1
|
Stentz R, Osborne S, Horn N, Li AWH, Hautefort I, Bongaerts R, Rouyer M, Bailey P, Shears SB, Hemmings AM, Brearley CA, Carding SR. A bacterial homolog of a eukaryotic inositol phosphate signaling enzyme mediates cross-kingdom dialog in the mammalian gut. Cell Rep 2014; 6:646-56. [PMID: 24529702 PMCID: PMC3969271 DOI: 10.1016/j.celrep.2014.01.021] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 12/13/2013] [Accepted: 01/15/2014] [Indexed: 11/25/2022] Open
Abstract
Dietary InsP6 can modulate eukaryotic cell proliferation and has complex nutritive consequences, but its metabolism in the mammalian gastrointestinal tract is poorly understood. Therefore, we performed phylogenetic analyses of the gastrointestinal microbiome in order to search for candidate InsP6 phosphatases. We determined that prominent gut bacteria express homologs of the mammalian InsP6 phosphatase (MINPP) and characterized the enzyme from Bacteroides thetaiotaomicron (BtMinpp). We show that BtMinpp has exceptionally high catalytic activity, which we rationalize on the basis of mutagenesis studies and by determining its crystal structure at 1.9 Å resolution. We demonstrate that BtMinpp is packaged inside outer membrane vesicles (OMVs) protecting the enzyme from degradation by gastrointestinal proteases. Moreover, we uncover an example of cross-kingdom cell-to-cell signaling, showing that the BtMinpp-OMVs interact with intestinal epithelial cells to promote intracellular Ca2+ signaling. Our characterization of BtMinpp offers several directions for understanding how the microbiome serves human gastrointestinal physiology.
Bacteroides thetaiotaomicron (Bt) secretes a cell-signaling InsP6 phosphatase MINPP BtMinpp is exceptionally active and rationalized from its crystal structure BtMinpp is secreted in outermembrane vesicles BtMinpp/OMVs promote Ca2+ signaling in intestinal epithelial cells
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
81 |
2
|
Raemakers-Franken PC, Bongaerts R, Fokkens R, van der Drift C, Vogels GD. Characterization of two pterin derivatives isolated from Methanoculleus thermophilicum. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 200:783-7. [PMID: 1915350 DOI: 10.1111/j.1432-1033.1991.tb16245.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Methanoculleus thermophilicum was shown to contain two pterin derivatives. The structures of these pterin derivatives were established from amino acid analysis, 1H-NMR and fast-atom bombardment mass spectrometry data. One of the pterins was identified as tatiopterin-O, an aspartyl derivative of methanopterin with a proton at position 7 of the pterin moiety. The other pterin, which we named thermopterin, differed in the structure of the aniline group, containing two additional hydroxyl residues. The IUPAC name of thermopterin is N-[-1'-(2"-amino-4"-hydroxy-6"-pteridinyl)ethyl]-4- [2',3',4',5'-tetrahydroxypent-1'-yl(5'----1") O-alpha-ribofuranosyl-5"-phosphoric acid]-2,5-dihydroxyaniline, in which the phosphate group is esterified with alpha-hydroxyglutarylaspartic acid.
Collapse
|
|
34 |
18 |
3
|
Mateos R, Pereira-Caro G, Bacon JR, Bongaerts R, Sarriá B, Bravo L, Kroon PA. Anticancer activity of olive oil hydroxytyrosyl acetate in human adenocarcinoma Caco-2 cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:3264-3269. [PMID: 23452288 DOI: 10.1021/jf305158q] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The anticancer activity of hydroxytyrosyl acetate (HTy-Ac) has been studied in human colon adenocarcinoma cells. Gene expression of proteins involved in cell cycle (p21, p53, cyclin B1, and cyclin G2) and programmed cell death (BNIP3, BNIP3L, PDCD4, and ATF3), as well as phase I and phase II detoxifying enzymes CYPA1 and UGT1A10, were evaluated by reverse transcription polymerase chain reaction after 24 h of exposure of Caco-2/TC7 cells to 5, 10, and 50 μM of HTy-Ac. The results show that HTy-Ac inhibited cell proliferation and arrested cell cycle by enhancing p21 and CCNG2 and lowering CCNB1 protein expression. HTy-Ac also affected the transcription of genes involved in apoptosis up-regulating of BNIP3, BNIP3L, PDCD4, and ATF3 and activating caspase-3. In addition, HTy-Ac also up-regulated xenobiotic metabolizing enzymes CYP1A1 and UGT1A10, thus enhancing carcinogen detoxification. In conclusion, these results highlight that HTy-Ac has the potential to modulate biomarkers involved in colon cancer.
Collapse
|
|
12 |
16 |
4
|
van Horssen PJ, van Oosterhout YV, Evers S, Backus HH, van Oijen MG, Bongaerts R, de Witte T, Preijers FW. Influence of cytotoxicity enhancers in combination with human serum on the activity of CD22-recombinant ricin A against B cell lines, chronic and acute lymphocytic leukemia cells. Leukemia 1999; 13:241-9. [PMID: 10025898 DOI: 10.1038/sj.leu.2401262] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Despite the strong in vitro activity of some immunotoxins (ITs), clinical application did not result in complete cure. The outcome of therapy may be improved by combining ITs with IT-cytotoxicity enhancing agents. We studied the effect of various agents that influence the intracellular routing of ITs on the activity of the anti-B cell IT CD22-recombinant (rec) ricin A. In protein synthesis inhibition assays the carboxylic ionophores monensin and nigericin enhanced the activity of the IT 117- and 382-fold, respectively, against the cell line Daudi, and 81- and 318-fold, respectively, against the cell line Ramos. IT activity to Daudi and Ramos was enhanced to a lesser extent by the lysosomotropic amines chloroquine (14- and 11-fold, respectively) and NH4Cl (nine- and 10-fold, respectively). However, the combination of NH4Cl and chloroquine induced more than an additive effect (145- and 107-fold, respectively). Cytotoxicity was not influenced by brefeldin A, all-trans retinoic acid (ATRA), verapamil and perhexiline maleate. Bacitracin enhanced the IT cytotoxicity in contrast to the other protease inhibitors aprotinin, leupeptin and soybean trypsin inhibitor, albeit enhancement was weak (two-fold). The enhancers exerted only a negligible effect on bone marrow progenitor cells. We recently developed a flow cytometric cytotoxicity assay in which cell elimination can be assessed. In order to detect enhancement in this assay, we used 5 x 10(-11) M IT (approximately the 50% protein synthesis inhibiting dose (ID50)). This concentration killed 41% of the Daudi cells and 42% of the Ramos cells. In the presence of 10 nM monensin the IT killed 74% and 99% and in the presence of 10 nM nigericin 96% and 99% of the Daudi and Ramos cells, respectively. At 10(-8) M, CD22-rec ricin A eliminated malignant cells originating from three patients with B-CLL (0.42 log) and two with B-ALL (0.19 log) patients. Cytotoxicity to malignant cells was enhanced by NH4Cl, chloroquine, monensin and nigericin. The combination of NH4Cl and chloroquine enhanced the activity most effectively (up to 2.06 log). To determine the applicability of the IT in combination with enhancers in vivo we investigated the effect of human serum. Human serum inhibited IT activity which could not be restored by monensin and nigericin because of complete inhibition of these enhancers by serum. In contrast, chloroquine partially restored the activity of CD22-rec ricin A in the presence of human serum. We conclude that monensin, nigericin and the combination of NH4Cl and chloroquine can be used instead of NH4Cl to potentiate CD22-rec ricin A activity in purging autologous bone marrow transplants contaminated with malignant B cells. Chloroquine might be a promising enhancer of CD22-rec ricin A for treating patients in vivo.
Collapse
MESH Headings
- Antigens, CD/immunology
- Antigens, Differentiation, B-Lymphocyte/immunology
- Blood Physiological Phenomena
- Bone Marrow Purging
- Burkitt Lymphoma/drug therapy
- Burkitt Lymphoma/pathology
- Calcium Channel Blockers/pharmacology
- Cell Adhesion Molecules
- Cell Line
- Cell Survival/drug effects
- Humans
- Lectins
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphoproliferative Disorders/drug therapy
- Lymphoproliferative Disorders/pathology
- Protein Synthesis Inhibitors/toxicity
- Recombinant Proteins/toxicity
- Ricin/toxicity
- Sialic Acid Binding Ig-like Lectin 2
- Tumor Cells, Cultured
Collapse
|
|
26 |
13 |
5
|
van der Hoorn MAWG, van Luxemburg-Heijs SAP, van Bergen CAM, Bongaerts R, Willemze R, Falkenburg JHF. The progenitor cell inhibition assay to measure the anti-leukemic reactivity of T cell clones against acute and chronic myeloid leukemia. Methods 2003; 31:113-9. [PMID: 12957568 DOI: 10.1016/s1046-2023(03)00120-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Adoptive immunotherapy with donor T lymphocytes may be used as a treatment for relapsed leukemia after allogeneic hematopoietic stem cell transplantation (SCT). In vitro selected and expanded anti-leukemic T cells may be more effective in inducing a response in vivo. To identify the anti-leukemic reactivity of in vitro generated T cells, standard target cell read-out assays like the 51Cr-release assay are not always appropriate. We developed an assay in which the ability of T cells to antigen specifically inhibit the in vitro growth of leukemic progenitor cells in the presence of cytokines can be measured. This assay allows the evaluation of the cytolytic or suppressive potential of leukemia reactive T cells for prolonged periods of time. The assay is based on inhibition of [3H]thymidine incorporation by the leukemic progenitor cells induced by multiple hematopoietic growth factors. T cell clones with a known specificity were used to compare the analytic potential of the new assay with those of other cytotoxicity assays. Based on the results of the T cell clones, a modification of a limiting dilution assay was developed to identify anti-leukemic allogeneic T cells in HLA identical donor-recipient combinations selected on their ability to inhibit the in vitro growth of CML or AML progenitor cells, to be used for the generation of leukemia-reactive CTL lines for clinical use.
Collapse
MESH Headings
- Acute Disease
- Antigens, CD34/immunology
- Cell Division/drug effects
- Clone Cells
- Colony-Forming Units Assay
- Cytokines/immunology
- Cytotoxicity, Immunologic
- Dose-Response Relationship, Drug
- Humans
- Immunotherapy, Adoptive/methods
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Leukemia, Myeloid/immunology
- Leukemia, Myeloid/pathology
- Leukemia, Myeloid/therapy
- Neoplastic Stem Cells/immunology
- Neoplastic Stem Cells/pathology
- T-Lymphocytes, Cytotoxic/immunology
- Thymidine/metabolism
- Tumor Cells, Cultured
Collapse
|
|
22 |
9 |
6
|
Stentz R, Wegmann U, Parker M, Bongaerts R, Lesaint L, Gasson M, Shearman C. CsiA is a bacterial cell wall synthesis inhibitor contributing to DNA translocation through the cell envelope. Mol Microbiol 2010; 72:779-94. [PMID: 19400771 DOI: 10.1111/j.1365-2958.2009.06683.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Conjugation is a widely spread mechanism allowing bacteria to adapt and evolve by acquiring foreign DNA. The chromosome of Lactococcus lactis MG 1363 contains a 60 kb conjugative element called the sex factor capable of high-frequency DNA transfer. Yet, little is known about the proteins involved in this process. Comparative genomics revealed a close relationship between the sex factor and elements found in Gram-positive pathogenic cocci. Among the conserved gene products, CsiA is a large protein that contains a highly conserved domain (HCD) and a C-terminal cysteine, histidine-dependent amidohydrolases/peptidases (CHAP) domain in its C-terminal moiety. Here, we show that CsiA is required for DNA transfer. Surprisingly, increased expression of CsiA affects cell viability and the cells become susceptible to lysis. Point mutagenesis of HCD reveals that this domain is responsible for the observed phenotypes. Growth studies and electron microscope observations suggest that CsiA is acting as a cell wall synthesis inhibitor. In vitro experiments reveal the capacity of CsiA to bind d-Ala-d-Ala analogues and to prevent the action of penicillin binding proteins. Our results strongly suggest that CsiA sequesters the peptidoglycan precursor and prevents the final stage of cell wall biosynthesis to enable the localized assembly of the DNA transfer machinery through the cell wall.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
8 |
7
|
Wolffram R, Simons J, Giebel A, Bongaerts R. Impacts of stricter legal standards in the EU for keeping laying hens in battery cages. WORLD POULTRY SCI J 2019. [DOI: 10.1079/wps20020029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
|
6 |
3 |
8
|
Baldock D, Nebe-von-Caron G, Bongaerts R, Nocker A. Effect of acidic pH on flow cytometric detection of bacteria stained with SYBR Green I and their distinction from background. Methods Appl Fluoresc 2013; 1:045001. [PMID: 29148447 DOI: 10.1088/2050-6120/1/4/045001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Unspecific background caused by biotic or abiotic particles, cellular debris, or autofluorescence is a well-known interfering parameter when applying flow cytometry to the detection of microorganisms in combination with fluorescent dyes. We present here an attempt to suppress the background signal intensity and thus to improve the detection of microorganisms using the nucleic acid stain SYBR® Green I. It has been observed that the fluorescent signals from SYBR Green I are greatly reduced at acidic pH. When lowering the pH of pre-stained samples directly prior to flow cytometric analysis, we hypothesized that the signals from particles and cells with membrane damage might therefore be reduced. Signals from intact cells, temporarily maintaining a neutral cytosolic pH, should not be affected. We show here that this principle holds true for lowering background interference, whereas the signals of membrane-compromised dead cells are only affected weakly. Signals from intact live cells at low pH were mostly comparable to signals without acidification. Although this study was solely performed with SYBR® Green I, the principle of low pH flow cytometry (low pH-FCM) might hold promise when analyzing complex matrices with an abundance of non-cellular matter, especially when expanded to non-DNA binding dyes with a stronger pH dependence of fluorescence than SYBR Green I and a higher pKa value.
Collapse
|
|
12 |
3 |
9
|
Crippen TL, Sheffield CL, Andrews K, Bongaerts R, Nisbet DJ. Bacterial Concentration and Diversity within Repetitive Aliquots Collected from Replicate Continuous-Flow Bioreactor Cultures. Open Microbiol J 2008; 2:60-5. [PMID: 19088912 PMCID: PMC2593035 DOI: 10.2174/1874285800802010060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2008] [Revised: 04/28/2008] [Accepted: 05/02/2008] [Indexed: 01/12/2023] Open
Abstract
The aim of this study was to determine the reproducibility of small volume repeat sampling from replicate bioreactors with stabilized continuous-flow chicken cecal bacterial communities. Bacterial concentration and diversity were analyzed by phenotypic, biochemical and ribotype analysis. Significant differences in concentrations and variations in diversity were found in replicate bioreactors.
Collapse
|
research-article |
17 |
1 |
10
|
Falkenburg JH, Wafelman AR, Joosten P, Smit WM, van Bergen CA, Bongaerts R, Lurvink E, van der Hoorn M, Kluck P, Landegent JE, Kluin-Nelemans HC, Fibbe WE, Willemze R. Complete remission of accelerated phase chronic myeloid leukemia by treatment with leukemia-reactive cytotoxic T lymphocytes. Blood 1999; 94:1201-8. [PMID: 10438707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023] Open
Abstract
Relapse of chronic myeloid leukemia (CML) in chronic phase after allogeneic stem cell transplantation (SCT) can be successfully treated by donor lymphocyte infusion (DLI). However, relapse of accelerated phase CML, blast crisis, or acute leukemia after allogeneic SCT are resistant to DLI in the majority of cases. In vitro-selected and expanded leukemia-reactive T-cell lines may be more effective in inducing an antileukemic response in vivo. To treat a patient with accelerated phase CML after allogeneic SCT, leukemia-reactive cytotoxic T-lymphocyte (CTL) lines were generated from her HLA-identical donor. Using a modification of a limiting dilution assay, T cells were isolated from the donor, selected based on their ability to inhibit the in vitro growth of CML progenitor cells, and subsequently expanded in vitro to generate CTL lines. Three CTL lines were generated that lysed the leukemic cells from the patient and inhibited the growth of leukemic progenitor cells. The CTL did not react with lymphocytes from donor or recipient and did not affect donor hematopoietic progenitor cells. The 3 leukemia-reactive CTL lines were infused at 5-week intervals at a cumulative dose of 3.2 x 10(9) CTL. Shortly after the third infusion, complete eradication of the leukemic cells was observed, as shown by cytogenetic analysis, fluorescence in situ hybridization, molecular analysis of BCR/ABL-mRNA, and chimerism studies. These results show that in vitro cultured leukemia-reactive CTL lines selected on their ability to inhibit the proliferation of leukemic progenitor cells in vitro can be successfully applied to treat accelerated phase CML after allogeneic SCT.
Collapse
MESH Headings
- Adult
- Cytotoxicity, Immunologic
- Female
- HLA Antigens/immunology
- Histocompatibility Testing
- Humans
- Immunotherapy, Adoptive
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology
- Leukemia, Myeloid, Accelerated Phase/immunology
- Leukemia, Myeloid, Accelerated Phase/physiopathology
- Leukemia, Myeloid, Accelerated Phase/therapy
- Lymphocyte Activation
- Remission Induction
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/transplantation
- Transplantation, Homologous
Collapse
|
Case Reports |
26 |
|