1
|
Deng H, Liu R, Ellmeier W, Choe S, Unutmaz D, Burkhart M, Di Marzio P, Marmon S, Sutton RE, Hill CM, Davis CB, Peiper SC, Schall TJ, Littman DR, Landau NR. Identification of a major co-receptor for primary isolates of HIV-1. Nature 1996; 381:661-6. [PMID: 8649511 DOI: 10.1038/381661a0] [Citation(s) in RCA: 2782] [Impact Index Per Article: 95.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Entry of HIV-1 into target cells requires cell-surface CD4 and additional host cell cofactors. A cofactor required for infection with virus adapted for growth in transformed T-cell lines was recently identified and named fusin. However, fusin does not promote entry of macrophage-tropic viruses, which are believed to be the key pathogenic strains in vivo. The principal cofactor for entry mediated by the envelope glycoproteins of primary macrophage-tropic strains of HIV-1 is CC-CKR-5, a receptor for the beta-chemokines RANTES, MIP-1alpha and MIP-1beta.
Collapse
|
|
29 |
2782 |
2
|
Liu R, Paxton WA, Choe S, Ceradini D, Martin SR, Horuk R, MacDonald ME, Stuhlmann H, Koup RA, Landau NR. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 1996; 86:367-77. [PMID: 8756719 DOI: 10.1016/s0092-8674(00)80110-5] [Citation(s) in RCA: 2189] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Rare individuals have been multiply exposed to HIV-1 but remain uninfected. The CD4+ T-cells of two of these individuals, designated EU2 and EU3, are highly resistant in vitro to the entry of primary macrophagetropic virus but are readily infectable with transformed T-cell line adapted viruses. We report here on the genetic basis of this resistance. We found that EU2 and EU3 have a homozygous defect in CKR-5, the gene encoding the recently described coreceptor for primary HIV-1 isolates. These individuals appear to have inherited a defective CKR-5 allele that contains an internal 32 base pair deletion. The encoded protein is severely truncated and cannot be detected at the cell surface. Surprisingly, this defect has no obvious phenotype in the affected individuals. Thus, a CKR-5 allele present in the human population appears to protect homozygous individuals from sexual transmission of HIV-1. Heterozygous individuals are quite common (approximately 20%) in some populations. These findings indicate the importance of CKR-5 in HIV-1 transmission and suggest that targeting the HIV-1-CKR-5 interaction may provide a means of preventing or slowing disease progression.
Collapse
|
|
29 |
2189 |
3
|
Wang CY, Cusack JC, Liu R, Baldwin AS. Control of inducible chemoresistance: enhanced anti-tumor therapy through increased apoptosis by inhibition of NF-kappaB. Nat Med 1999; 5:412-7. [PMID: 10202930 DOI: 10.1038/7410] [Citation(s) in RCA: 610] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Programmed cell death (apoptosis) seems to be the principal mechanism whereby anti-oncogenic therapies such as chemotherapy and radiation effect their responses. Resistance to apoptosis, therefore, is probably a principal mechanism whereby tumors are able to overcome these cancer therapies. The transcription factor NF-kappaB is activated by chemotherapy and by irradiation in some cancer cell lines. Furthermore, inhibition of NF-kappaB in vitro leads to enhanced apoptosis in response to a variety of different stimuli. We show here that inhibition of NF-kappaB through the adenoviral delivery of a modified form of IkappaBalpha, the inhibitor of NF-kappaB, sensitizes chemoresistant tumors to the apoptotic potential of TNFalpha and of the chemotherapeutic compound CPT-11, resulting in tumor regression. These results demonstrate that the activation of NF-kappaB in response to chemotherapy is a principal mechanism of inducible tumor chemoresistance, and establish the inhibition of NF-kappaB as a new approach to adjuvant therapy in cancer treatment.
Collapse
|
|
26 |
610 |
4
|
Wang J, Liu R, Hawkins M, Barzilai N, Rossetti L. A nutrient-sensing pathway regulates leptin gene expression in muscle and fat. Nature 1998; 393:684-8. [PMID: 9641678 DOI: 10.1038/31474] [Citation(s) in RCA: 559] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Leptin, the protein encoded by the obese (ob) gene, is synthesized and released in response to increased energy storage in adipose tissue. However, it is still not known how incoming energy is sensed and transduced into increased expression of the ob gene. The hexosamine biosynthetic pathway is a cellular 'sensor' of energy availability and mediates the effects of glucose on the expression of several gene products. Here we provide evidence for rapid activation of ob gene expression in skeletal muscle by glucosamine. Increased tissue concentrations of the end product of the hexosamine biosynthetic pathway, UDP-N-acetylglucosamine (UDP-GlcNAc), result in rapid and marked increases in leptin messenger RNA and protein levels (although these levels were much lower than those in fat). Plasma leptin levels and leptin mRNA and protein levels in adipose tissue also increase. Most important, stimulation of leptin synthesis is reproduced by either hyperglycaemia or hyperlipidaemia, which also increase tissue levels of UDP-N-acetylglucosamine in conscious rodents. Finally, incubation of 3T3-L1 pre-adipocytes and L6 myocytes with glucosamine rapidly induces ob gene expression. Our findings are the first evidence of inducible leptin expression in skeletal muscle and unveil an important biochemical link between increased availability of nutrients and leptin expression.
Collapse
|
|
27 |
559 |
5
|
Tortorella MD, Burn TC, Pratta MA, Abbaszade I, Hollis JM, Liu R, Rosenfeld SA, Copeland RA, Decicco CP, Wynn R, Rockwell A, Yang F, Duke JL, Solomon K, George H, Bruckner R, Nagase H, Itoh Y, Ellis DM, Ross H, Wiswall BH, Murphy K, Hillman MC, Hollis GF, Newton RC, Magolda RL, Trzaskos JM, Arner EC. Purification and cloning of aggrecanase-1: a member of the ADAMTS family of proteins. Science 1999; 284:1664-6. [PMID: 10356395 DOI: 10.1126/science.284.5420.1664] [Citation(s) in RCA: 500] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We purified, cloned, and expressed aggrecanase, a protease that is thought to be responsible for the degradation of cartilage aggrecan in arthritic diseases. Aggrecanase-1 [a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS-4)] is a member of the ADAMTS protein family that cleaves aggrecan at the glutamic acid-373-alanine-374 bond. The identification of this protease provides a specific target for the development of therapeutics to prevent cartilage degradation in arthritis.
Collapse
|
Comment |
26 |
500 |
6
|
Tuo QZ, Lei P, Jackman KA, Li XL, Xiong H, Li XL, Liuyang ZY, Roisman L, Zhang ST, Ayton S, Wang Q, Crouch PJ, Ganio K, Wang XC, Pei L, Adlard PA, Lu YM, Cappai R, Wang JZ, Liu R, Bush AI. Tau-mediated iron export prevents ferroptotic damage after ischemic stroke. Mol Psychiatry 2017; 22:1520-1530. [PMID: 28886009 DOI: 10.1038/mp.2017.171] [Citation(s) in RCA: 493] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/20/2017] [Accepted: 07/06/2017] [Indexed: 02/05/2023]
Abstract
Functional failure of tau contributes to age-dependent, iron-mediated neurotoxicity, and as iron accumulates in ischemic stroke tissue, we hypothesized that tau failure may exaggerate ischemia-reperfusion-related toxicity. Indeed, unilateral, transient middle cerebral artery occlusion (MCAO) suppressed hemispheric tau and increased iron levels in young (3-month-old) mice and rats. Wild-type mice were protected by iron-targeted interventions: ceruloplasmin and amyloid precursor protein ectodomain, as well as ferroptosis inhibitors. At this age, tau-knockout mice did not express elevated brain iron and were protected against hemispheric reperfusion injury following MCAO, indicating that tau suppression may prevent ferroptosis. However, the accelerated age-dependent brain iron accumulation that occurs in tau-knockout mice at 12 months of age negated the protective benefit of tau suppression against MCAO-induced focal cerebral ischemia-reperfusion injury. The protective benefit of tau knockout was revived in older mice by iron-targeting interventions. These findings introduce tau-iron interaction as a pleiotropic modulator of ferroptosis and ischemic stroke outcome.
Collapse
|
|
8 |
493 |
7
|
Abstract
Most theories of the origin of biological organization assume that polymers with lengths in the range of 30-60 monomers are needed to make a genetic system viable. But it has not proved possible to synthesize plausibly prebiotic polymers this long by condensation in aqueous solution, because hydrolysis competes with polymerization. The potential of mineral surfaces to facilitate prebiotic polymerization was pointed out long ago. Here we describe a system that models prebiotic polymerization by the oligomerization of activated monomers--both nucleotides and amino acids. We find that whereas the reactions in solution produce only short oligomers (the longest typically being a 10-mer), the presence of mineral surfaces (montmorillonite for nucleotides, illite and hydroxylapatite for amino acids) induces the formation of oligomers up to 55 monomers long. These are formed by successive 'feedings' with the monomers; polymerization takes place on the mineral surfaces in a manner akin to solid-phase synthesis of biopolymers.
Collapse
|
|
29 |
492 |
8
|
Abstract
The possibility of cloaking an object from detection by electromagnetic waves has recently become a topic of considerable interest. The design of a cloak uses transformation optics, in which a conformal coordinate transformation is applied to Maxwell's equations to obtain a spatially distributed set of constitutive parameters that define the cloak. Here, we present an experimental realization of a cloak design that conceals a perturbation on a flat conducting plane, under which an object can be hidden. To match the complex spatial distribution of the required constitutive parameters, we constructed a metamaterial consisting of thousands of elements, the geometry of each element determined by an automated design process. The ground-plane cloak can be realized with the use of nonresonant metamaterial elements, resulting in a structure having a broad operational bandwidth (covering the range of 13 to 16 gigahertz in our experiment) and exhibiting extremely low loss. Our experimental results indicate that this type of cloak should scale well toward optical wavelengths.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
16 |
362 |
9
|
Dimidschstein J, Chen Q, Tremblay R, Rogers SL, Saldi GA, Guo L, Xu C, Liu R, Lu C, Chu J, Avery MC, Rashid SM, Baek M, Jacob AL, Smith GB, Wilson DE, Kosche G, Kruglikov I, Rusielewicz T, Kotak VC, Mowery TM, Anderson SA, Callaway EM, Dasen JS, Fitzpatrick D, Fossati V, Long MA, Noggle S, Reynolds JH, Sanes DH, Rudy B, Feng G, Fishell G. A viral strategy for targeting and manipulating interneurons across vertebrate species. Nat Neurosci 2016; 19:1743-1749. [PMID: 27798629 PMCID: PMC5348112 DOI: 10.1038/nn.4430] [Citation(s) in RCA: 359] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 09/27/2016] [Indexed: 12/11/2022]
Abstract
A fundamental impediment to understanding the brain is the availability of inexpensive and robust methods for targeting and manipulating specific neuronal populations. The need to overcome this barrier is pressing because there are considerable anatomical, physiological, cognitive and behavioral differences between mice and higher mammalian species in which it is difficult to specifically target and manipulate genetically defined functional cell types. In particular, it is unclear the degree to which insights from mouse models can shed light on the neural mechanisms that mediate cognitive functions in higher species, including humans. Here we describe a novel recombinant adeno-associated virus that restricts gene expression to GABAergic interneurons within the telencephalon. We demonstrate that the viral expression is specific and robust, allowing for morphological visualization, activity monitoring and functional manipulation of interneurons in both mice and non-genetically tractable species, thus opening the possibility to study GABAergic function in virtually any vertebrate species.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
359 |
10
|
Olson CG, Liu R, Yang AB, Lynch DW, Arko AJ, List RS, Veal BW, Chang YC, Jiang PZ, Paulikas AP. Superconducting Gap in Bi-Sr-Ca-Cu-O by High-Resolution Angle-Resolved Photoelectron Spectroscopy. Science 1989; 245:731-3. [PMID: 17791711 DOI: 10.1126/science.245.4919.731] [Citation(s) in RCA: 354] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Detailed studies indicate a superconducting gap in the high-temperature superconductor Bi(2)Sr(2)CaCu(2)O(8). Photoemission measurements with high energy and angle resolution isolate the behavior of a single band as it crosses the Fermi level in both the normal and superconducting states, giving support to the Fermi liquid picture. The magnitude of the gap is 24 millielectron volts.
Collapse
|
|
36 |
354 |
11
|
Xu W, Chi L, Row BW, Xu R, Ke Y, Xu B, Luo C, Kheirandish L, Gozal D, Liu R. Increased oxidative stress is associated with chronic intermittent hypoxia-mediated brain cortical neuronal cell apoptosis in a mouse model of sleep apnea. Neuroscience 2004; 126:313-23. [PMID: 15207349 DOI: 10.1016/j.neuroscience.2004.03.055] [Citation(s) in RCA: 294] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2004] [Indexed: 12/28/2022]
Abstract
Chronic intermittent hypoxia (CIH), as occurs in obstructive sleep apnea (SA), is associated with substantial cortico-hippocampal damage leading to impairments of neurocognitive, respiratory and cardiovascular functions. Previous studies in a rat model have shown that CIH increases brain cortical neuronal cell death. However, the molecular events leading to CIH-mediated neuronal cell death remain largely undefined. The oscillation of O2 concentrations during CIH remarkably mimics the processes of ischemia/re-oxygenation and could therefore increase cellular production of reactive oxygen species (ROS). We extended the CIH paradigm to a mouse model of SA to identify the molecular mechanisms underlying cortical neuronal cell death. A significant increase of ROS production in mouse brain cortex and cortical neuronal cells was detected by fluorescent oxidation assays upon exposure of mice to CIH, followed by increased expression of oxidative stress response markers, c-Fos, c-Jun and NF-kappaB in mouse brain cortex, as revealed by immunohistochemical and LacZ reporter assays respectively. Long-term exposure of mice to CIH increased the levels of protein oxidation, lipid peroxidation and nucleic acid oxidation in mouse brain cortex. Furthermore, exposure of mice to CIH induced caspase-3 activation and increased some cortical neuronal cell apoptosis. On the other hand, transgenic mice overexpressing Cu,Zn-superoxide dismutase exposed to CIH conditions had a lower level of steady-state ROS production and reduced neuronal apoptosis in brain cortex compared with that of normal control mice. Taken together, these findings suggest that the increased ROS production and oxidative stress propagation contribute, at least partially, to CIH-mediated cortical neuronal apoptosis and neurocognitive dysfunction.
Collapse
|
|
21 |
294 |
12
|
Lam FC, Liu R, Lu P, Shapiro AB, Renoir JM, Sharom FJ, Reiner PB. beta-Amyloid efflux mediated by p-glycoprotein. J Neurochem 2001; 76:1121-8. [PMID: 11181832 DOI: 10.1046/j.1471-4159.2001.00113.x] [Citation(s) in RCA: 287] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A large body of evidence suggests that an increase in the brain beta-amyloid (Abeta) burden contributes to the etiology of Alzheimer's disease (AD). Much is now known about the intracellular processes regulating the production of Abeta, however, less is known regarding its secretion from cells. We now report that p-glycoprotein (p-gp), an ATP-binding cassette (ABC) transporter, is an Abeta efflux pump. Pharmacological blockade of p-gp rapidly decrease extracellular levels of Abeta secretion. In vitro binding studies showed that addition of synthetic human Abeta1-40 and Abeta1-42 peptides to hamster mdr1-enriched vesicles labeled with the fluorophore MIANS resulted in saturable quenching, suggesting that both peptides interact directly with the transporter. Finally, we were able to directly measure transport of Abeta peptides across the plasma membranes of p-gp enriched vesicles, and showed that this phenomenon was both ATP- and p-gp-dependent. Taken together, our study suggests a novel mechanism of Abeta detachment from cellular membranes, and represents an obvious route towards identification of such a mechanism in the brain.
Collapse
|
|
24 |
287 |
13
|
Abstract
The mammalian BAF complex regulates gene expression by modifying chromatin structure. In this report, we identify 80 genes activated and 2 genes repressed by the BAF complex in SW-13 cells. We find that prior binding of NFI/CTF to the NFI/CTF binding site in CSF1 promoter is required for the recruitment of the BAF complex and the BAF-dependent activation of the promoter. Furthermore, the activation of the CSF1 promoter requires Z-DNA-forming sequences that are converted to Z-DNA structure upon activation by the BAF complex. The BAF complex facilitates Z-DNA formation in a nucleosomal template in vitro. We propose a model in which the BAF complex promotes Z-DNA formation which, in turn, stabilizes the open chromatin structure at the CSF1 promoter.
Collapse
|
|
24 |
273 |
14
|
Russo SM, Tepper JE, Baldwin AS, Liu R, Adams J, Elliott P, Cusack JC. Enhancement of radiosensitivity by proteasome inhibition: implications for a role of NF-kappaB. Int J Radiat Oncol Biol Phys 2001; 50:183-93. [PMID: 11316563 DOI: 10.1016/s0360-3016(01)01446-8] [Citation(s) in RCA: 262] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE NF-kappaB is activated by tumor necrosis factor, certain chemotherapeutic agents, and ionizing radiation, leading to inhibition of apoptosis. NF-kappaB activation is regulated by phosphorylation of IkappaB inhibitor molecules that are subsequently targeted for degradation by the ubiquitin-proteasome pathway. PS-341 is a specific and selective inhibitor of the proteasome that inhibits NF-kappaB activation and enhances cytotoxic effects of chemotherapy in vitro and in vivo. The objective of this study was to determine if proteasome inhibition leads to enhanced radiation sensitivity. METHODS AND MATERIALS Inhibition of NF-kappaB activation in colorectal cancer cells was performed by treatment of LOVO cells with PS-341 or infection with an adenovirus encoding IkappaB super-repressor, a selective NF-kappaB inhibitor. Cells were irradiated at 0, 2, 4, 6, 8, and 10 Gy with or without inhibition of NF-kappaB. NF-kappaB activation was determined by electrophoretic mobility gel shift assay, and apoptosis was evaluated using the TUNEL assay. Growth and clonogenic survival data were obtained to assess effects of treatment on radiosensitization. In vitro results were tested in vivo using a LOVO xenograft model. RESULTS NF-kappaB activation was induced by radiation and inhibited by pretreatment with either PS-341 or IkappaBalpha super-repressor in all cell lines. Inhibition of radiation-induced NF-kappaB activation resulted in increased apoptosis and decreased cell growth and clonogenic survival. A 7-41% increase in radiosensitivity was observed for cells treated with PS-341 or IkappaBalpha. An 84% reduction in initial tumor volume was obtained in LOVO xenografts receiving radiation and PS-341. CONCLUSIONS Inhibition of NF-kappaB activation increases radiation-induced apoptosis and enhances radiosensitivity in colorectal cancer cells in vitro and in vivo. Results are encouraging for the use of PS-341 as a radiosensitizing agent in the treatment of colorectal cancer.
Collapse
|
|
24 |
262 |
15
|
Cooper SL, Reznik D, Kotz A, Karlow MA, Liu R, Klein MV, Lee WC, Giapintzakis J, Ginsberg DM, Veal BW, Paulikas AP. Optical studies of the a-, b-, and c-axis charge dynamics in YBa2Cu3O6+x. PHYSICAL REVIEW. B, CONDENSED MATTER 1993; 47:8233-8248. [PMID: 10004836 DOI: 10.1103/physrevb.47.8233] [Citation(s) in RCA: 253] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
|
32 |
253 |
16
|
Malcolm BA, Liu R, Lahser F, Agrawal S, Belanger B, Butkiewicz N, Chase R, Gheyas F, Hart A, Hesk D, Ingravallo P, Jiang C, Kong R, Lu J, Pichardo J, Prongay A, Skelton A, Tong X, Venkatraman S, Xia E, Girijavallabhan V, Njoroge FG. SCH 503034, a mechanism-based inhibitor of hepatitis C virus NS3 protease, suppresses polyprotein maturation and enhances the antiviral activity of alpha interferon in replicon cells. Antimicrob Agents Chemother 2006; 50:1013-20. [PMID: 16495264 PMCID: PMC1426438 DOI: 10.1128/aac.50.3.1013-1020.2006] [Citation(s) in RCA: 249] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2005] [Revised: 10/04/2005] [Accepted: 12/30/2005] [Indexed: 12/14/2022] Open
Abstract
Cleavage of the hepatitis C virus (HCV) polyprotein by the viral NS3 protease releases functional viral proteins essential for viral replication. Recent studies by Foy and coworkers strongly suggest that NS3-mediated cleavage of host factors may abrogate cellular response to alpha interferon (IFN-alpha) (E. Foy, K. Li, R. Sumpter, Jr., Y.-M. Loo, C. L. Johnson, C. Wang, P. M. Fish, M. Yoneyama, T. Fujita, S. M. Lemon, and M. Gale, Jr., Proc. Natl. Acad. Sci. USA 102:2986-2991, 2005, and E. Foy, K. Li, C. Wang, R. Sumpter, Jr., M. Ikeda, S. M. Lemon, and M. Gale, Jr., Science 300:1145-1148, 2003). Blockage of NS3 protease activity therefore is expected to inhibit HCV replication by both direct suppression of viral protein production as well as by restoring host responsiveness to IFN. Using structure-assisted design, a ketoamide inhibitor, SCH 503034, was generated which demonstrated potent (overall inhibition constant, 14 nM) time-dependent inhibition of the NS3 protease in cell-free enzyme assays as well as robust in vitro activity in the HCV replicon system, as monitored by immunofluorescence and real-time PCR analysis. Continuous exposure of replicon-bearing cell lines to six times the 90% effective concentration of SCH 503034 for 15 days resulted in a greater than 4-log reduction in replicon RNA. The combination of SCH 503034 with IFN was more effective in suppressing replicon synthesis than either compound alone, supporting the suggestion of Foy and coworkers that combinations of IFN with protease inhibitors would lead to enhanced therapeutic efficacy.
Collapse
|
research-article |
19 |
249 |
17
|
Liu R, Zhou JL, Wilding A. Simultaneous determination of endocrine disrupting phenolic compounds and steroids in water by solid-phase extraction–gas chromatography–mass spectrometry. J Chromatogr A 2004; 1022:179-89. [PMID: 14753785 DOI: 10.1016/j.chroma.2003.09.035] [Citation(s) in RCA: 238] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A solid-phase extraction (SPE)-gas chromatography (GC)-mass spectrometry (MS) analytical method for the simultaneous separation and determination of endocrine disrupting chemicals (EDCs) from water samples is described in detail. Important and contrasting EDCs including estrone, 17beta-estradiol, 17beta-ethynylestradiol, 16beta-hydroxyestrone, 4-nonylphenol, bisphenol A and 4-tert-octylphenol were selected as the target compounds. The SPE technique, followed by the derivatisation with bis (trimethylsilyl) trifluoroacetamide was used for the extraction recoveries of target compounds from water samples. A number of parameters that may affect the recovery of EDCs, such as the type of SPE cartridges, eluents, as well as water properties including pH value, and concentration of salts and humic substances were investigated. It is shown that the Oasis cartridges produced the best recoveries of target EDCs while ethyl acetate was efficient in eluting EDCs from SPE cartridges. The recovery of some EDCs was enhanced by the addition of salt, but reduced by the increase in pH value and humic acid concentration. The optimised method was further verified by performing spiking experiments in natural river water and seawater matrices, with good recovery and reproducibility for all the selected compounds. The established method was successfully applied to environmental water samples from East and West Sussex, UK, for the determination of the target EDCs.
Collapse
|
|
21 |
238 |
18
|
Hawkins M, Barzilai N, Liu R, Hu M, Chen W, Rossetti L. Role of the glucosamine pathway in fat-induced insulin resistance. J Clin Invest 1997; 99:2173-82. [PMID: 9151789 PMCID: PMC508047 DOI: 10.1172/jci119390] [Citation(s) in RCA: 221] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
To examine whether the hexosamine biosynthetic pathway might play a role in fat-induced insulin resistance, we monitored the effects of prolonged elevations in FFA availability both on skeletal muscle levels of UDP-N-acetyl-hexosamines and on peripheral glucose disposal during 7-h euglycemic-hyperinsulinemic (approximately 500 microU/ml) clamp studies. When the insulin-induced decrease in the plasma FFA levels (to approximately 0.3 mM) was prevented by infusion of a lipid emulsion in 15 conscious rats (plasma FFA approximately 1.4 mM), glucose uptake (5-7 h = 32.5+/-1.7 vs 0-2 h = 45.2+/-2.8 mg/kg per min; P < 0.01) and glycogen synthesis (P < 0.01) were markedly decreased. During lipid infusion, muscle UDP-N-acetyl-glucosamine (UDP-GlcNAc) increased by twofold (to 53.4+/-1.1 at 3 h and to 55.5+/-1.1 nmol/gram at 7 h vs 20.4+/-1.7 at 0 h, P < 0.01) while glucose-6-phosphate (Glc-6-P) levels were increased at 3 h (475+/-49 nmol/gram) and decreased at 7 h (133+/-7 vs 337+/-28 nmol/gram at 0 h, P < 0.01). To discern whether such an increase in the skeletal muscle UDP-GlcNAc concentration could account for the development of insulin resistance, we generated similar increases in muscle UDP-GlcNAc using three alternate experimental approaches. Euglycemic clamps were performed after prolonged hyperglycemia (18 mM, n = 10), or increased availability of either glucosamine (3 micromol/kg per min; n = 10) or uridine (30 micromol/kg per min; n = 4). These conditions all resulted in very similar increases in the skeletal muscle UDP-GlcNAc (to approximately 55 nmol/gram) and markedly impaired glucose uptake and glycogen synthesis. Thus, fat-induced insulin resistance is associated with: (a) decreased skeletal muscle Glc-6-P levels indicating defective transport/phosphorylation of glucose; (b) marked accumulation of the endproducts of the hexosamine biosynthetic pathway preceding the onset of insulin resistance. Most important, the same degree of insulin resistance can be reproduced in the absence of increased FFA availability by a similar increase in skeletal muscle UDP-N-acetyl-hexosamines. In conclusion, our results support the hypothesis that increased FFA availability induces skeletal muscle insulin resistance by increasing the flux of fructose-6-phosphate into the hexosamine pathway.
Collapse
|
research-article |
28 |
221 |
19
|
Olson CG, Liu R, Lynch DW, List RS, Arko AJ, Veal BW, Chang YC, Jiang PZ, Paulikas AP. High-resolution angle-resolved photoemission study of the Fermi surface and the normal-state electronic structure of Bi2Sr2CaCu2O8. PHYSICAL REVIEW. B, CONDENSED MATTER 1990; 42:381-386. [PMID: 9994550 DOI: 10.1103/physrevb.42.381] [Citation(s) in RCA: 218] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
|
|
35 |
218 |
20
|
Burke WM, Jin X, Lin HJ, Huang M, Liu R, Reynolds RK, Lin J. Inhibition of constitutively active Stat3 suppresses growth of human ovarian and breast cancer cells. Oncogene 2001; 20:7925-34. [PMID: 11753675 DOI: 10.1038/sj.onc.1204990] [Citation(s) in RCA: 217] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2001] [Revised: 08/13/2001] [Accepted: 09/18/2001] [Indexed: 11/09/2022]
Abstract
Signal transducers and activators of transcription (STATs) are transcription factors activated in response to cytokines and growth factors. Constitutively active Stat3 has been shown to mediate oncogenic transformation in cultured cells and induce tumor formation in mice. An increasing number of tumor-derived cell lines as well as samples from human cancer have been reported to express constitutively active Stat3 protein. We previously demonstrated that ovarian cancer cell lines express high levels of constitutively active Stat3. In this study, we show that inhibition of the Stat3 signaling pathway using the Janus Kinase-selective inhibitor, AG490, and a dominant negative Stat3 (Stat3beta) significantly suppresses the growth of ovarian and breast cancer cell lines harboring constitutively active Stat3. In the ovarian cancer cell lines, AG490 also diminished the phosphorylation of Stat3, Stat3 DNA binding activity, and the expression of Bcl-x(L). Further, AG490 induced significant apoptosis in ovarian and breast cancer cell lines expressing high levels of constitutively active Stat3 but had a less profound effect on normal cells lacking constitutively active Stat3. AG490 also enhanced apoptosis induced by cisplatin in ovarian cancer cells. These results suggest that inhibition of Stat3 signaling may provide a potential therapeutic approach for treating ovarian and breast cancers.
Collapse
|
|
24 |
217 |
21
|
Hu E, Chen Z, Fredrickson T, Zhu Y, Kirkpatrick R, Zhang GF, Johanson K, Sung CM, Liu R, Winkler J. Cloning and characterization of a novel human class I histone deacetylase that functions as a transcription repressor. J Biol Chem 2000; 275:15254-64. [PMID: 10748112 DOI: 10.1074/jbc.m908988199] [Citation(s) in RCA: 216] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Histone acetylation alters chromatin state by modifying lysines on histone and plays an important role in modulating gene transcription. A dynamic balance of histone acetylation/deacetylation is maintained by histone acetyltransferases and histone deacetylases. Emerging evidence suggests that a family of histone deacetylases may exist to regulate diverse cellular functions, including chromatin structure, gene expression, cell cycle progression, and oncogenesis. We describe here a novel human histone deacetylase, named HDAC8, cloned from human kidney. HDAC8 encodes 377 amino acid residues and shares extensive homology to several known HDACs, in particular a histone deacetylase from Arabidopsis thaliana. Northern blot analyses revealed that HDAC8 expression pattern for HDAC8 is distinct from that for HDAC1 and HDAC3, and expression of HDAC8 mRNA occurs in multiple organs including heart, lung, kidney, and pancreas. HDAC8 mRNA was also observed in several cell lines derived from cancerous tissues. When expressed in HEK293 cells, HDAC8 exhibited deacetylase activity toward acetylated histone, indicating that this protein is a bona fide histone deacetylase. Its histone deacetylase activity was inhibited by trichostatin and other known histone deacetylase inhibitors. Furthermore, active recombinant HDAC8 was expressed and purified from Escherichia coli. When ectopically expressed in cells, HDAC8 was found to be localized to the nucleus. Co-transfection experiments demonstrated that expression of HDAC8 repressed a viral SV40 early promoter activity. These results indicate that HDAC8 is a novel member of the histone deacetylase family, which may play a role in the development of a broad range of tissues and potentially in the etiology of cancer.
Collapse
|
|
25 |
216 |
22
|
Liu R, Bal H, Desta T, Krothapalli N, Alyassi M, Luan Q, Graves D. Diabetes enhances periodontal bone loss through enhanced resorption and diminished bone formation. J Dent Res 2006; 85:510-4. [PMID: 16723646 PMCID: PMC2253683 DOI: 10.1177/154405910608500606] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Using a ligature-induced model in type-2 Zucker diabetic fatty (ZDF) rat and normoglycemic littermates, we investigated whether diabetes primarily affects periodontitis by enhancing bone loss or by limiting osseous repair. Diabetes increased the intensity and duration of the inflammatory infiltrate (P < 0.05). The formation of osteoclasts and percent eroded bone after 7 days of ligature placement was similar, while four days after removal of ligatures, the type 2 diabetic group had significantly higher osteoclast numbers and activity (P < 0.05). The amount of new bone formation following resorption was 2.4- to 2.9-fold higher in normoglycemic vs. diabetic rats (P < 0.05). Diabetes also increased apoptosis and decreased the number of bone-lining cells, osteoblasts, and periodontal ligament fibroblasts (P < 0.05). Thus, diabetes caused a more persistent inflammatory response, greater loss of attachment and more alveolar bone resorption, and impaired new bone formation. The latter may be affected by increased apoptosis of bone-lining and PDL cells.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
193 |
23
|
Liu Y, Ganser D, Schneider A, Liu R, Grodzinski P, Kroutchinina N. Microfabricated polycarbonate CE devices for DNA analysis. Anal Chem 2001; 73:4196-201. [PMID: 11569809 DOI: 10.1021/ac010343v] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The microchip capillary electrophoresis (CE) devices were fabricated in polycarbonate (PC) plastic material by compression molding. The molded devices were enclosed utilizing thermal bonding to another PC wafer. These thermal bonds do not yield up to an applied force equivalent to 150 psi. Aqueous fluid transport inside the plastic CE devices was enhanced by UV irradiation treatment of the hydrophobic polycarbonate plastic surfaces prior to thermal bonding. In comparison to glass microchannels, electroosmotic flow (EOF) in native PC channels is low and is independent of buffer pH at pH 7 and 9. UV irradiation of PC surfaces increases surface hydrophilicity and increases EOF. CE DNA separation was demonstrated in these PC CE devices with good resolution and run-to-run reproducibility. The on-chip PCR/CE analysis of a 500-bp region of bacteriophage lambda DNA was also demonstrated.
Collapse
|
|
24 |
164 |
24
|
Zhou JJ, Vieira FG, He XL, Smadja C, Liu R, Rozas J, Field LM. Genome annotation and comparative analyses of the odorant-binding proteins and chemosensory proteins in the pea aphid Acyrthosiphon pisum. INSECT MOLECULAR BIOLOGY 2010; 19 Suppl 2:113-22. [PMID: 20482644 DOI: 10.1111/j.1365-2583.2009.00919.x] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) are two families of small water-soluble proteins, abundant in the aqueous fluid surrounding olfactory receptor neurons in insect antennae. OBPs are involved in the first step of olfactory signal transduction, carrying airborne semiochemicals to the odorant receptors and can be classified into three groups: Classic OBPs, Plus-C OBPs and Atypical OBPs. Here, we identified and annotated genes encoding putative OBPs and CSPs in the pea aphid Acyrthosiphon pisum using bioinformatics. This identified genes encoding 13 Classic and two Plus-C OBPs and 13 CSPs. Homologous OBP sequences were also identified in nine other aphid species, allowing us to compare OBPs across several aphid and non-aphid species. We show that, although OBP sequences are divergent within a species and between different orders, there is a high similarity between orthologs within a range of aphid species. Furthermore, the phylogenetic relationships between OBP orthologs reflect the divergence of aphid evolution lineages. Our results support the 'birth-and-death' model as the major mechanism explaining aphid OBP sequence evolution, with the main force acting on the evolution being purifying selection.
Collapse
|
Comparative Study |
15 |
154 |
25
|
Liu R, Jolas T, Aghajanian G. Serotonin 5-HT(2) receptors activate local GABA inhibitory inputs to serotonergic neurons of the dorsal raphe nucleus. Brain Res 2000; 873:34-45. [PMID: 10915808 DOI: 10.1016/s0006-8993(00)02468-9] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The purpose of the present study was to characterize the synaptic currents induced by bath-applied serotonin (5-HT) in 5-HT cells of the dorsal raphe nucleus (DRN) and to determine which 5-HT receptor subtypes mediate these effects. In rat brain slices, 5-HT induced a concentration-dependent increase in the frequency of inhibitory postsynaptic currents (IPSCs) in 5-HT neurons recorded intracellularly in the ventral part of the DRN (EC(50): 86 microM); 5-HT also increased IPSC amplitude. These effects were blocked by the GABA(A) receptor antagonist, bicuculline (10 microM) and by the fast sodium channel blocker, TTX, suggesting that 5-HT had increased impulse flow in local GABAergic neurons. DAMGO (300 nM), a selective mu-agonist, markedly suppressed the increase in IPSC frequency induced by 5-HT (100 microM) in the DRN. A near maximal concentration of the selective 5-HT(2A) antagonist, MDL100,907 (30 nM), produced a large reduction ( approximately 70%) in the increase in IPSC frequency induced by 100 microM 5-HT; SB242,084 (30 nM), a selective 5-HT(2C) antagonist, was less effective ( approximately 24% reduction). Combined drug application suppressed the increase in 5-HT-induced IPSC frequency almost completely, suggesting involvement of both 5-HT(2A) and 5-HT(2C) receptors. Unexpectedly, the phenethylamine hallucinogen, DOI, a partial agonist at 5-HT(2A/2C) receptors, caused a greater increase (+334%) in IPSC frequency than did 5-HT 100 microM (+80%). This result may be explained by an opposing 5-HT(1A) inhibitory effect since the selective 5-HT(1A) antagonist, WAY-100635, enhanced the 5-HT-induced increase in IPSCs. These results indicate that within the DRN-PAG area there may be a negative feedback loop in which 5-HT induces an increase in IPSC frequency in 5-HT cells by exciting GABAergic interneurons in the DRN via 5-HT(2A) and, to a lesser extent, 5-HT(2C) receptors. Increased GABA tone may explain the previous observation of an indirect suppression of firing of a subpopulation of 5-HT cells in the DRN induced by phenethylamine hallucinogens in vivo.
Collapse
|
|
25 |
153 |