1
|
Karimi F, Zare N, Jahanshahi R, Arabpoor Z, Ayati A, Krivoshapkin P, Darabi R, Dragoi EN, Raja GG, Fakhari F, Karimi-Maleh H. Natural waste-derived nano photocatalysts for azo dye degradation. ENVIRONMENTAL RESEARCH 2023; 238:117202. [PMID: 37769832 DOI: 10.1016/j.envres.2023.117202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Due to their widespread application in water purification, there is a significant interest in synthesising nanoscale photocatalysts. Nanophotocatalysts are primarily manufactured through chemical methods, which can lead to side effects like pollution, high-energy usage, and even health issues. To address these issues, "green synthesis" was developed, which involves using plant extracts as reductants or capping agents rather than industrial chemical agents. Green fabrication has the benefits of costs less, pollution reduction, environmental protection and human health safety, compared to the traditional methods. This article summarises recent advances in the environmentally friendly synthesis of various nanophotocatalysts employed in the degradation of azo dyes. This study compiles critical findings on natural and artificial methods to achieve the goal. Green synthesis is constrained by the time and place of production and issues with low purity and poor yield, reflecting the complexity of plants' geographical and seasonal distributions and their compositions. However, green photocatalyst synthesis provides additional growth opportunities and potential uses.
Collapse
|
2
|
Karimi-Maleh H, Sanati AL, Darabi R. Nanomaterials in biomedicine, drug delivery and pharmaceutical analysis. ADMET AND DMPK 2023; 11:433-434. [PMID: 37937249 PMCID: PMC10626511 DOI: 10.5599/admet.2125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Indexed: 11/09/2023] Open
Abstract
After the introduction of nanotechnology as a new science, there were tremendous changes in its application. Nanomaterials rapidly penetrate a diverse area of biomedicine and pharmaceutical research, including drug development, drug delivery, tissue engineering and medicinal chemistry. Its versatile use helps in alleviating complex difficulties faced with drug administration and absorption, controlled release, targeted delivery and cellular uptake. Due to their distinctive physico-chemical properties and ability to form various solid-state formulations, they find increased use in the preparation of new drug formulations, imaging techniques and particularly in medicinal chemistry as catalysts for the sensitive determination of drugs and other biologically active compounds. The role of nanomaterials as catalysts in the preparation of substances with pharmacological properties, the preparation of sensors, or the degradation and removal of medicinal compounds polluting the environment is undeniable.
Collapse
|
3
|
Liu J, Gao Y, Zhang Z, Dang R, El Houda Tiri RN, MuhammedBekmezci, Bayat R, Darabi R, Sen F. Photocatalytic activity of TiO 2-ZnO/g-C 3N 4 nanocomposites for methylene orange and Rhodamine B dyes removal from water and photocatalytic hydrogen generation. CHEMOSPHERE 2023; 339:139426. [PMID: 37467853 DOI: 10.1016/j.chemosphere.2023.139426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/16/2023] [Accepted: 07/04/2023] [Indexed: 07/21/2023]
Abstract
In this work, for the removal of azo dyes that cause environmental pollution, TiO2-ZnO has been modified with graphitic carbon nitride (g-C3N4) to form an advanced hetero-linked photocatalyst. With this catalyst, photocatalytic hydrogen production and photodegradation activity against methylene orange (MO) and rhodamineB (RhB) dye removal were studied. The synthesized nanostructure was extensively characterized by several techniques such as XRD, TEM, UV-Vis and fluorescence spectrophotometer (PL) techniques. According to the analysis, a significant increase in the photocatalytic efficiency of TiO2-ZnO was determined after it was modified with g-C3N4 nanostructures. The combination between TiO2-ZnO and g-C3N4 was shown to be responsible for the improvement in photocatalytic activity because it significantly decreased electron-hole recombination. After 90 min the 62.81% of MO dye was removed but at 120 min only 57% of RhB was degraded. In addition, the antibacterial activity of TiO2-ZnO/g-C3N4 catalyst was carried out against gram positive and gram negatif bacteria. The bacterial inhibition (%) of TiO2-ZnO/g-C3N4 catalyst.was found to be 44 % against E. coli and 33 % against at 100 μg/ml concentration. In line with the analyzes obtained with this study, important results have been revealed for the application of photocatalytic methods in more industrial dimensions in the production of hydrogen, which is a valuable energy type.
Collapse
|
4
|
Zhang Z, Karimi-Maleh H, Wen Y, Darabi R, Wu T, Alostani P, Ghalkhani M. Nanohybrid of antimonene@Ti 3C 2T x-based electrochemical aptasensor for lead detection. ENVIRONMENTAL RESEARCH 2023; 233:116355. [PMID: 37329944 DOI: 10.1016/j.envres.2023.116355] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/21/2023] [Accepted: 06/06/2023] [Indexed: 06/19/2023]
Abstract
Lead ions (Pb2+), as one of many common heavy metallic environmental pollutants, can cause serious side-effects and result in chronic poisoning to people's health, so it is highly significant to monitor Pb2+ efficiently and sensitively. Here, we proposed an antimonene@Ti3C2Tx nanohybrid-based electrochemical aptamer sensor (aptasensor) for high sensitive Pb2+ determination. The sensing platform of nanohybrid was synthesized by ultrasonication, possessing the advantages of both antimonene and Ti3C2Tx, which not only can vastly enlarge the sensing signal of the proposed aptasensor, but also greatly simplified its manufacturing flow, because antimonene can strongly interact with aptamer through noncovalently bound. The surface morphology and microarchitecture of the nanohybrid were perused by several methods such as scanning electron microscope (SEM), energy-dispersive X-ray mapping spectroscopy (EDS), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and atomic force microscope (AFM). Under optimal empirical conditions, the proposed aptasensor exhibited a wide linear correlation of the current signals with the logarithm of CPb2+ (Log CPb2+) over the span from 1 × 10-12 to 1 × 10-7 M and provided a trace discernment limit of 3.3 × 10-13 M. Moreover, the constructed aptasensor displayed superior repeatability, great consistency, eminent selectivity, and beneficial reproducibility, implying its extreme potential application for water quality control and the environmental monitoring of Pb2+.
Collapse
|
5
|
Darabi R, Ghorbani-HasanSaraei A, Masoomzadeh S, Sefidan AM, Gulbagca F, Elhouda Tiri RN, Zghair Al-Khafaji AH, Altuner EE, Sen F, Davarnia B, Mortazavi SM. Enhanced photocatalytic performance of auto-combusted nanoparticles for photocatalytic degradation of azo dye under sunlight illumination and hydrogen fuel production. CHEMOSPHERE 2023:139266. [PMID: 37339707 DOI: 10.1016/j.chemosphere.2023.139266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/24/2023] [Accepted: 06/16/2023] [Indexed: 06/22/2023]
Abstract
In this study, an innovative nanomaterial was synthesized for hydrogen production from methanolysis on sodium borohydride (NaBH4) in order to be a solution for future energy problems. The nanocomposite containing FeCo, which does not contain noble metals, and whose support material is Polyvinylpyrrolidone (PVP), was synthesized by means of a thermal method. TEM, XRD and FTIR characterization methods were used for the analysis of the morphological and chemical structure of the nanocomposite. Nanocomposite particle size was 2.59 nm according to XRD and 5.45 nm according to TEM analysis for scale of 50 nm. For catalytic properties of nanomaterial in the methanolysis reaction of NaBH4, temperature, catalyst, substrate, and reusability experiments were carried out and kinetic calculations were obtained. Among the activation parameters of FeCo@PVP nanoparticles, turnover frequency, enthalpy, entropy and activation energy were calculated as 3858.9 min-1, 29.39 kJ/mol, -139.7 J/mol.K, and 31.93 kJ/mol, respectively. As a result of the reusability test of the obtained FeCo@PVP nanoparticles catalysts, which was carried out for 4 cycles, the catalytic activity was 77%. Catalytic activity results are given in comparison with the literature. In addition, the photocatalytic activity of FeCo@PVP NPs was evaluated against MB azo dye under solar light irradiation for 75 min and was found to be as 94%.
Collapse
|
6
|
Bekmezci M, Ozturk H, Akin M, Bayat R, Sen F, Darabi R, Karimi-Maleh H. Bimetallic Biogenic Pt-Ag Nanoparticle and Their Application for Electrochemical Dopamine Sensor. BIOSENSORS 2023; 13:bios13050531. [PMID: 37232892 DOI: 10.3390/bios13050531] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023]
Abstract
In this study, Silver-Platinum (Pt-Ag) bimetallic nanoparticles were synthesized by the biogenic reduction method using plant extracts. This reduction method offers a highly innovative model for obtaining nanostructures using fewer chemicals. According to this method, a structure with an ideal size of 2.31 nm was obtained according to the Transmission Electron Microscopy (TEM) result. The Pt-Ag bimetallic nanoparticles were characterized using Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffractometry (XRD), and Ultraviolet-Visible (UV-VIS) spectroscopy. For the electrochemical activity of the obtained nanoparticles in the dopamine sensor, electrochemical measurements were made with the Cyclic Voltammetry (CV) and Differential Pulse Voltammetry (DPV) methods. According to the results of the CV measurements taken, the limit of detection (LOD) was 0.03 µM and the limit of quantification (LOQ) was 0.11 µM. To investigate the antibacterial properties of the obtained Pt-Ag NPs, their antibacterial effects on Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) bacteria were investigated. In this study, it was observed that Pt-Ag NPs, which were successfully synthesized by biogenic synthesis using plant extract, exhibited high electrocatalytic performance and good antibacterial properties in the determination of dopamine (DA).
Collapse
|
7
|
Karimi-Maleh H, Liu Y, Li Z, Darabi R, Orooji Y, Karaman C, Karimi F, Baghayeri M, Rouhi J, Fu L, Rostamnia S, Rajendran S, Sanati AL, Sadeghifar H, Ghalkhani M. Calf thymus ds-DNA intercalation with pendimethalin herbicide at the surface of ZIF-8/Co/rGO/C 3N 4/ds-DNA/SPCE; A bio-sensing approach for pendimethalin quantification confirmed by molecular docking study. CHEMOSPHERE 2023; 332:138815. [PMID: 37146774 DOI: 10.1016/j.chemosphere.2023.138815] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/11/2023] [Accepted: 04/28/2023] [Indexed: 05/07/2023]
Abstract
Pendimethalin (PND) is a herbicide that is regarded to be possibly carcinogenic to humans and toxic to the environment. Herein, we fabricated a highly sensitive DNA biosensor based on ZIF-8/Co/rGO/C3N4 nanohybrid modification of a screen-printed carbon electrode (SPCE) to monitor PND in real samples. The layer-by-layer fabrication pathway was conducted to construct ZIF-8/Co/rGO/C3N4/ds-DNA/SPCE biosensor. The physicochemical characterization techniques confirmed the successful synthesis of ZIF-8/Co/rGO/C3N4 hybrid nanocomposite, as well as the appropriate modification of the SPCE surface. The utilization of ZIF-8/Co/rGO/C3N4 nanohybrid as a modifier was analyzed using. The electrochemical impedance spectroscopy results showed that the modified SPCE exhibited significantly lowered charge transfer resistance due to the enhancement of its electrical conductivity and facilitation of the transfer of charged particles. The proposed biosensor successfully quantified PND in a wide concentration range of 0.01-35 μM, with a limit of detection (LOD) value of 8.0 nM. The PND monitoring capability of the fabricated biosensor in real samples including rice, wheat, tap, and river water samples was verified with a recovery range of 98.2-105.6%. Moreover, to predict the interaction sites of PND herbicide with DNA, the molecular docking study was performed between the PND molecule and two sequence DNA fragments and confirmed the experimental findings. This research sets the stage for developing highly sensitive DNA biosensors that will be used to monitor and quantify toxic herbicides in real samples by fusing the advantages of nanohybrid structures with crucial knowledge from a molecular docking investigation.
Collapse
|
8
|
Ameen F, Hamidian Y, Mostafazadeh R, Darabi R, Erk N, Islam MA, Orfali R. A novel atropine electrochemical sensor based on silver nano particle-coated Spirulina platensis multicellular blue-green microalga. CHEMOSPHERE 2023; 324:138180. [PMID: 36812993 DOI: 10.1016/j.chemosphere.2023.138180] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/30/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
In this work, Atropine as the anticholinergic drug was measured using the environmentally friendly sensor. In this regard, Self-cultivated Spirulina platensis with electroless silver was employed as a powder amplifier in carbon paste electrode modification. Also, 1-Hexyl-3 methylimidazolium Hexafluorophosphate (HMIM PF6) ion liquid as a conductor binder was used in the suggested electrode construction. Atropine determination was investigated by voltammetry methods. According to voltammograms, the electrochemical behavior of atropine depends on pH, and pH 10.0 was used as the optimal condition. Moreover, the diffusion control process for the electro-oxidation of atropine was verified by the scan rate study, so the diffusion coefficient (D∼ 3.0136×10-4cm2/sec) value was computed from the chronoamperometry study. Furthermore, responses of the fabricated sensor were linear in the concentration range from 0.01 to 800 μM, and the lowest detection limit of the Atropine determination was obtained at 5 nM. Moreover, the stability, reproducibility, and selectivity factors of the suggested sensor were confirmed by the results. Finally, the recovery percentages for atropine sulfate ampoule (94.48-101.58), and water (98.01-101.3) approve of the applicability of the proposed sensor to Atropine determination in real samples.
Collapse
|
9
|
Karimi-Maleh H, Darabi R, Karimi F, Karaman C, Shahidi SA, Zare N, Baghayeri M, Fu L, Rostamnia S, Rouhi J, Rajendran S. State-of-art advances on removal, degradation and electrochemical monitoring of 4-aminophenol pollutants in real samples: A review. ENVIRONMENTAL RESEARCH 2023; 222:115338. [PMID: 36702186 DOI: 10.1016/j.envres.2023.115338] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/26/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
p_Aminophenol, namely 4-aminophenol (4-AP), is an aromatic compound including hydroxyl and amino groups contiguous together on the benzene ring, which are suitable chemically reactive, amphoteric, and alleviating agents in nature. Amino phenols are appropriate precursors for synthesizing oxazoles and oxazines. However, since the toxicity of aniline and phenol can harm human and herbal organs, it is essential to improve a reliable technique for the determination of even a trace amount of amino phenols, as well as elimination or (bio)degradation/photodegradation of it to protect both the environment and people's health. For this purpose, various analytical methods have been suggested up till now, including spectrophotometry, liquid chromatography, spectrofluorometric and capillary electrophoresis, etc. However, some drawbacks such as the requirement of complex instruments, high costs, not being portable, slow response time, low sensitivity, etc. prevent them to be employed in a wide range and swift in-situ applications. In this regard, besides the efforts such as (bio)degradation/photodegradation or removal of 4-AP pollutants from real samples, electroanalytical techniques have become a promising alternative for monitoring them with high sensitivity. In this review, it was aimed to emphasize and summarize the recent advances, challenges, and opportunities for removal, degradation, and electrochemical sensing 4-AP in real samples. Electroanalytical monitoring of amino phenols was reviewed in detail and explored the various types of electrochemical sensors applied for detecting and monitoring in real samples. Furthermore, the various technique of removal and degradation of 4-AP in industrial and urban wastes were also deliberated. Moreover, deep criticism of multifunctional nanomaterials to be utilized as a catalyst, adsorbent/biosorbent, and electroactive material for the fabrication of electrochemical sensors was covered along with their unique properties. Future perspectives and conclusions were also criticized to pave the way for further studies in the field of application of up-and-coming nanostructures in environmental applications.
Collapse
|
10
|
Ameen F, Karimi-Maleh H, Darabi R, Akin M, Ayati A, Ayyildiz S, Bekmezci M, Bayat R, Sen F. Synthesis and characterization of activated carbon supported bimetallic Pd based nanoparticles and their sensor and antibacterial investigation. ENVIRONMENTAL RESEARCH 2023; 221:115287. [PMID: 36640937 DOI: 10.1016/j.envres.2023.115287] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/20/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Activated carbon (AC) supported palladium cobalt bimetallic nanoparticles (PdCo@AC NPs) were obtained by green synthesis method using Cinnamomum verum (C. Verum) extract. The obtained NPs were characterized by Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Crystallography (XRD), Transmission Electron Microscope (TEM) and Ultraviolet Visible (UV-VIS) spectroscopy, and the functional groups and morphology of the nanoparticle were elucidated. The resulting particle size was found to be 2.467 nm. NPs were evaluated using Cyclic Voltammetry (CV), Scan Rate (SR), and Differential Pulse Voltammetry (DPV) techniques for potential dopamine sensors application. According to the obtained DPV results, Limit of Detection (LOD) and Limit of Quantitation (LOQ) values are found to be 5.68 pM and 17.21 pM, respectively. It was also observed that AC supported PdCo nanoparticles obtained from C. verum extract sensed dopamine quite well. Besides, to examine the antibacterial properties of NPs, antibacterial analyzes were performed with Escherichia coli (E. Coli) and Staphylococcus aureus (S. Aureus). It was observed that it showed good antibacterial properties against gram positive (S. aureus) and gram negative (E. coli) bacteria. The study gave important results in terms of the synthesis of bimetallic NPs using the green synthesis method and their usability in different areas. With this study, it was observed that a good antibacterial dopamine sensor were obtained with the successful biogenic synthesis of AC supported PdCo bimetallic NPs.
Collapse
|
11
|
Karimi F, Akin M, Bayat R, Bekmezci M, Darabi R, Aghapour E, Sen F. Application of Quasihexagonal Pt@PdS2-MWCNT catalyst with High Electrochemical Performance for Electro-Oxidation of Methanol, 2-Propanol, and Glycerol Alcohols For Fuel Cells. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
12
|
Karimi-Maleh H, Darabi R, Shabani-Nooshabadi M, Baghayeri M, Karimi F, Rouhi J, Alizadeh M, Karaman O, Vasseghian Y, Karaman C. Determination of D&C Red 33 and Patent Blue V Azo dyes using an impressive electrochemical sensor based on carbon paste electrode modified with ZIF-8/g-C 3N 4/Co and ionic liquid in mouthwash and toothpaste as real samples. Food Chem Toxicol 2022; 162:112907. [PMID: 35271984 DOI: 10.1016/j.fct.2022.112907] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/22/2022] [Accepted: 03/05/2022] [Indexed: 12/17/2022]
Abstract
Synthetic azo dyes are widely used in a variety of industries, but many of them pose a risk to human health, particularly when consumed in large quantities. As a result, their existence in products should be closely monitored. D&C red 33 and Patent Blue V are mostly used in cosmetics, especially in toothpaste and mouthwashes. A novel carbon paste electrode modified with ZIF-8/g-C3N4/Co nanocomposite and 1-methyl-3-butylimidazolium bromide as an ionic liquid was employed as a highly sensitive reproducible electrochemical sensor for the simultaneous determination of these common dyes. ZIF structure has unique properties such as high surface area, suitable conductivity, and excellent porosity. The electrochemical behavior of the suggested electrode was investigated by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). To characterize the synthesized nanocomposites, scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were applied to investigate the structure of nanocomposites. Under the optimized conditions, the modified sensor offered a wide linear concentration range 0.08-10 μM (R2 = 0.9906) and 10-900 μM (R2 = 0.9932) with a low limit of detection of 0.034 μM. The value of diffusion coefficient (D), and the electron transfer coefficient (α) was calculated to be 310 × 10-5, and 0.9 respectively. This technique offered a successful performance for the determination of target analyte in the real samples with acceptable results between 96% and 107%.
Collapse
|
13
|
Orooji Y, Tanhaei B, Ayati A, Tabrizi SH, Alizadeh M, Bamoharram FF, Karimi F, Salmanpour S, Rouhi J, Afshar S, Sillanpää M, Darabi R, Karimi-Maleh H. Heterogeneous UV-Switchable Au nanoparticles decorated tungstophosphoric acid/TiO 2 for efficient photocatalytic degradation process. CHEMOSPHERE 2021; 281:130795. [PMID: 34022601 DOI: 10.1016/j.chemosphere.2021.130795] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
In the present study, gold nanoparticles were locally well-decorated on the surface of TiO2 using the tungstophosphoric acid (HPW), as UV-switchable reducing intermediate linkers. The prepared Au NPs/HPW/TiO2 nanostructure was characterized using FTIR, XRD, EDS, SEM and TEM, which confirmed the successful attachment of quasi-spherical Au NPs in the range of 20-30 nm on the surface of HPW modified TiO2. Also, the FTIR results show that the Au NPs were binded to TiO2 through the terminal the oxygen atoms HPW. The photocatalytic performance of prepared nanostructures was assessed in degradation of nitrobenzene. The nitrobenzene photodegradation kinetic study revealed that it well followed the Langmuir-Hinshelwood kinetic model with the apparent rate constant of 0.001 min-1 using anatase TiO2, 0.0004 min-1 using HPW, 0.0014 using HPW/TiO2, while it was obtained 0.0065 min-1 using Au NPs@HPW/TiO2 nanostructure. It shows that the photocatalytic rate of the prepared nanocomposites increased by 6.5- and 4.6-fold compared to photoactivity of anatase TiO2 and HPW/TiO2 respectively. Also, the photocatalytic mechanism of process was proposed. Moreover, the reusability study confirmed that its photocatalytic activity still remained high after three cycles.
Collapse
|
14
|
Sadrnia A, Orooji Y, Behmaneshfar A, Darabi R, Maghsoudlou Kamali D, Karimi-Maleh H, Opoku F, Govender PP. Developing a simple box-behnken experimental design on the removal of doxorubicin anticancer drug using Fe 3O 4/graphene nanoribbons adsorbent. ENVIRONMENTAL RESEARCH 2021; 200:111522. [PMID: 34129863 DOI: 10.1016/j.envres.2021.111522] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/30/2021] [Accepted: 06/05/2021] [Indexed: 06/12/2023]
Abstract
This paper aims to develop a Box-Behnken experimental design system to optimize the removal process of doxorubicin anticancer drugs. For this goal, Fe3O4/graphene nanoribbons was selected as adsorbent and removal of doxorubicin anticancer drug optimized using Box-Behnken experimental design with a selection of four effective factors. A three-level, four-factor Box-Behnken experimental design was used to assess the relationship between removal percentage as a dependent variable with adsorption weight (0.0015-0.01 mg), pH (3-9), temperature (15-45 °C) and time (1-15 min) as independent variables. Optimized condition by Behnken experimental design (pH = 7.36; time = 15 min; adsorbent weight = 0.01 mg and temperature = 29.26 °C) improved removal of doxorubicin anticancer drug about 99.2% in aqueous solution. The dynamic behavior, adsorption properties and mechanism of doxorubicin molecule on Fe3O4/graphene nanoribbon were investigated based on ab initio molecular dynamics (AIMD) simulations and density functional theory calculations with dispersion corrections. A closer inspection of the adsorption configurations and binding energies revealed that π-π interactions were the driving force when the doxorubicin molecule adsorbed on Fe3O4/graphene nanoribbon. The observed negative adsorption energy signifies a favourable and exothermic adsorption process of the various adsorbate-substrate systems. Besides, AIMD and phonon dispersion calculations confirm the dynamic stability of Fe3O4/graphene nanoribbon.
Collapse
|
15
|
Darabi R, Shabani-Nooshabadi M, Karimi-Maleh H, Gholami A. The potential of electrochemistry for one-pot and sensitive analysis of patent blue V, tartrazine, acid violet 7 and ponceau 4R in foodstuffs using IL/Cu-BTC MOF modified sensor. Food Chem 2021; 368:130811. [PMID: 34399177 DOI: 10.1016/j.foodchem.2021.130811] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/25/2021] [Accepted: 08/05/2021] [Indexed: 12/17/2022]
Abstract
Since excessive use of synthetic dyes has negative effects on human health, their determination in foodstuff is necessary. A sensitive sensor was developed based on copper BTC metal-organic framework (Cu-BTC MOF) and 1-ethyl-3-methylimidazolium chloride as an ionic liquid (IL) in an attempt to modify the carbon paste electrode and to improve the active surface area and electric conductivity so that electron transfer is faster for electro analysis. For the first time, high sensitivity, excellent conductivity, and appropriate selectivity of the electrochemical sensor have been evaluated as a new study for simultaneous determination of tartrazine, patent blue V, acid violet 7 and ponceau 4R. Excellent sensing performance of the proposed electrode was confirmed for patent blue V as an outstanding sensor, according to the low limit of detection of 0.07 µM, with a wide linear concentration range of 0.08 to 900 µM and reasonable recovery. In order to characterize the electrochemical behavior of electrode, cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy are used. Various techniques such as scanning electron microscopy (SEM) with energy dispersive X-Ray analysis (EDX), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR) are employed to verify the structure of copper BTC metal-organic framework. The results revealed close packing of hierarchically porous nanoparticles and crystal structure of Cu-BTC MOF, with the edge of each particle around 20-37 nm. The analytical performance of the suggested electrochemical sensor is acceptable in foodstuffs such as jellies, condiments, soft drinks, and candies.
Collapse
|
16
|
Karimi-Maleh H, Mousavi SJ, Mahdavian M, Khaleghi M, Bordbar S, Yola ML, Darabi R, Liu M. Effects of silver nanoparticles added into polyurea coating on sulfate-reducing bacteria activity and electrochemical properties; an environmental nano-biotechnology investigation. ENVIRONMENTAL RESEARCH 2021; 198:111251. [PMID: 33933494 DOI: 10.1016/j.envres.2021.111251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/16/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
In the present work, Ag nanoparticles were added to polyurea coating in order to improve its antibacterial and electrochemical properties in sulfide-reducing bacteria-containing media. To this end, Ag nano-powder was mixed with two component polyuria, and then the antibacterial behavior of the nanocomposite coating was studied in sulfate-reducing bacteria (SRB)-containing medium. The results revealed the inhibitory effects of nanocomposite coating on the formation of SRB biofilms on the samples. Moreover, the SRB population decreased in contact with the Ag nanoparticles-mixed coating over 7 days. Investigation of the growth and activity of the bacteria represented the effective antibacterial properties of Ag nanoparticles in the polyurea matrix. Furthermore, EIS (electrochemical impedance spectroscopy) measurements indicated that the corrosion properties of the nanocomposite coating improved considerably over 7 days. The coating resistance increased 2 times by adding Ag nanoparticles after 1 day and 3.3 times after 7 days. In accordance with the same results, the charge transfer resistance increased 1.5 times and 1.1 times by adding Ag nanoparticles after 1 day and 7 days, respectively. The improvement in the protective properties of the nanocomposite coating are reflected in the increase in both film and charge transfer resistance.
Collapse
|
17
|
Darabi R, Shabani-Nooshabadi M. NiFe2O4-rGO/ionic liquid modified carbon paste electrode: An amplified electrochemical sensitive sensor for determination of Sunset Yellow in the presence of Tartrazine and Allura Red. Food Chem 2021; 339:127841. [DOI: 10.1016/j.foodchem.2020.127841] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 01/10/2023]
|
18
|
Falahati M, Golmohammadi F, Darabi R, jafari M. Evaluation of Temporomandibular Joint Disorders and Related Factors in Patients Referring to Dental School of Isfahan Islamic Azad University in 2019. JOURNAL OF RESEARCH IN DENTAL AND MAXILLOFACIAL SCIENCES 2020. [DOI: 10.29252/jrdms.5.3.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|