJ, Zuo X. A dynamic range extension system for LHAASO WCDA-1. RADIATION DETECTION TECHNOLOGY AND METHODS 2021. [DOI: 10.1007/s41605-021-00275-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Cao Z, Aharonian F, An Q, Bai LX, Bai YX, Bao YW, Bastieri D, Bi XJ, Bi YJ, Cai H, Cai JT, Cao Z, Chang J, Chang JF, Chen BM, Chen ES, Chen J, Chen L, Chen L, Chen L, Chen MJ, Chen ML, Chen QH, Chen SH, Chen SZ, Chen TL, Chen XL, Chen Y, Cheng N, Cheng YD, Cui SW, Cui XH, Cui YD, D'Ettorre Piazzoli B, Dai BZ, Dai HL, Dai ZG, Della Volpe D, Dong XJ, Duan KK, Fan JH, Fan YZ, Fan ZX, Fang J, Fang K, Feng CF, Feng L, Feng SH, Feng YL, Gao B, Gao CD, Gao LQ, Gao Q, Gao W, Ge MM, Geng LS, Gong GH, Gou QB, Gu MH, Guo FL, Guo JG, Guo XL, Guo YQ, Guo YY, Han YA, He HH, He HN, He JC, He SL, He XB, He Y, Heller M, Hor YK, Hou C, Hou X, Hu HB, Hu S, Hu SC, Hu XJ, Huang DH, Huang QL, Huang WH, Huang XT, Huang XY, Huang ZC, Ji F, Ji XL, Jia HY, Jiang K, Jiang ZJ, Jin C, Ke T, Kuleshov D, Levochkin K, Li BB, Li C, Li C, Li F, Li HB, Li HC, Li HY, Li J, Li J, Li K, Li WL, Li XR, Li X, Li X, Li Y, Li YZ, Li Z, Li Z, Liang EW, Liang YF, Lin SJ, Liu B, Liu C, Liu D, Liu H, Liu HD, Liu J, Liu JL, Liu JS, Liu JY, Liu MY, Liu RY, Liu SM, Liu W, Liu Y, Liu YN, Liu ZX, Long WJ, Lu R, Lv HK, Ma BQ, Ma LL, Ma XH, Mao JR, Masood A, Min Z, Mitthumsiri W, Montaruli T, Nan YC, Pang BY, Pattarakijwanich P, Pei ZY, Qi MY, Qi YQ, Qiao BQ, Qin JJ, Ruffolo D, Rulev V, Saiz A, Shao L, Shchegolev O, Sheng XD, Shi JY, Song HC, Stenkin YV, Stepanov V, Su Y, Sun QN, Sun XN, Sun ZB, Tam PHT, Tang ZB, Tian WW, Wang BD, Wang C, Wang H, Wang HG, Wang JC, Wang JS, Wang LP, Wang LY, Wang RN, Wang W, Wang W, Wang XG, Wang XJ, Wang XY, Wang Y, Wang YD, Wang YJ, Wang YP, Wang ZH, Wang ZX, Wang Z, Wang Z, Wei DM, Wei JJ, Wei YJ, Wen T, Wu CY, Wu HR, Wu S, Wu WX, Wu XF, Xi SQ, Xia J, Xia JJ, Xiang GM, Xiao DX, Xiao G, Xiao HB, Xin GG, Xin YL, Xing Y, Xu DL, Xu RX, Xue L, Yan DH, Yan JZ, Yang CW, Yang FF, Yang JY, Yang LL, Yang MJ, Yang RZ, Yang SB, Yao YH, Yao ZG, Ye YM, Yin LQ, Yin N, You XH, You ZY, Yu YH, Yuan Q, Zeng HD, Zeng TX, Zeng W, Zeng ZK, Zha M, Zhai XX, Zhang BB, Zhang HM, Zhang HY, Zhang JL, Zhang JW, Zhang LX, Zhang L, Zhang L, Zhang PF, Zhang PP, Zhang R, Zhang SR, Zhang SS, Zhang X, Zhang XP, Zhang YF, Zhang YL, Zhang Y, Zhang Y, Zhao B, Zhao J, Zhao L, Zhao LZ, Zhao SP, Zheng F, Zheng Y, Zhou B, Zhou H, Zhou JN, Zhou P, Zhou R, Zhou XX, Zhu CG, Zhu FR, Zhu H, Zhu KJ, Zuo X. Peta-electron volt gamma-ray emission from the Crab Nebula. Science 2021; 373:425-430. [PMID: 34261813 DOI: 10.1126/science.abg5137] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/23/2021] [Indexed: 11/03/2022]
Abstract
The Crab Nebula is a bright source of gamma rays powered by the Crab Pulsar's rotational energy through the formation and termination of a relativistic electron-positron wind. We report the detection of gamma rays from this source with energies from 5 × 10-4 to 1.1 peta-electron volts with a spectrum showing gradual steepening over three energy decades. The ultrahigh-energy photons imply the presence of a peta-electron volt electron accelerator (a pevatron) in the nebula, with an acceleration rate exceeding 15% of the theoretical limit. We constrain the pevatron's size between 0.025 and 0.1 parsecs and the magnetic field to ≈110 microgauss. The production rate of peta-electron volt electrons, 2.5 × 1036 ergs per second, constitutes 0.5% of the pulsar spin-down luminosity, although we cannot exclude a contribution of peta-electron volt protons to the production of the highest-energy gamma rays.
Collapse
|
24
|
Aharonian F, An Q, Bai LX, Bai YX, Bao YW, Bastieri D, Bi XJ, Bi YJ, Cai H, Cai JT, Cao Z, Cao Z, Chang J, Chang JF, Chang XC, Chen BM, Chen J, Chen L, Chen L, Chen L, Chen MJ, Chen ML, Chen QH, Chen SH, Chen SZ, Chen TL, Chen XL, Chen Y, Cheng N, Cheng YD, Cui SW, Cui XH, Cui YD, Dai BZ, Dai HL, Dai ZG, Della Volpe D, D'Ettorre Piazzoli B, Dong XJ, Fan JH, Fan YZ, Fan ZX, Fang J, Fang K, Feng CF, Feng L, Feng SH, Feng YL, Gao B, Gao CD, Gao Q, Gao W, Ge MM, Geng LS, Gong GH, Gou QB, Gu MH, Guo JG, Guo XL, Guo YQ, Guo YY, Han YA, He HH, He HN, He JC, He SL, He XB, He Y, Heller M, Hor YK, Hou C, Hou X, Hu HB, Hu S, Hu SC, Hu XJ, Huang DH, Huang QL, Huang WH, Huang XT, Huang ZC, Ji F, Ji XL, Jia HY, Jiang K, Jiang ZJ, Jin C, Kuleshov D, Levochkin K, Li BB, Li C, Li C, Li F, Li HB, Li HC, Li HY, Li J, Li K, Li WL, Li X, Li X, Li XR, Li Y, Li YZ, Li Z, Li Z, Liang EW, Liang YF, Lin SJ, Liu B, Liu C, Liu D, Liu H, Liu HD, Liu J, Liu JL, Liu JS, Liu JY, Liu MY, Liu RY, Liu SM, Liu W, Liu YN, Liu ZX, Long WJ, Lu R, Lv HK, Ma BQ, Ma LL, Ma XH, Mao JR, Masood A, Mitthumsiri W, Montaruli T, Nan YC, Pang BY, Pattarakijwanich P, Pei ZY, Qi MY, Ruffolo D, Rulev V, Sáiz A, Shao L, Shchegolev O, Sheng XD, Shi JR, Song HC, Stenkin YV, Stepanov V, Sun QN, Sun XN, Sun ZB, Tam PHT, Tang ZB, Tian WW, Wang BD, Wang C, Wang H, Wang HG, Wang JC, Wang JS, Wang LP, Wang LY, Wang RN, Wang W, Wang W, Wang XG, Wang XJ, Wang XY, Wang YD, Wang YJ, Wang YP, Wang Z, Wang Z, Wang ZH, Wang ZX, Wei DM, Wei JJ, Wei YJ, Wen T, Wu CY, Wu HR, Wu S, Wu WX, Wu XF, Xi SQ, Xia J, Xia JJ, Xiang GM, Xiao G, Xiao HB, Xin GG, Xin YL, Xing Y, Xu DL, Xu RX, Xue L, Yan DH, Yang CW, Yang FF, Yang JY, Yang LL, Yang MJ, Yang RZ, Yang SB, Yao YH, Yao ZG, Ye YM, Yin LQ, Yin N, You XH, You ZY, Yu YH, Yuan Q, Zeng HD, Zeng TX, Zeng W, Zeng ZK, Zha M, Zhai XX, Zhang BB, Zhang HM, Zhang HY, Zhang JL, Zhang JW, Zhang L, Zhang L, Zhang LX, Zhang PF, Zhang PP, Zhang R, Zhang SR, Zhang SS, Zhang X, Zhang XP, Zhang Y, Zhang Y, Zhang YF, Zhang YL, Zhao B, Zhao J, Zhao L, Zhao LZ, Zhao SP, Zheng F, Zheng Y, Zhou B, Zhou H, Zhou JN, Zhou P, Zhou R, Zhou XX, Zhu CG, Zhu FR, Zhu H, Zhu KJ, Zuo X, Huang XY. Extended Very-High-Energy Gamma-Ray Emission Surrounding PSR J0622+3749 Observed by LHAASO-KM2A. PHYSICAL REVIEW LETTERS 2021; 126:241103. [PMID: 34213924 DOI: 10.1103/physrevlett.126.241103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/23/2021] [Accepted: 05/10/2021] [Indexed: 06/13/2023]
Abstract
We report the discovery of an extended very-high-energy (VHE) gamma-ray source around the location of the middle-aged (207.8 kyr) pulsar PSR J0622+3749 with the Large High-Altitude Air Shower Observatory (LHAASO). The source is detected with a significance of 8.2σ for E>25 TeV assuming a Gaussian template. The best-fit location is (right ascension, declination) =(95.47°±0.11°,37.92°±0.09°), and the extension is 0.40°±0.07°. The energy spectrum can be described by a power-law spectrum with an index of -2.92±0.17_{stat}±0.02_{sys}. No clear extended multiwavelength counterpart of the LHAASO source has been found from the radio to sub-TeV bands. The LHAASO observations are consistent with the scenario that VHE electrons escaped from the pulsar, diffused in the interstellar medium, and scattered the interstellar radiation field. If interpreted as the pulsar halo scenario, the diffusion coefficient, inferred for electrons with median energies of ∼160 TeV, is consistent with those obtained from the extended halos around Geminga and Monogem and much smaller than that derived from cosmic ray secondaries. The LHAASO discovery of this source thus likely enriches the class of so-called pulsar halos and confirms that high-energy particles generally diffuse very slowly in the disturbed medium around pulsars.
Collapse
|
25
|
Cao Z, Aharonian FA, An Q, Axikegu, Bai LX, Bai YX, Bao YW, Bastieri D, Bi XJ, Bi YJ, Cai H, Cai JT, Cao Z, Chang J, Chang JF, Chang XC, Chen BM, Chen J, Chen L, Chen L, Chen L, Chen MJ, Chen ML, Chen QH, Chen SH, Chen SZ, Chen TL, Chen XL, Chen Y, Cheng N, Cheng YD, Cui SW, Cui XH, Cui YD, Dai BZ, Dai HL, Dai ZG, Danzengluobu, Della Volpe D, D Ettorre Piazzoli B, Dong XJ, Fan JH, Fan YZ, Fan ZX, Fang J, Fang K, Feng CF, Feng L, Feng SH, Feng YL, Gao B, Gao CD, Gao Q, Gao W, Ge MM, Geng LS, Gong GH, Gou QB, Gu MH, Guo JG, Guo XL, Guo YQ, Guo YY, Han YA, He HH, He HN, He JC, He SL, He XB, He Y, Heller M, Hor YK, Hou C, Hou X, Hu HB, Hu S, Hu SC, Hu XJ, Huang DH, Huang QL, Huang WH, Huang XT, Huang ZC, Ji F, Ji XL, Jia HY, Jiang K, Jiang ZJ, Jin C, Kuleshov D, Levochkin K, Li BB, Li C, Li C, Li F, Li HB, Li HC, Li HY, Li J, Li K, Li WL, Li X, Li X, Li XR, Li Y, Li YZ, Li Z, Li Z, Liang EW, Liang YF, Lin SJ, Liu B, Liu C, Liu D, Liu H, Liu HD, Liu J, Liu JL, Liu JS, Liu JY, Liu MY, Liu RY, Liu SM, Liu W, Liu YN, Liu ZX, Long WJ, Lu R, Lv HK, Ma BQ, Ma LL, Ma XH, Mao JR, Masood A, Mitthumsiri W, Montaruli T, Nan YC, Pang BY, Pattarakijwanich P, Pei ZY, Qi MY, Ruffolo D, Rulev V, Sáiz A, Shao L, Shchegolev O, Sheng XD, Shi JR, Song HC, Stenkin YV, Stepanov V, Sun QN, Sun XN, Sun ZB, Tam PHT, Tang ZB, Tian WW, Wang BD, Wang C, Wang H, Wang HG, Wang JC, Wang JS, Wang LP, Wang LY, Wang RN, Wang W, Wang W, Wang XG, Wang XJ, Wang XY, Wang YD, Wang YJ, Wang YP, Wang Z, Wang Z, Wang ZH, Wang ZX, Wei DM, Wei JJ, Wei YJ, Wen T, Wu CY, Wu HR, Wu S, Wu WX, Wu XF, Xi SQ, Xia J, Xia JJ, Xiang GM, Xiao G, Xiao HB, Xin GG, Xin YL, Xing Y, Xu DL, Xu RX, Xue L, Yan DH, Yang CW, Yang FF, Yang JY, Yang LL, Yang MJ, Yang RZ, Yang SB, Yao YH, Yao ZG, Ye YM, Yin LQ, Yin N, You XH, You ZY, Yu YH, Yuan Q, Zeng HD, Zeng TX, Zeng W, Zeng ZK, Zha M, Zhai XX, Zhang BB, Zhang HM, Zhang HY, Zhang JL, Zhang JW, Zhang L, Zhang L, Zhang LX, Zhang PF, Zhang PP, Zhang R, Zhang SR, Zhang SS, Zhang X, Zhang XP, Zhang Y, Zhang Y, Zhang YF, Zhang YL, Zhao B, Zhao J, Zhao L, Zhao LZ, Zhao SP, Zheng F, Zheng Y, Zhou B, Zhou H, Zhou JN, Zhou P, Zhou R, Zhou XX, Zhu CG, Zhu FR, Zhu H, Zhu KJ, Zuo X. Ultrahigh-energy photons up to 1.4 petaelectronvolts from 12 γ-ray Galactic sources. Nature 2021; 594:33-36. [PMID: 34002091 DOI: 10.1038/s41586-021-03498-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/26/2021] [Indexed: 02/04/2023]
Abstract
The extension of the cosmic-ray spectrum beyond 1 petaelectronvolt (PeV; 1015 electronvolts) indicates the existence of the so-called PeVatrons-cosmic-ray factories that accelerate particles to PeV energies. We need to locate and identify such objects to find the origin of Galactic cosmic rays1. The principal signature of both electron and proton PeVatrons is ultrahigh-energy (exceeding 100 TeV) γ radiation. Evidence of the presence of a proton PeVatron has been found in the Galactic Centre, according to the detection of a hard-spectrum radiation extending to 0.04 PeV (ref. 2). Although γ-rays with energies slightly higher than 0.1 PeV have been reported from a few objects in the Galactic plane3-6, unbiased identification and in-depth exploration of PeVatrons requires detection of γ-rays with energies well above 0.1 PeV. Here we report the detection of more than 530 photons at energies above 100 teraelectronvolts and up to 1.4 PeV from 12 ultrahigh-energy γ-ray sources with a statistical significance greater than seven standard deviations. Despite having several potential counterparts in their proximity, including pulsar wind nebulae, supernova remnants and star-forming regions, the PeVatrons responsible for the ultrahigh-energy γ-rays have not yet been firmly localized and identified (except for the Crab Nebula), leaving open the origin of these extreme accelerators.
Collapse
|