1
|
Agresti A, Pazniak A, Pescetelli S, Di Vito A, Rossi D, Pecchia A, Auf der Maur M, Liedl A, Larciprete R, Kuznetsov DV, Saranin D, Di Carlo A. Titanium-carbide MXenes for work function and interface engineering in perovskite solar cells. NATURE MATERIALS 2019; 18:1228-1234. [PMID: 31501556 DOI: 10.1038/s41563-019-0478-1] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/07/2019] [Indexed: 06/10/2023]
Abstract
To improve the efficiency of perovskite solar cells, careful device design and tailored interface engineering are needed to enhance optoelectronic properties and the charge extraction process at the selective electrodes. Here, we use two-dimensional transition metal carbides (MXene Ti3C2Tx) with various termination groups (Tx) to tune the work function (WF) of the perovskite absorber and the TiO2 electron transport layer (ETL), and to engineer the perovskite/ETL interface. Ultraviolet photoemission spectroscopy measurements and density functional theory calculations show that the addition of Ti3C2Tx to halide perovskite and TiO2 layers permits the tuning of the materials' WFs without affecting other electronic properties. Moreover, the dipole induced by the Ti3C2Tx at the perovskite/ETL interface can be used to change the band alignment between these layers. The combined action of WF tuning and interface engineering can lead to substantial performance improvements in MXene-modified perovskite solar cells, as shown by the 26% increase of power conversion efficiency and hysteresis reduction with respect to reference cells without MXene.
Collapse
|
|
6 |
178 |
2
|
Larciprete R, Fabris S, Sun T, Lacovig P, Baraldi A, Lizzit S. Dual path mechanism in the thermal reduction of graphene oxide. J Am Chem Soc 2011; 133:17315-21. [PMID: 21846143 DOI: 10.1021/ja205168x] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Graphene is easily produced by thermally reducing graphene oxide. However, defect formation in the C network during deoxygenation compromises the charge carrier mobility in the reduced material. Understanding the mechanisms of the thermal reactions is essential for defining alternative routes able to limit the density of defects generated by carbon evolution. Here, we identify a dual path mechanism in the thermal reduction of graphene oxide driven by the oxygen coverage: at low surface density, the O atoms adsorbed as epoxy groups evolve as O(2) leaving the C network unmodified. At higher coverage, the formation of other O-containing species opens competing reaction channels, which consume the C backbone. We combined spectroscopic tools and ab initio calculations to probe the species residing on the surface and those released in the gas phase during heating and to identify reaction pathways and rate-limiting steps. Our results illuminate the current puzzling scenario of the low temperature gasification of graphene oxide.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
162 |
3
|
Goldoni A, Larciprete R, Petaccia L, Lizzit S. Single-Wall Carbon Nanotube Interaction with Gases: Sample Contaminants and Environmental Monitoring. J Am Chem Soc 2003; 125:11329-33. [PMID: 16220955 DOI: 10.1021/ja034898e] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here, we show that residual contaminants in purified single-wall carbon nanotube bundles may be responsible for the reported sensitivity of the electronic and transport properties to oxygen. Removal of these contaminants makes the electronic spectra insensitive to O(2), CO, H(2)O, and N(2), while a strong sensitivity to NO(2), SO(2), and NH(3) is observed, confirming the possible application of single-wall nanotubes as powerful sensors capable of measuring environmentally significant levels of toxic gases.
Collapse
|
|
22 |
101 |
4
|
Larciprete R, Ulstrup S, Lacovig P, Dalmiglio M, Bianchi M, Mazzola F, Hornekær L, Orlando F, Baraldi A, Hofmann P, Lizzit S. Oxygen switching of the epitaxial graphene-metal interaction. ACS NANO 2012; 6:9551-9558. [PMID: 23051045 DOI: 10.1021/nn302729j] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Using photoemission spectroscopy techniques, we show that oxygen intercalation is achieved on an extended layer of epitaxial graphene on Ir(111), which results in the "lifting" of the graphene layer and in its decoupling from the metal substrate. The oxygen adsorption below graphene proceeds as on clean Ir(111), giving only a slightly higher oxygen coverage. Upon lifting, the C 1s signal shows a downshift in binding energy, due to the charge transfer to graphene from the oxygen-covered metal surface. Moreover, the characteristic spectral signatures of the graphene-substrate interaction in the valence band are removed, and the spectrum of strongly hole-doped, quasi free-standing graphene with a single Dirac cone around the K point is observed. The oxygen can be deintercalated by annealing, and this process takes place at around T = 600 K, in a rather abrupt way. A small amount of carbon atoms is lost, implying that graphene has been etched. After deintercalation graphene restores its interaction with the Ir(111) substrate. Additional intercalation/deintercalation cycles readily occur at lower oxygen doses and temperatures, consistently with an increasingly defective lattice. Our findings demonstrate that oxygen intercalation is an efficient method for fully decoupling an extended layer of graphene from a metal substrate, such as Ir(111). They pave the way for the fundamental research on graphene, where extended, ordered layers of free-standing graphene are important and, due to the stability of the intercalated system in a wide temperature range, also for the advancement of next-generation graphene-based electronics.
Collapse
|
|
13 |
84 |
5
|
Larciprete R, Stuke M. Direct observation of excimer-laser photoablation products from polymers by picosecond-uv-laser mass spectroscopy. ACTA ACUST UNITED AC 1987. [DOI: 10.1007/bf00693882] [Citation(s) in RCA: 71] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
|
38 |
71 |
6
|
Lindsay R, Michelangeli E, Daniels BG, Ashworth TV, Limb AJ, Thornton G, Gutiérrez-Sosa A, Baraldi A, Larciprete R, Lizzit S. Impact of defects on the surface chemistry of ZnO(0001 macro)-O. J Am Chem Soc 2002; 124:7117-22. [PMID: 12059237 DOI: 10.1021/ja025904u] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Scanning tunneling microscopy and core level photoelectron spectroscopy measurements have been used to investigate the morphology of ZnO(0001 macro)-O, and its reactivity with carbon monoxide and carbon dioxide, as a function of surface preparation. Real space images of the surface indicate that increasing the substrate anneal temperature during preparation significantly reduces the surface step density. Surface defect concentration is also monitored by employing formic acid as a chemical probe, which is shown to adsorb dissociatively (HCOOH --> [HCOO](-) + H(+)) only on zinc cations at step edges. Carbon 1s X-ray photoelectron spectra show that carbon monoxide and carbon dioxide both react to form surface carbonate species. Spectra, recorded both as a function of surface preparation and following coadsorption, demonstrate that the carbonate formed from either reactant molecule is located at oxygen vacancies at step edges, evidencing the significant role that defects can play in the surface chemistry of ZnO(0001 macro)-O.
Collapse
|
|
23 |
66 |
7
|
Vilmercati P, Castellarin-Cudia C, Gebauer R, Ghosh P, Lizzit S, Petaccia L, Cepek C, Larciprete R, Verdini A, Floreano L, Morgante A, Goldoni A. Mesoscopic Donor−Acceptor Multilayer by Ultrahigh-Vacuum Codeposition of Zn-Tetraphenyl-Porphyrin and C70. J Am Chem Soc 2008; 131:644-52. [DOI: 10.1021/ja806914g] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
|
17 |
41 |
8
|
Alfè D, Pozzo M, Miniussi E, Günther S, Lacovig P, Lizzit S, Larciprete R, Burgos BS, Menteş TO, Locatelli A, Baraldi A. Fine tuning of graphene-metal adhesion by surface alloying. Sci Rep 2013; 3:2430. [PMID: 23938361 PMCID: PMC3741623 DOI: 10.1038/srep02430] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 07/29/2013] [Indexed: 11/11/2022] Open
Abstract
We show that bimetallic surface alloying provides a viable route for governing the interaction between graphene and metal through the selective choice of the elemental composition of the surface alloy. This concept is illustrated by an experimental and theoretical characterization of the properties of graphene on a model PtRu surface alloy on Ru(0001), with a concentration of Pt atoms in the first layer between 0 and 50%. The progressive increase of the Pt content determines the gradual detachment of graphene from the substrate, which results from the modification of the carbon orbital hybridization promoted by Pt. Alloying is also found to affect the morphology of graphene, which is strongly corrugated on bare Ru, but becomes flat at a Pt coverage of 50%. The method here proposed can be readily extended to several supports, thus opening the way to the conformal growth of graphene on metals and to a full tunability of the graphene-substrate interaction.
Collapse
|
research-article |
12 |
35 |
9
|
Omiciuolo L, Hernández ER, Miniussi E, Orlando F, Lacovig P, Lizzit S, Menteş TO, Locatelli A, Larciprete R, Bianchi M, Ulstrup S, Hofmann P, Alfè D, Baraldi A. Bottom-up approach for the low-cost synthesis of graphene-alumina nanosheet interfaces using bimetallic alloys. Nat Commun 2014; 5:5062. [DOI: 10.1038/ncomms6062] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 08/26/2014] [Indexed: 01/20/2023] Open
|
|
11 |
35 |
10
|
Politano A, Cattelan M, Boukhvalov DW, Campi D, Cupolillo A, Agnoli S, Apostol NG, Lacovig P, Lizzit S, Farías D, Chiarello G, Granozzi G, Larciprete R. Unveiling the Mechanisms Leading to H2 Production Promoted by Water Decomposition on Epitaxial Graphene at Room Temperature. ACS NANO 2016; 10:4543-9. [PMID: 27054462 DOI: 10.1021/acsnano.6b00554] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
By means of a combination of surface-science spectroscopies and theory, we investigate the mechanisms ruling the catalytic role of epitaxial graphene (Gr) grown on transition-metal substrates for the production of hydrogen from water. Water decomposition at the Gr/metal interface at room temperature provides a hydrogenated Gr sheet, which is buckled and decoupled from the metal substrate. We evaluate the performance of Gr/metal interface as a hydrogen storage medium, with a storage density in the Gr sheet comparable with state-of-the-art materials (1.42 wt %). Moreover, thermal programmed reaction experiments show that molecular hydrogen can be released upon heating the water-exposed Gr/metal interface above 400 K. The Gr hydro/dehydrogenation process might be exploited for an effective and eco-friendly device to produce (and store) hydrogen from water, i.e., starting from an almost unlimited source.
Collapse
|
|
9 |
29 |
11
|
Polzonetti G, Battocchio C, Goldoni A, Larciprete R, Carravetta V, Paolesse R, Russo M. Interface formation between C60 and diethynyl-Zn-porphyrinato investigated by SR-induced photoelectron and near-edge X-ray absorption (NEXAFS) spectroscopies. Chem Phys 2004. [DOI: 10.1016/j.chemphys.2003.10.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
|
21 |
25 |
12
|
Lizzit S, Larciprete R, Lacovig P, Dalmiglio M, Orlando F, Baraldi A, Gammelgaard L, Barreto L, Bianchi M, Perkins E, Hofmann P. Transfer-free electrical insulation of epitaxial graphene from its metal substrate. NANO LETTERS 2012; 12:4503-4507. [PMID: 22871144 DOI: 10.1021/nl301614j] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
High-quality, large-area epitaxial graphene can be grown on metal surfaces, but its transport properties cannot be exploited because the electrical conduction is dominated by the substrate. Here we insulate epitaxial graphene on Ru(0001) by a stepwise intercalation of silicon and oxygen, and the eventual formation of a SiO(2) layer between the graphene and the metal. We follow the reaction steps by X-ray photoemission spectroscopy and demonstrate the electrical insulation using a nanoscale multipoint probe technique.
Collapse
|
|
13 |
24 |
13
|
Castellarin-Cudia C, Borghetti P, Di Santo G, Fanetti M, Larciprete R, Cepek C, Vilmercati P, Sangaletti L, Verdini A, Cossaro A, Floreano L, Morgante A, Goldoni A. Substrate Influence for the Zn-tetraphenyl-porphyrin Adsorption Geometry and the Interface-Induced Electron Transfer. Chemphyschem 2010; 11:2248-55. [DOI: 10.1002/cphc.201000017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
|
15 |
23 |
14
|
Föhlisch A, Menzel D, Feulner P, Ecker M, Weimar R, Kostov K, Tyuliev G, Lizzit S, Larciprete R, Hennies F, Wurth W. Energy dependence of resonant charge transfer from adsorbates to metal substrates. Chem Phys 2003. [DOI: 10.1016/s0301-0104(02)00939-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
|
22 |
23 |
15
|
Goldoni A, Petaccia L, Lizzit S, Larciprete R. Sensing gases with carbon nanotubes: a review of the actual situation. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2010; 22:013001. [PMID: 21386215 DOI: 10.1088/0953-8984/22/1/013001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Here we review the possible application of carbon nanotubes (CNTs) as chemiresistor and field-effect transistor chemical sensors. The endeavor of this paper is to understand the key facts emerging from the literature that seem to demonstrate the high sensitivity of CNTs to several molecular species, with the effort to catch the results in a correct manner.
Collapse
|
Review |
15 |
19 |
16
|
Balog R, Andersen M, Jørgensen B, Sljivancanin Z, Hammer B, Baraldi A, Larciprete R, Hofmann P, Hornekær L, Lizzit S. Controlling hydrogenation of graphene on Ir(111). ACS NANO 2013; 7:3823-32. [PMID: 23586740 DOI: 10.1021/nn400780x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Combined fast X-ray photoelectron spectroscopy and density functional theory calculations reveal the presence of two types of hydrogen adsorbate structures at the graphene/Ir(111) interface, namely, graphane-like islands and hydrogen dimer structures. While the former give rise to a periodic pattern, dimers tend to destroy the periodicity. Our data reveal distinctive growth rates and stability of both types of structures, thereby allowing one to obtain well-defined patterns of hydrogen clusters. The ability to control and manipulate the formation and size of hydrogen structures on graphene facilitates tailoring of its properties for a wide range of applications by means of covalent functionalization.
Collapse
|
|
12 |
19 |
17
|
Pazniak H, Benchakar M, Bilyk T, Liedl A, Busby Y, Noël C, Chartier P, Hurand S, Marteau M, Houssiau L, Larciprete R, Lacovig P, Lizzit D, Tosi E, Lizzit S, Pacaud J, Célérier S, Mauchamp V, David ML. Ion Implantation as an Approach for Structural Modifications and Functionalization of Ti 3C 2T x MXenes. ACS NANO 2021; 15:4245-4255. [PMID: 33586963 DOI: 10.1021/acsnano.0c06735] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
MXenes are a young family of two-dimensional transition metal carbides, nitrides, and carbonitrides with highly controllable structure, composition, and surface chemistry to adjust for target applications. Here, we demonstrate the modifications of two-dimensional MXenes by low-energy ion implantation, leading to the incorporation of Mn ions in Ti3C2Tx (where Tx is a surface termination) thin films. Damage and structural defects caused by the implantation process are characterized at different depths by XPS on Ti 2p core-level spectra, by ToF-SIMS, and with electron energy loss spectroscopy analyses. Results show that the ion-induced alteration of the damage tolerant Ti3C2Tx layer is due to defect formation at both Ti and C sites, thereby promoting the functionalization of these sites with oxygen groups. This work contributes to the inspiring approach of tailoring 2D MXene structure and properties through doping and defect formation by low-energy ion implantation to expand their practical applications.
Collapse
|
|
4 |
18 |
18
|
Cavallin A, Pozzo M, Africh C, Baraldi A, Vesselli E, Dri C, Comelli G, Larciprete R, Lacovig P, Lizzit S, Alfè D. Local electronic structure and density of edge and facet atoms at Rh nanoclusters self-assembled on a graphene template. ACS NANO 2012; 6:3034-3043. [PMID: 22404459 DOI: 10.1021/nn300651s] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The chemical and physical properties of nanoclusters largely depend on their sizes and shapes. This is partly due to finite size effects influencing the local electronic structure of the nanocluster atoms which are located on the nanofacets and on their edges. Here we present a thorough study on graphene-supported Rh nanocluster assemblies and their geometry-dependent electronic structure obtained by combining high-energy resolution core level photoelectron spectroscopy, scanning tunneling microscopy, and density functional theory. We demonstrate the possibility to finely control the morphology and the degree of structural order of Rh clusters grown in register with the template surface of graphene/Ir(111). By comparing measured and calculated core electron binding energies, we identify edge, facet, and bulk atoms of the nanoclusters. We describe how small interatomic distance changes occur while varying the nanocluster size, substantially modifying the properties of surface atoms. The properties of under-coordinated Rh atoms are discussed in view of their importance in heterogeneous catalysis and magnetism.
Collapse
|
|
13 |
15 |
19
|
Goldoni A, Cepek C, Larciprete R, Sangaletti L, Pagliara S, Floreano L, Gotter R, Verdini A, Morgante A, Luo Y, Nyberg M. C70 adsorbed on Cu(111): Metallic character and molecular orientation. J Chem Phys 2002. [DOI: 10.1063/1.1467346] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
|
23 |
14 |
20
|
Larciprete R, Stuke M. Excimer-laser-induced photochemistry of organometallic compounds monitored by dye laser mass spectroscopy: dimethyl ditelluride (CH3TeTeCH3). ACTA ACUST UNITED AC 2002. [DOI: 10.1021/j100410a019] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
|
23 |
13 |
21
|
|
|
23 |
12 |
22
|
Orlando F, Lacovig P, Omiciuolo L, Apostol NG, Larciprete R, Baraldi A, Lizzit S. Epitaxial growth of a single-domain hexagonal boron nitride monolayer. ACS NANO 2014; 8:12063-12070. [PMID: 25389799 DOI: 10.1021/nn5058968] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We investigate the structure of epitaxially grown hexagonal boron nitride (h-BN) on Ir(111) by chemical vapor deposition of borazine. Using photoelectron diffraction spectroscopy, we unambiguously show that a single-domain h-BN monolayer can be synthesized by a cyclic dose of high-purity borazine onto the metal substrate at room temperature followed by annealing at T=1270 K, this method giving rise to a diffraction pattern with 3-fold symmetry. In contrast, high-temperature borazine deposition (T=1070 K) results in a h-BN monolayer formed by domains with opposite orientation and characterized by a 6-fold symmetric diffraction pattern. We identify the thermal energy and the binding energy difference between fcc and hcp seeds as key parameters in controlling the alignment of the growing h-BN clusters during the first stage of the growth, and we further propose structural models for the h-BN monolayer on the Ir(111) surface.
Collapse
|
|
11 |
10 |
23
|
Larciprete R, Colonna S, Ronci F, Flammini R, Lacovig P, Apostol N, Politano A, Feulner P, Menzel D, Lizzit S. Self-Assembly of Graphene Nanoblisters Sealed to a Bare Metal Surface. NANO LETTERS 2016; 16:1808-17. [PMID: 26829243 DOI: 10.1021/acs.nanolett.5b04849] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The possibility to intercalate noble gas atoms below epitaxial graphene monolayers coupled with the instability at high temperature of graphene on the surface of certain metals has been exploited to produce Ar-filled graphene nanosized blisters evenly distributed on the bare Ni(111) surface. We have followed in real time the self-assembling of the nanoblisters during the thermal annealing of the Gr/Ni(111) interface loaded with Ar and characterized their morphology and structure at the atomic scale. The nanoblisters contain Ar aggregates compressed at high pressure arranged below the graphene monolayer skin that is decoupled from the Ni substrate and sealed only at the periphery through stable C-Ni bonds. Their in-plane truncated triangular shapes are driven by the crystallographic directions of the Ni surface. The nonuniform strain revealed along the blister profile is explained by the inhomogeneous expansion of the flexible graphene lattice that adjusts to envelop the Ar atom stacks.
Collapse
|
|
9 |
9 |
24
|
Mattioli G, Larciprete R, Alippi P, Bonapasta AA, Filippone F, Lacovig P, Lizzit S, Paoletti AM, Pennesi G, Ronci F, Zanotti G, Colonna S. Unexpected Rotamerism at the Origin of a Chessboard Supramolecular Assembly of Ruthenium Phthalocyanine. Chemistry 2017; 23:16319-16327. [DOI: 10.1002/chem.201703255] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Indexed: 11/10/2022]
|
|
8 |
9 |
25
|
Satta M, Lacovig P, Apostol N, Dalmiglio M, Orlando F, Bignardi L, Bana H, Travaglia E, Baraldi A, Lizzit S, Larciprete R. The adsorption of silicon on an iridium surface ruling out silicene growth. NANOSCALE 2018; 10:7085-7094. [PMID: 29616265 DOI: 10.1039/c8nr00648b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The adsorption of Si atoms on a metal surface might proceed through complex surface processes, whose rate is determined differently by factors such as temperature, Si coverage, and metal cohesive energy. Among other transition metals, iridium is a special case since the Ir(111) surface was reported first, in addition to Ag(111), as being suitable for the epitaxy of silicene monolayers. In this study we followed the adsorption of Si on the Ir(111) surface via high resolution core level photoelectron spectroscopy, starting from the clean metal surface up to a coverage exceeding one monolayer, in a temperature range between 300 and 670 K. Density functional theory calculations were carried out in order to evaluate the stability of the different Si adsorption configurations as a function of the coverage. Results indicate that, at low coverage, the Si adatoms tend to occupy the hollow Ir sites, although a small fraction of them penetrates the first Ir layer. Si penetration of the Ir surface can take place if the energy gained upon Si adsorption is used to displace the Ir surface atoms, rather then being dissipated differently. At a Si coverage of ∼1 monolayer, the Ir 4f spectrum indicates that not only the metal surface but also the layers underneath are perturbed. Our results point out that the Si/Ir(111) interface is unstable towards Si-Ir intermixing, in agreement with the silicide phase formation reported in the literature for the reverted interface.
Collapse
|
|
7 |
8 |