1
|
Freyn AW, Atyeo C, Earl PL, Americo JL, Chuang GY, Natarajan H, Frey TR, Gall JG, Moliva JI, Hunegnaw R, Asthagiri Arunkumar G, Ogega CO, Nasir A, Santos G, Levin RH, Meni A, Jorquera PA, Bennett H, Johnson JA, Durney MA, Stewart-Jones G, Hooper JW, Colpitts TM, Alter G, Sullivan NJ, Carfi A, Moss B. An mpox virus mRNA-lipid nanoparticle vaccine confers protection against lethal orthopoxviral challenge. Sci Transl Med 2023; 15:eadg3540. [PMID: 37792954 DOI: 10.1126/scitranslmed.adg3540] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 08/18/2023] [Indexed: 10/06/2023]
Abstract
Mpox virus (MPXV) caused a global outbreak in 2022. Although smallpox vaccines were rapidly deployed to curb spread and disease among those at highest risk, breakthrough disease was noted after complete immunization. Given the threat of additional zoonotic events and the virus's evolving ability to drive human-to-human transmission, there is an urgent need for an MPXV-specific vaccine that confers protection against evolving MPXV strains and related orthopoxviruses. Here, we demonstrate that an mRNA-lipid nanoparticle vaccine encoding a set of four highly conserved MPXV surface proteins involved in virus attachment, entry, and transmission can induce MPXV-specific immunity and heterologous protection against a lethal vaccinia virus (VACV) challenge. Compared with modified vaccinia virus Ankara (MVA), which forms the basis for the current MPXV vaccine, immunization with an mRNA-based MPXV vaccine generated superior neutralizing activity against MPXV and VACV and more efficiently inhibited spread between cells. We also observed greater Fc effector TH1-biased humoral immunity to the four MPXV antigens encoded by the vaccine, as well as to the four VACV homologs. Single MPXV antigen-encoding mRNA vaccines provided partial protection against VACV challenge, whereas multivalent vaccines combining mRNAs encoding two, three, or four MPXV antigens protected against disease-related weight loss and death equal or superior to MVA vaccination. These data demonstrate that an mRNA-based MPXV vaccine confers robust protection against VACV.
Collapse
|
|
2 |
50 |
2
|
Tedelind S, Poliakova K, Valeta A, Hunegnaw R, Yemanaberhan EL, Heldin NE, Kurebayashi J, Weber E, Kopitar-Jerala N, Turk B, Bogyo M, Brix K. Nuclear cysteine cathepsin variants in thyroid carcinoma cells. Biol Chem 2011; 391:923-35. [PMID: 20536394 DOI: 10.1515/bc.2010.109] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The cysteine peptidase cathepsin B is important in thyroid physiology by being involved in thyroid prohormone processing initiated in the follicular lumen and completed in endo-lysosomal compartments. However, cathepsin B has also been localized to the extrafollicular space and is therefore suggested to promote invasiveness and metastasis in thyroid carcinomas through, e.g., ECM degradation. In this study, immunofluorescence and biochemical data from subcellular fractionation revealed that cathepsin B, in its single- and two-chain forms, is localized to endo-lysosomes in the papillary thyroid carcinoma cell line KTC-1 and in the anaplastic thyroid carcinoma cell lines HTh7 and HTh74. This distribution is not affected by thyroid stimulating hormone (TSH) incubation of HTh74, the only cell line that expresses a functional TSH-receptor. Immunofluorescence data disclosed an additional nuclear localization of cathepsin B immunoreactivity. This was supported by biochemical data showing a proteolytically active variant slightly smaller than the cathepsin B proform in nuclear fractions. We also demonstrate that immunoreactions specific for cathepsin V, but not cathepsin L, are localized to the nucleus in HTh74 in peri-nucleolar patterns. As deduced from co-localization studies and in vitro degradation assays, we suggest that nuclear variants of cathepsins are involved in the development of thyroid malignancies through modification of DNA-associated proteins.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
50 |
3
|
Hamer MJ, Houser KV, Hofstetter AR, Ortega-Villa AM, Lee C, Preston A, Augustine B, Andrews C, Yamshchikov GV, Hickman S, Schech S, Hutter JN, Scott PT, Waterman PE, Amare MF, Kioko V, Storme C, Modjarrad K, McCauley MD, Robb ML, Gaudinski MR, Gordon IJ, Holman LA, Widge AT, Strom L, Happe M, Cox JH, Vazquez S, Stanley DA, Murray T, Dulan CNM, Hunegnaw R, Narpala SR, Swanson PA, Basappa M, Thillainathan J, Padilla M, Flach B, O'Connell S, Trofymenko O, Morgan P, Coates EE, Gall JG, McDermott AB, Koup RA, Mascola JR, Ploquin A, Sullivan NJ, Ake JA, Ledgerwood JE. Safety, tolerability, and immunogenicity of the chimpanzee adenovirus type 3-vectored Marburg virus (cAd3-Marburg) vaccine in healthy adults in the USA: a first-in-human, phase 1, open-label, dose-escalation trial. Lancet 2023; 401:294-302. [PMID: 36709074 PMCID: PMC10127441 DOI: 10.1016/s0140-6736(22)02400-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/14/2022] [Accepted: 11/15/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND WHO has identified Marburg virus as an emerging virus requiring urgent vaccine research and development, particularly due to its recent emergence in Ghana. We report results from a first-in-human clinical trial evaluating a replication-deficient recombinant chimpanzee adenovirus type 3 (cAd3)-vectored vaccine encoding a wild-type Marburg virus Angola glycoprotein (cAd3-Marburg) in healthy adults. METHODS We did a first-in-human, phase 1, open-label, dose-escalation trial of the cAd3-Marburg vaccine at the Walter Reed Army Institute of Research Clinical Trials Center in the USA. Healthy adults aged 18-50 years were assigned to receive a single intramuscular dose of cAd3-Marburg vaccine at either 1 × 1010 or 1 × 1011 particle units (pu). Primary safety endpoints included reactogenicity assessed for the first 7 days and all adverse events assessed for 28 days after vaccination. Secondary immunogenicity endpoints were assessment of binding antibody responses and T-cell responses against the Marburg virus glycoprotein insert, and assessment of neutralising antibody responses against the cAd3 vector 4 weeks after vaccination. This study is registered with ClinicalTrials.gov, NCT03475056. FINDINGS Between Oct 9, 2018, and Jan 31, 2019, 40 healthy adults were enrolled and assigned to receive a single intramuscular dose of cAd3-Marburg vaccine at either 1 × 1010 pu (n=20) or 1 × 1011 pu (n=20). The cAd3-Marburg vaccine was safe, well tolerated, and immunogenic. All enrolled participants received cAd3-Marburg vaccine, with 37 (93%) participants completing follow-up visits; two (5%) participants moved from the area and one (3%) was lost to follow-up. No serious adverse events related to vaccination occurred. Mild to moderate reactogenicity was observed after vaccination, with symptoms of injection site pain and tenderness (27 [68%] of 40 participants), malaise (18 [45%] of 40 participants), headache (17 [43%] of 40 participants), and myalgia (14 [35%] of 40 participants) most commonly reported. Glycoprotein-specific antibodies were induced in 38 (95%) of 40 participants 4 weeks after vaccination, with geometric mean titres of 421 [95% CI 209-846] in the 1 × 1010 pu group and 545 [276-1078] in the 1 × 1011 pu group, and remained significantly elevated at 48 weeks compared with baseline titres (39 [95% CI 13-119] in the 1 ×1010 pu group and 27 [95-156] in the 1 ×1011 pu group; both p<0·0001). T-cell responses to the glycoprotein insert and neutralising responses against the cAd3 vector were also increased at 4 weeks after vaccination. INTERPRETATION This first-in-human trial of this cAd3-Marburg vaccine showed the agent is safe and immunogenic, with a safety profile similar to previously tested cAd3-vectored filovirus vaccines. 95% of participants produced a glycoprotein-specific antibody response at 4 weeks after a single vaccination, which remained in 70% of participants at 48 weeks. These findings represent a crucial step in the development of a vaccine for emergency deployment against a re-emerging pathogen that has recently expanded its reach to new regions. FUNDING National Institutes of Health.
Collapse
|
Clinical Trial, Phase I |
2 |
32 |
4
|
Jennelle L, Hunegnaw R, Dubrovsky L, Pushkarsky T, Fitzgerald ML, Sviridov D, Popratiloff A, Brichacek B, Bukrinsky M. HIV-1 protein Nef inhibits activity of ATP-binding cassette transporter A1 by targeting endoplasmic reticulum chaperone calnexin. J Biol Chem 2014; 289:28870-84. [PMID: 25170080 DOI: 10.1074/jbc.m114.583591] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
HIV-infected patients are at increased risk of developing atherosclerosis, in part due to an altered high density lipoprotein profile exacerbated by down-modulation and impairment of ATP-binding cassette transporter A1 (ABCA1) activity by the HIV-1 protein Nef. However, the mechanisms of this Nef effect remain unknown. Here, we show that Nef interacts with an endoplasmic reticulum chaperone calnexin, which regulates folding and maturation of glycosylated proteins. Nef disrupted interaction between calnexin and ABCA1 but increased affinity and enhanced interaction of calnexin with HIV-1 gp160. The Nef mutant that did not bind to calnexin did not affect the calnexin-ABCA1 interaction. Interaction with calnexin was essential for functionality of ABCA1, as knockdown of calnexin blocked the ABCA1 exit from the endoplasmic reticulum, reduced ABCA1 abundance, and inhibited cholesterol efflux; the same effects were observed after Nef overexpression. However, the effects of calnexin knockdown and Nef on cholesterol efflux were not additive; in fact, the combined effect of these two factors together did not differ significantly from the effect of calnexin knockdown alone. Interestingly, gp160 and ABCA1 interacted with calnexin differently; although gp160 binding to calnexin was dependent on glycosylation, glycosylation was of little importance for the interaction between ABCA1 and calnexin. Thus, Nef regulates the activity of calnexin to stimulate its interaction with gp160 at the expense of ABCA1. This study identifies a mechanism for Nef-dependent inactivation of ABCA1 and dysregulation of cholesterol metabolism.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
30 |
5
|
Cross RW, Longini IM, Becker S, Bok K, Boucher D, Carroll MW, Díaz JV, Dowling WE, Draghia-Akli R, Duworko JT, Dye JM, Egan MA, Fast P, Finan A, Finch C, Fleming TR, Fusco J, Geisbert TW, Griffiths A, Günther S, Hensley LE, Honko A, Hunegnaw R, Jakubik J, Ledgerwood J, Luhn K, Matassov D, Meshulam J, Nelson EV, Parks CL, Rustomjee R, Safronetz D, Schwartz LM, Smith D, Smock P, Sow Y, Spiropoulou CF, Sullivan NJ, Warfield KL, Wolfe D, Woolsey C, Zahn R, Henao-Restrepo AM, Muñoz-Fontela C, Marzi A. An introduction to the Marburg virus vaccine consortium, MARVAC. PLoS Pathog 2022; 18:e1010805. [PMID: 36227853 PMCID: PMC9560149 DOI: 10.1371/journal.ppat.1010805] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The emergence of Marburg virus (MARV) in Guinea and Ghana triggered the assembly of the MARV vaccine "MARVAC" consortium representing leaders in the field of vaccine research and development aiming to facilitate a rapid response to this infectious disease threat. Here, we discuss current progress, challenges, and future directions for MARV vaccines.
Collapse
|
Research Support, N.I.H., Intramural |
3 |
28 |
6
|
Hunegnaw R, Honko AN, Wang L, Carr D, Murray T, Shi W, Nguyen L, Storm N, Dulan CNM, Foulds KE, Agans KN, Cross RW, Geisbert JB, Cheng C, Ploquin A, Stanley DA, Geisbert TW, Nabel GJ, Sullivan NJ. A single-shot ChAd3-MARV vaccine confers rapid and durable protection against Marburg virus in nonhuman primates. Sci Transl Med 2022; 14:eabq6364. [PMID: 36516269 DOI: 10.1126/scitranslmed.abq6364] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Marburg virus (MARV) causes a severe hemorrhagic fever disease in primates with mortality rates in humans of up to 90%. MARV has been identified as a category A bioterrorism agent by the Centers for Disease Control and Prevention (CDC) and priority pathogen A by the National Institute of Allergy and Infectious Diseases (NIAID), needing urgent research and development of countermeasures because of the high public health risk it poses. The recent cases of MARV in West Africa underscore the substantial outbreak potential of this virus. The potential for cross-border spread, as had occurred during the 2014-2016 Ebola virus outbreak, illustrates the critical need for MARV vaccines. To support regulatory approval of the chimpanzee adenovirus 3 (ChAd3)-MARV vaccine that has completed phase 1 trials, we showed that the nonreplicating ChAd3 vector, which has a demonstrated safety profile in humans, protected against a uniformly lethal challenge with MARV/Ang. Protective immunity was achieved within 7 days of vaccination and was maintained through 1 year after vaccination. Antigen-specific antibodies were an immune correlate of protection in the acute challenge model, and their concentration was predictive of protection. These results demonstrate that a single-shot ChAd3-MARV vaccine generated a protective immune response that was both rapid and durable with an immune correlate of protection that will support advanced clinical development.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
19 |
7
|
Hunegnaw R, Vassylyeva M, Dubrovsky L, Pushkarsky T, Sviridov D, Anashkina AA, Üren A, Brichacek B, Vassylyev DG, Adzhubei AA, Bukrinsky M. Interaction Between HIV-1 Nef and Calnexin: From Modeling to Small Molecule Inhibitors Reversing HIV-Induced Lipid Accumulation. Arterioscler Thromb Vasc Biol 2016; 36:1758-71. [PMID: 27470515 DOI: 10.1161/atvbaha.116.307997] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 07/13/2016] [Indexed: 01/22/2023]
Abstract
OBJECTIVE HIV-infected patients are at an increased risk of developing atherosclerosis, in part because of downmodulation and functional impairment of ATP-binding cassette A1 (ABCA1) cholesterol transporter by the HIV-1 protein Nef. The mechanism of this effect involves Nef interacting with an ER chaperone calnexin and disrupting calnexin binding to ABCA1, leading to ABCA1 retention in ER, its degradation and resulting suppression of cholesterol efflux. However, molecular details of Nef-calnexin interaction remained unknown, limiting the translational impact of this finding. APPROACH AND RESULTS Here, we used molecular modeling and mutagenesis to characterize Nef-calnexin interaction and to identify small molecule compounds that could block it. We demonstrated that the interaction between Nef and calnexin is direct and can be reconstituted using recombinant proteins in vitro with a binding affinity of 89.1 nmol/L measured by surface plasmon resonance. The cytoplasmic tail of calnexin is essential and sufficient for interaction with Nef, and binds Nef with an affinity of 9.4 nmol/L. Replacing lysine residues in positions 4 and 7 of Nef with alanines abrogates Nef-calnexin interaction, prevents ABCA1 downregulation by Nef, and preserves cholesterol efflux from HIV-infected cells. Through virtual screening of the National Cancer Institute library of compounds, we identified a compound, 1[(7-oxo-7H-benz[de]anthracene-3-yl)amino]anthraquinone, which blocked Nef-calnexin interaction, partially restored ABCA1 activity in HIV-infected cells, and reduced foam cell formation in a culture of HIV-infected macrophages. CONCLUSION This study identifies potential targets that can be exploited to block the pathogenic effect of HIV infection on cholesterol metabolism and prevent atherosclerosis in HIV-infected subjects.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
17 |
8
|
Hunegnaw R, Mushtaq Z, Enyindah-Asonye G, Hoang T, Robert-Guroff M. Alveolar Macrophage Dysfunction and Increased PD-1 Expression During Chronic SIV Infection of Rhesus Macaques. Front Immunol 2019; 10:1537. [PMID: 31333668 PMCID: PMC6618664 DOI: 10.3389/fimmu.2019.01537] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/19/2019] [Indexed: 01/04/2023] Open
Abstract
HIV infected individuals have been shown to be pre-disposed to pulmonary infections even while receiving anti-retroviral therapy. Alveolar macrophages (AMs) play a critical role in lung innate immunity, but contradictory results have been reported regarding their functionality following HIV infection. Here, using the SIV rhesus macaque model, we document the effect of SIV infection on the phenotypic and functional properties of AMs. Following infection with SIVmac251, AMs in bronchoalveolar lavage (BAL) sampled over 2- to 20-weeks post-infection (wpi) were compared to those in BAL samples from naïve macaques. AM expression of proinflammatory cytokines TNF-α, IL-6, IL-1β, and chemokine RANTES drastically increased 2-wpi compared to AMs of naïve macaques (p < 0.0001 for all), but dropped significantly with progression to chronic infection. Phagocytic activity of AMs 2-and 4-wpi was elevated compared to AMs of naive animals (p = 0.0005, p = 0.0004, respectively) but significantly decreased by 12-wpi (p = 0.0022, p = 0.0019, respectively). By 20-wpi the ability of AMs from chronically infected animals to perform SIV-specific antibody-dependent phagocytosis (ADP) was also diminished (p = 0.028). Acute SIV infection was associated with increased FcγRIII expression which subsequently declined with disease progression. Frequency of FcγRIII+ AMs showed a strong trend toward correlation with SIV-specific ADP, and at 2-wpi FcγRIII expression negatively correlated with viral load (r = -0.6819; p = 0.0013), suggesting a contribution to viremia control. Importantly, PD-1 was found to be expressed on AMs and showed a strong trend toward correlation with plasma viral load (r = 0.8266; p = 0.058), indicating that similar to over-expression on T-cells, PD-1 expression on AMs may also be associated with disease progression. Further, AMs predominantly expressed PD-L2, which remained consistent over the course of infection. PD-1 blockade enhanced SIV-specific ADP by AMs from chronic infection indicating that the PD-1/PD-L2 pathway may modulate functional activity of AMs at that stage. These findings provide new insight into the dynamics of SIV infection leading to AM dysfunction and alteration of pulmonary innate immunity. Our results suggest new pathways to exploit in developing therapies targeting pulmonary disease susceptibility in HIV-infected individuals.
Collapse
|
Research Support, N.I.H., Intramural |
6 |
14 |
9
|
Rahman MA, Ko EJ, Enyindah-Asonye G, Helmold Hait S, Hogge C, Hunegnaw R, Venzon DJ, Hoang T, Robert-Guroff M. Differential Effect of Mucosal NKp44 + Innate Lymphoid Cells and Δγ Cells on Simian Immunodeficiency Virus Infection Outcome in Rhesus Macaques. THE JOURNAL OF IMMUNOLOGY 2019; 203:2459-2471. [PMID: 31554692 DOI: 10.4049/jimmunol.1900572] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/29/2019] [Indexed: 12/20/2022]
Abstract
NK cells are essential for controlling viral infections. We investigated NK cell and innate lymphoid cell (ILC) dynamics and function in rhesus macaque rectal tissue and blood following mucosal priming with replicating adenovirus (Ad)-SIV recombinants, systemic boosting with SIV envelope protein, and subsequent repeated low-dose intravaginal SIV exposures. Mucosal memory-like NK and ILC subsets in rectal and vaginal tissues of chronically infected macaques were also evaluated. No differences in NK cell or ILC frequencies or cytokine production were seen between vaccinated and Ad-empty/alum controls, suggesting responses were due to the Ad-vector and alum vaccine components. Mucosal NKp44+ ILCs increased postvaccination and returned to prelevels postinfection. The vaccine regimen induced mucosal SIV-specific Ab, which mediated Ab-dependent cellular cytotoxicity and was correlated with mucosal NKp44+CD16+ ILCs. Postvaccination NKp44+ and NKp44+IL-17+ ILC frequencies were associated with delayed SIV acquisition and decreased viremia. In chronically SIV-infected animals, NKp44+ ILCs negatively correlated with viral load, further suggesting a protective effect, whereas, NKG2A- NKp44- double-negative ILCs positively correlated with viral load, indicating a pathogenic role. No such associations of circulating NK cells were seen. Δγ NK cells in mucosal tissues of chronically infected animals exhibited impaired cytokine production compared with non-Δγ NK cells but responded to anti-gp120 Ab and Gag peptides, whereas non-Δγ NK cells did not. Mucosal Δγ NKp44+ and Δγ DN cells were similarly associated with protection and disease progression, respectively. Thus, the data suggest NKp44+ ILCs and Δγ cells contribute to SIV infection outcomes. Vaccines that promote mucosal NKp44+ and suppress double-negative ILCs are likely desirable.
Collapse
|
Research Support, N.I.H., Intramural |
6 |
13 |
10
|
Helmold Hait S, Hogge CJ, Rahman MA, Ko EJ, Hunegnaw R, Mushtaq Z, Enyindah-Asonye G, Hoang T, Miller Jenkins LM, Appella E, Appella DH, Robert-Guroff M. An SAMT-247 Microbicide Provides Potent Protection against Intravaginal Simian Immunodeficiency Virus Infection of Rhesus Macaques, whereas an Added Vaccine Component Elicits Mixed Outcomes. THE JOURNAL OF IMMUNOLOGY 2020; 204:3315-3328. [PMID: 32393514 DOI: 10.4049/jimmunol.2000165] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/17/2020] [Indexed: 12/19/2022]
Abstract
Because of microbicide noncompliance and lack of a durable, highly effective vaccine, a combined approach might improve HIV prophylaxis. We tested whether a vaccine-microbicide combination would enhance protection against SIV infection in rhesus macaques. Four macaque groups included vaccine only, vaccine-microbicide, microbicide only, and controls. Vaccine groups were primed twice mucosally with replicating adenovirus type 5 host range mutant SIV env/rev, gag, and nef recombinants and boosted twice i.m. with SIV gp120 proteins in alum. Controls and the microbicide-only group received adenovirus type 5 host range mutant empty vector and alum. The microbicide was SAMT-247, a 2-mercaptobenzamide thioester that targets the viral nucleocapsid protein NCp7, causing zinc ejection and preventing RNA encapsidation. Following vaccination, macaques were challenged intravaginally with repeated weekly low doses of SIVmac251 administered 3 h after application of 0.8% SAMT-247 gel (vaccine-microbicide and microbicide groups) or placebo gel (vaccine-only and control groups). The microbicide-only group exhibited potent protection; 10 of 12 macaques remained uninfected following 15 SIV challenges. The vaccine-only group developed strong mucosal and systemic humoral and cellular immunity but did not exhibit delayed acquisition compared with adjuvant controls. However, the vaccine-microbicide group exhibited significant acquisition delay compared with both control and vaccine-only groups, indicating further exploration of the combination strategy is warranted. Impaired protection in the vaccine-microbicide group compared with the microbicide-only group was not attributed to a vaccine-induced increase in SIV target cells. Possible Ab-dependent enhancement will be further investigated. The potent protection provided by SAMT-247 encourages its movement into human clinical trials.
Collapse
|
Research Support, N.I.H., Intramural |
5 |
10 |
11
|
Mwesigwa B, Houser KV, Hofstetter AR, Ortega-Villa AM, Naluyima P, Kiweewa F, Nakabuye I, Yamshchikov GV, Andrews C, O'Callahan M, Strom L, Schech S, Anne Eller L, Sondergaard EL, Scott PT, Amare MF, Modjarrad K, Wamala A, Tindikahwa A, Musingye E, Nanyondo J, Gaudinski MR, Gordon IJ, Holman LA, Saunders JG, Costner PJM, Mendoza FH, Happe M, Morgan P, Plummer SH, Hickman SP, Vazquez S, Murray T, Cordon J, Dulan CNM, Hunegnaw R, Basappa M, Padilla M, Gajjala SR, Swanson PA, Lin BC, Coates EE, Gall JG, McDermott AB, Koup RA, Mascola JR, Ploquin A, Sullivan NJ, Kibuuka H, Ake JA, Ledgerwood JE. Safety, tolerability, and immunogenicity of the Ebola Sudan chimpanzee adenovirus vector vaccine (cAd3-EBO S) in healthy Ugandan adults: a phase 1, open-label, dose-escalation clinical trial. THE LANCET. INFECTIOUS DISEASES 2023; 23:1408-1417. [PMID: 37544326 PMCID: PMC10837320 DOI: 10.1016/s1473-3099(23)00344-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND Sudan Ebola virus can cause severe viral disease, with an average case fatality rate of 54%. A recent outbreak of Sudan Ebola virus in Uganda caused 55 deaths among 164 confirmed cases in the second half of 2022. Although vaccines and therapeutics specific for Zaire Ebola virus have been approved for use during outbreak situations, Sudan Ebola virus is an antigenically distinct virus with no approved vaccines available. METHODS In this phase 1, open-label, dose-escalation trial we evaluated the safety, tolerability, and immunogenicity of a monovalent chimpanzee adenovirus 3 vaccine against Sudan Ebola virus (cAd3-EBO S) at Makerere University Walter Reed Project in Kampala, Uganda. Study participants were recruited from the Kampala metropolitan area using International Review Board-approved written and electronic media explaining the trial intervention. Healthy adults without previous receipt of Ebola, Marburg, or cAd3 vectored-vaccines were enrolled to receive cAd3-EBO S at either 1 × 1010 or 1 × 1011 particle units (PU) in a single intramuscular vaccination and were followed up for 48 weeks. Primary safety and tolerability endpoints were assessed in all vaccine recipients by reactogenicity for the first 7 days, adverse events for the first 28 days, and serious adverse events throughout the study. Secondary immunogenicity endpoints included evaluation of binding antibody and T-cell responses against the Sudan Ebola virus glycoprotein, and neutralising antibody responses against the cAd3 vector at 4 weeks after vaccination. This study is registered with ClinicalTrials.gov, NCT04041570, and is completed. FINDINGS 40 healthy adults were enrolled between July 22 and Oct 1, 2019, with 20 receiving 1 × 1010 PU and 20 receiving 1 × 1011 PU of cAd3-EBO S. 38 (95%) participants completed all follow-up visits. The cAd3-EBO S vaccine was well tolerated with no severe adverse events. The most common reactogenicity symptoms were pain or tenderness at the injection site (34 [85%] of 40), fatigue (29 [73%] of 40), and headache (26 [65%] of 40), and were mild to moderate in severity. Positive responses for glycoprotein-specific binding antibodies were induced by 2 weeks in 31 (78%) participants, increased to 34 (85%) participants by 4 weeks, and persisted to 48 weeks in 31 (82%) participants. Most participants developed glycoprotein-specific T-cell responses (20 [59%, 95% CI 41-75] of 34; six participants were removed from the T cell analysis after failing quality control parameters) by 4 weeks after vaccination, and neutralising titres against the cAd3 vector were also increased from baseline (90% inhibitory concentration of 47, 95% CI 30-73) to 4 weeks after vaccination (196, 125-308). INTERPRETATION The cAd3-EBO S vaccine was safe at both doses, rapidly inducing immune responses in most participants after a single injection. The rapid onset and durability of the vaccine-induced antibodies make this vaccine a strong candidate for emergency deployment in Sudan Ebola virus outbreaks. FUNDING National Institutes of Health via interagency agreement with Walter Reed Army Institute of Research.
Collapse
|
Clinical Trial, Phase I |
2 |
8 |
12
|
Hessell AJ, Li L, Malherbe DC, Barnette P, Pandey S, Sutton W, Spencer D, Wang XH, Gach JS, Hunegnaw R, Tuen M, Jiang X, Luo CC, LaBranche CC, Shao Y, Montefiori DC, Forthal DN, Duerr R, Robert-Guroff M, Haigwood NL, Gorny MK. Virus Control in Vaccinated Rhesus Macaques Is Associated with Neutralizing and Capturing Antibodies against the SHIV Challenge Virus but Not with V1V2 Vaccine-Induced Anti-V2 Antibodies Alone. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:1266-1283. [PMID: 33536254 PMCID: PMC7946713 DOI: 10.4049/jimmunol.2001010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/04/2021] [Indexed: 11/19/2022]
Abstract
The role of vaccine-induced anti-V2 Abs was tested in three protection experiments in rhesus macaques. In an experiment using immunogens similar to those in the RV144 vaccine trial (Anti-envelope [Env]), nine rhesus macaques were coimmunized with gp16092TH023 DNA and SIV gag and gp120A244 and gp120MN proteins. In two V2-focused experiments (Anti-V2 and Anti-V2 Mucosal), nine macaques in each group were immunized with V1V292TH023 DNA, V1V2A244 and V1V2CasaeA2 proteins, and cyclic V2CaseA2 peptide. DNA and protein immunogens, formulated in Adjuplex, were given at 0, 4, 12, and 20 weeks, followed by intrarectal SHIVBaL.P4 challenges. Peak plasma viral loads (PVL) of 106-107 copies/ml developed in all nine sham controls. Overall, PVL was undetectable in one third of immunized macaques, and two animals tightly controlled the virus with the Anti-V2 Mucosal vaccine strategy. In the Anti-Env study, Abs that captured or neutralized SHIVBaL.P4 inversely correlated with PVL. Conversely, no correlation with PVL was found in the Anti-V2 experiments with nonneutralizing plasma Abs that only captured virus weakly. Titers of Abs against eight V1V2 scaffolds and cyclic V2 peptides were comparable between controllers and noncontrollers as were Ab-dependent cellular cytotoxicity and Ab-dependent cell-mediated virus inhibition activities against SHIV-infected target cells and phagocytosis of gp120-coated beads. The Anti-Env experiment supports the role of vaccine-elicited neutralizing and nonneutralizing Abs in control of PVL. However, the two V2-focused experiments did not support a role for nonneutralizing V2 Abs alone in controlling PVL, as neither Ab-dependent cellular cytotoxicity, Ab-dependent cell-mediated virus inhibition, nor phagocytosis correlated inversely with heterologous SHIVBaL.P4 infection.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
6 |
13
|
Rahman MA, Bissa M, Silva de Castro I, Helmold Hait S, Stamos JD, Bhuyan F, Hunegnaw R, Sarkis S, Gutowska A, Doster MN, Moles R, Hoang T, Miller Jenkins LM, Appella E, Venzon DJ, Choo-Wosoba H, Cardozo T, Baum MM, Appella DH, Robert-Guroff M, Franchini G. Vaccine plus microbicide effective in preventing vaginal SIV transmission in macaques. Nat Microbiol 2023; 8:905-918. [PMID: 37024617 PMCID: PMC10159859 DOI: 10.1038/s41564-023-01353-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 03/02/2023] [Indexed: 04/08/2023]
Abstract
The human immunodeficiency virus epidemic continues in sub-Saharan Africa, and particularly affects adolescent girls and women who have limited access to antiretroviral therapy. Here we report that the risk of vaginal simian immunodeficiency virus (SIV)mac251 acquisition is reduced by more than 90% using a combination of a vaccine comprising V1-deleted (V2 enhanced) SIV envelope immunogens with topical treatment of the zinc-finger inhibitor SAMT-247. Following 14 weekly intravaginal exposures to the highly pathogenic SIVmac251, 80% of a cohort of 20 macaques vaccinated and treated with SAMT-247 remained uninfected. In an arm of 18 vaccinated-only animals without microbicide, 40% of macaques remained uninfected. The combined SAMT-247/vaccine regimen was significantly more effective than vaccination alone. By analysing immune correlates of protection, we show that, by increasing zinc availability, SAMT-247 increases natural killer cytotoxicity and monocyte efferocytosis, and decreases T-cell activation to augment vaccine-induced protection.
Collapse
|
Research Support, N.I.H., Extramural |
2 |
6 |
14
|
Enyindah-Asonye G, Nwankwo A, Hogge C, Rahman MA, Helmold Hait S, Hunegnaw R, Ko EJ, Hoang T, Venzon DJ, Robert-Guroff M. A Pathogenic Role for Splenic B1 Cells in SIV Disease Progression in Rhesus Macaques. Front Immunol 2019; 10:511. [PMID: 30941141 PMCID: PMC6433970 DOI: 10.3389/fimmu.2019.00511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/26/2019] [Indexed: 12/20/2022] Open
Abstract
B1 cells spontaneously produce protective natural antibodies which provide the first line of defense against a variety of pathogens. Although these natural antibodies share similar autoreactive features with several HIV-1 broadly neutralizing antibodies, the role of B1 cells in HIV/SIV disease progression is unknown. We report the presence of human-like B1 cells in rhesus macaques. During chronic SIV infection, we found that the frequency of splenic CD11b+ B1 cells positively correlated with plasma SIV viral load and exhausted T cells. Mechanistically, we discovered that splenic CD11b+ B1 cells express PD-L2 and IL-10, and were able to induce PD-1 upregulation on CD4+ T cells in vitro. These findings suggest that splenic CD11b+ B1 cells may contribute to the regulation of SIV plasma viral load by enhancing T cell exhaustion. Therefore, understanding the mechanisms that govern their function in rhesus macaques may lead to novel therapeutic strategies for impeding HIV/SIV disease progression.
Collapse
|
Research Support, N.I.H., Intramural |
6 |
4 |
15
|
Jacob D, Hunegnaw R, Sabyrzyanova TA, Pushkarsky T, Chekhov VO, Adzhubei AA, Kalebina TS, Bukrinsky M. The ABCA1 domain responsible for interaction with HIV-1 Nef is conformational and not linear. Biochem Biophys Res Commun 2014; 444:19-23. [PMID: 24406162 DOI: 10.1016/j.bbrc.2013.12.141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 12/30/2013] [Indexed: 12/11/2022]
Abstract
HIV-1 Nef is an accessory protein responsible for inactivation of a number of host cell proteins essential for anti-viral immune responses. In most cases, Nef binds to the target protein and directs it to a degradation pathway. Our previous studies demonstrated that Nef impairs activity of the cellular cholesterol transporter, ABCA1, and that Nef interacts with ABCA1. Mutation of the (2226)DDDHLK motif in the C-terminal cytoplasmic tail of ABCA1 disrupted interaction with Nef. Here, we tested Nef interaction with the ABCA1 C-terminal cytoplasmic fragment using yeast 2-hybrid system assay and co-immunoprecipitation analysis in human cells. Surprisingly, analysis in a yeast 2-hybrid system did not reveal any interaction between Nef and the C-terminal cytoplasmic fragment of ABCA1. Using co-immunoprecipitation from HEK 293T cells expressing these polypeptides, only a very weak interaction could be detected. The (2226)DDDHLK motif in the C-terminal cytoplasmic tail of ABCA1 found previously to be essential for interaction between ABCA1 and Nef is insufficient to bestow strong binding to Nef. Molecular modeling suggested that interaction with Nef may be mediated by a conformational epitope composed of the sequences within the cytoplasmic loop of ABCA1 and the C-terminal cytoplasmic domain. Studies are now underway to characterize this epitope.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
11 |
4 |
16
|
Enyindah-Asonye G, Nwankwo A, Rahman MA, Hunegnaw R, Hogge C, Helmold Hait S, Ko EJ, Hoang T, Robert-Guroff M. Overexpression of CD6 and PD-1 Identifies Dysfunctional CD8 + T-Cells During Chronic SIV Infection of Rhesus Macaques. Front Immunol 2020; 10:3005. [PMID: 31998302 PMCID: PMC6961594 DOI: 10.3389/fimmu.2019.03005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/06/2019] [Indexed: 12/12/2022] Open
Abstract
Effective CD8+ T-cell responses play an important role in determining the course of SIV/HIV viral infection. Here we identified a unique population of dysfunctional CD8+ T-cells in lymphoid tissues and bronchoalveolar lavage (BAL) of rhesus macaques with chronic SIV infection characterized by co-expression of CD6 and PD-1. The frequency of CD6 and PD-1 co-expressing CD8+ T-cells was significantly increased in lymphoid tissues and BAL during chronic SIV infection compared to pre-infection levels. These CD6+PD-1+CD8+ T-cells displayed impaired proliferation, cytokine secretion and cytotoxicity compared to their CD6-PD-1+CD8+ T cell counterparts. The frequency of CD8+PD-1+ and CD8+CD6-PD-1+ T-cells in the lymph node and bone marrow did not correlate with SIV viral load, whereas the frequency of CD8+CD6+PD-1+ T-cells positively correlated with SIV viral load in these tissues highlighting the contribution of CD6 to disease progression. CD6+PD-1+CD8+ T-cells expressed elevated levels of SHP2 phosphatase compared to CD6-PD-1+CD8+ T-cells providing a potential mechanism by which CD6 may induce T-cell dysfunction during chronic SIV infection. Combined targeting of CD6 and PD-1 effectively revived the CD8+ T-cell proliferative response in vitro suggesting a strategy for potential therapeutic benefit.
Collapse
|
Research Support, N.I.H., Intramural |
5 |
4 |
17
|
Helmold Hait S, Hogge CJ, Rahman MA, Hunegnaw R, Mushtaq Z, Hoang T, Robert-Guroff M. T FH Cells Induced by Vaccination and Following SIV Challenge Support Env-Specific Humoral Immunity in the Rectal-Genital Tract and Circulation of Female Rhesus Macaques. Front Immunol 2021; 11:608003. [PMID: 33584682 PMCID: PMC7876074 DOI: 10.3389/fimmu.2020.608003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/07/2020] [Indexed: 11/13/2022] Open
Abstract
T follicular helper (TFH) cells are pivotal in lymph node (LN) germinal center (GC) B cell affinity maturation. Circulating CXCR5+ CD4+ T (cTFH) cells have supported memory B cell activation and broadly neutralizing antibodies in HIV controllers. We investigated the contribution of LN SIV-specific TFH and cTFH cells to Env-specific humoral immunity in female rhesus macaques following a mucosal Ad5hr-SIV recombinant priming and SIV gp120 intramuscular boosting vaccine regimen and following SIV vaginal challenge. TFH and B cells were characterized by flow cytometry. B cell help was evaluated in TFH-B cell co-cultures and by real-time PCR. Vaccination induced Env-specific TFH and Env-specific memory (ESM) B cells in LNs. LN Env-specific TFH cells post-priming and GC ESM B cells post-boosting correlated with rectal Env-specific IgA titers, and GC B cells at the same timepoints correlated with vaginal Env-specific IgG titers. Vaccination expanded cTFH cell responses, including CD25+ Env-specific cTFH cells that correlated negatively with vaginal Env-specific IgG titers but positively with rectal Env-specific IgA titers. Although cTFH cells post-2nd boost positively correlated with viral-loads following SIV challenge, cTFH cells of SIV-infected and protected macaques supported maturation of circulating B cells into plasma cells and IgA release in co-culture. Additionally, cTFH cells of naïve macaques promoted upregulation of genes associated with B cell proliferation, BCR engagement, plasma cell maturation, and antibody production, highlighting the role of cTFH cells in blood B cell maturation. Vaccine-induced LN TFH and GC B cells supported anti-viral mucosal immunity while cTFH cells provided B cell help in the periphery during immunization and after SIV challenge. Induction of TFH responses in blood and secondary lymphoid organs is likely desirable for protective efficacy of HIV vaccines.
Collapse
|
Research Support, N.I.H., Intramural |
4 |
2 |
18
|
Hunegnaw R, Helmold Hait S, Enyindah-Asonye G, Rahman MA, Ko EJ, Hogge CJ, Hoang T, Robert-Guroff M. A Mucosal Adenovirus Prime/Systemic Envelope Boost Vaccine Regimen Elicits Responses in Cervicovaginal and Alveolar Macrophages of Rhesus Macaques Associated With Delayed SIV Acquisition and B Cell Help. Front Immunol 2020; 11:571804. [PMID: 33117363 PMCID: PMC7561428 DOI: 10.3389/fimmu.2020.571804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/15/2020] [Indexed: 11/13/2022] Open
Abstract
Vaccine strategies targeting the mucosal portal of entry may prevent HIV acquisition and systemic infection. Macrophages in cervicovaginal compartments are one of the first cell types to encounter virus upon vaginal exposure. Their activation can lead to recruitment of additional macrophages and CD4+ T-cells susceptible to viral infection. However, they are also critical in providing early protection against invading pathogens. Therefore, understanding their response to immunization is important for vaccine design. We immunized rhesus macaques twice mucosally with replicating adenovirus (Ad) SIV recombinants, followed by two intramuscular boosts with SIV gp120 protein. Macaques were subsequently challenged intravaginally with repeated low doses of SIVmac251. Using flow cytometry, we evaluated responses of cervicovaginal macrophages (CVM) and alveolar macrophages (AM) in bronchoalveolar lavage as initial immunization was to the upper respiratory tract. The frequency of CVM increased over the course of immunization; however, CCR5 expression significantly decreased. Significantly increased expression of the chemokines CCL3 (p < 0.01), CCL4, CCL5, and CXCL8 (p < 0.0001 for all) on CVM was seen post-1st Ad but their expression significantly decreased post-2nd boost. CD4+ T-cell frequency in the cervical mucosa remained unchanged. CVM FcγRIII expression was significantly increased at all time points post-immunization compared to naïve animals. FcγRIII expression post-2nd Ad positively correlated with the number of challenges needed for infection (r = 0.68; p = 0.0051). Vaccination increased AM FcγRIII expression which post-2nd boost correlated with antibody-dependent phagocytosis. Activation of AMs was evident by increased expression of CD40 and CD80 post-2nd Ad compared to naïve macaques. APRIL expression also significantly increased post-2nd Ad and correlated with B cell frequency in bronchoalveolar lavage (BAL) (r = 0.73; p = 0.0019) and total IgG in BAL-fluid (r = 0.53; p = 0.047). B cells cultured with SIV gp120-stimulated AM supernatant from vaccinated macaques exhibited significant increases in B cell activation markers CD38 and CD69 compared to B cells cultured alone or with AM supernatant from unvaccinated macaques. Overall, the vaccine regimen did not induce recruitment of susceptible cells to the vaginal mucosa but increased CVM FcγRIII expression which correlated with delayed SIV acquisition. Further, immunization induced expression of AM cytokines, including those associated with providing B cell help.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
1 |
19
|
Jennelle L, Hunegnaw R, Sviridov D, Bukrinsky M. HIV-1 Nef targets calnexin: a novel mechanism behind Nef effects on host cell and viral proteins. Retrovirology 2013. [PMCID: PMC3848090 DOI: 10.1186/1742-4690-10-s1-p8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
|
12 |
|
20
|
Hunegnaw R, Bukrinsky M, Adzhubei A. Abstract 151: Lysine Residues at Positions 4 and 7 on Nef are Critical for Interaction with Calnexin and Drive Inhibition of Cholesterol Transporter: ATP-Binding Cassette A1. Arterioscler Thromb Vasc Biol 2015. [DOI: 10.1161/atvb.35.suppl_1.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
HIV patients are at a greater risk of developing atherosclerosis than non-infected individuals, partly due to the impairment of the ATP-Binding Cassette A1 (ABCA1) cholesterol transporter by the HIV-1 viral protein Nef leading to accumulation of cholesterol inside the cell. While studying the possible mechanism of Nef-mediated disruption of cholesterol efflux, we found that ABCA1 interacts with Nef, but a direct interaction with Nef is dispensable for the inactivation of ABCA1. Using mass spectroscopy we identified calnexin as a protein that associates with both ABCA1 and Nef and provided evidence to show that in the presence of Nef, ABCA1-calnexin interaction is disrupted leading to ABCA1 retention in the ER, subsequent degradation and impairment of cholesterol efflux. However, the molecular interactions taking place remained unknown as Nef is not known to enter the ER lumen and the domain of calnexin involved in binding to substrate proteins is located within the ER lumen. We hypothesized that Nef interacts with the C-terminal cytoplasmic domain of calnexin and that inhibiting this interaction would rescue ABCA1 function and expression. Using calnexin mutants lacking a luminal or cytoplasmic domain, we identified that the C-terminal cytoplasmic domain is responsible for Nef interaction. Using structural models of Nef and calnexin, possible Nef-calnexin interaction models were built using docking servers. Interacting residues in Nef were identified by calculating intermolecular contacts in the resulting complexes. Identified residues were mutated to confirm loss of interaction and this loss of interaction was found to associate with rescue of ABCA1 expression and restoration of cholesterol efflux. In conclusion, lysine residues at positions 4 and 7 on Nef were found to be indispensable for interacting with calnexin and inactivation of ABCA1. As cardiovascular diseases like atherosclerosis have emerged as an important cause of morbidity and mortality in HIV-infected individuals, there is a great need for targeted therapeutic strategies. This study identifies important targets that can be manipulated to inhibit the pathogenic effect of HIV on cholesterol metabolism.
Collapse
|
|
10 |
|
21
|
Honko AN, Hunegnaw R, Moliva JI, Ploquin A, Dulan CNM, Murray T, Carr D, Foulds KE, Geisbert JB, Geisbert TW, Johnson JC, Wollen-Roberts SE, Trefry JC, Stanley DA, Sullivan NJ. A Single-shot ChAd3 Vaccine Provides Protection from Intramuscular and Aerosol Sudan Virus Exposure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.07.579118. [PMID: 38410448 PMCID: PMC10896339 DOI: 10.1101/2024.02.07.579118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Infection with Sudan virus (SUDV) is characterized by an aggressive disease course with case fatality rates between 40-100% and no approved vaccines or therapeutics. SUDV causes sporadic outbreaks in sub-Saharan Africa, including a recent outbreak in Uganda which has resulted in over 100 confirmed cases in one month. Prior vaccine and therapeutic efforts have historically prioritized Ebola virus (EBOV), leading to a significant gap in available treatments. Two vaccines, Erbevo ® and Zabdeno ® /Mvabea ® , are licensed for use against EBOV but are ineffective against SUDV. Recombinant adenovirus vector vaccines have been shown to be safe and effective against filoviruses, but efficacy depends on having low seroprevalence to the vector in the target human population. For this reason, and because of an excellent safety and immunogenicity profile, ChAd3 was selected as a superior vaccine vector. Here, a ChAd3 vaccine expressing the SUDV glycoprotein (GP) was evaluated for immunogenicity and efficacy in nonhuman primates. We demonstrate that a single dose of ChAd3-SUDV confers acute and durable protection against lethal SUDV challenge with a strong correlation between the SUDV GP-specific antibody titers and survival outcome. Additionally, we show that a bivalent ChAd3 vaccine encoding the GP from both EBOV and SUDV protects against both parenteral and aerosol lethal SUDV challenge. Our data indicate that the ChAd3-SUDV vaccine is a suitable candidate for a prophylactic vaccination strategy in regions at high risk of filovirus outbreaks. One Sentence Summary: A single-dose of ChAd3 vaccine protected macaques from lethal challenge with Sudan virus (SUDV) by parenteral and aerosol routes of exposure.
Collapse
|
Preprint |
1 |
|
22
|
Rahman MA, Bissa M, Silva de Castro I, Helmold Hait S, Stamos JD, Bhuyan F, Hunegnaw R, Sarkis S, Gutowska A, Doster MN, Moles R, Hoang T, Miller Jenkins LM, Appella E, Venzon DJ, Choo-Wosoba H, Cardozo T, Baum MM, Appella DH, Robert-Guroff M, Franchini G. Publisher Correction: Vaccine plus microbicide effective in preventing vaginal SIV transmission in macaques. Nat Microbiol 2023:10.1038/s41564-023-01412-z. [PMID: 37217721 PMCID: PMC10390330 DOI: 10.1038/s41564-023-01412-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
|
Published Erratum |
2 |
|
23
|
Hunegnaw R, Mushtaq Z, Enyindah-Asonye G, Hoang T, Robert-Guroff M. Alveolar macrophage dysfunction and increased PD-1 expression during chronic SIV infection of rhesus macaques. THE JOURNAL OF IMMUNOLOGY 2019. [DOI: 10.4049/jimmunol.202.supp.197.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Abstract
HIV infected individuals have been shown to be predisposed to pulmonary infections even while receiving anti-retroviral therapy. Alveolar macrophages (AMs) play a critical role in innate immunity of the lung, but their functional and immunological attributes after infection remain contradictory. Here, we use flow cytometry and phagocytosis assays to document phenotypic and functional responses of SIV infected rhesus macaque AMs. We assessed AMs by sampling bronchoalveolar lavage (BAL) from acute through chronic phases of SIV infection and compared these to BAL samples taken from naïve macaques. We found that expression of pro-inflammatory cytokines TNF-□, IL-6, IL-1β and the chemokine RANTES by AMs drastically increased at 2 weeks post-infection compared to naïve animals (p<0.0001 for all) and was quickly followed by a significant drop as infection progressed into the chronic phase of infection. We further show that AMs from chronically infected macaques have diminished capacity to perform SIV-specific antibody-dependent phagocytosis (ADP). Moreover, SIV infection was associated with reduced AM FcγRIII expression, which negatively correlated with viral load (r=−0.6819; p=0.0013). Importantly, PD-1 was shown to be expressed on AMs and showed a strong trend toward correlation with plasma viral load (r=0.8266; p=0.0583), indicating that similar to T-cells, PD-1 expression on AMs may also be associated with disease progression. These findings provide new insight into the dynamics of SIV infection leading to AM dysfunction and alteration of pulmonary innate immunity. Our results suggest new pathways to exploit in developing therapies targeting pulmonary disease susceptibility in HIV-infected individuals.
Collapse
|
|
6 |
|
24
|
Finch CL, King TH, Alfson KJ, Albanese KA, Smith JNP, Smock P, Jakubik J, Goez-Gazi Y, Gazi M, Dutton JW, Clemmons EA, Mattix ME, Carrion R, Rudge T, Ridenour A, Woodin SF, Hunegnaw R, Sullivan NJ, Xu R. Single-Shot ChAd3-MARV Vaccine in Modified Formulation Buffer Shows 100% Protection of NHPs. Vaccines (Basel) 2022; 10:1935. [PMID: 36423030 PMCID: PMC9694189 DOI: 10.3390/vaccines10111935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/17/2022] Open
Abstract
Marburg virus (MARV) is a virus of high human consequence with a case fatality rate of 24-88%. The global health and national security risks posed by Marburg virus disease (MVD) underscore the compelling need for a prophylactic vaccine, but no candidate has yet reached regulatory approval. Here, we evaluate a replication-defective chimpanzee adenovirus type 3 (ChAd3)-vectored MARV Angola glycoprotein (GP)-expressing vaccine against lethal MARV challenge in macaques. The ChAd3 platform has previously been reported to protect against the MARV-related viruses, Ebola virus (EBOV) and Sudan virus (SUDV), and MARV itself in macaques, with immunogenicity demonstrated in macaques and humans. In this study, we present data showing 100% protection against MARV Angola challenge (versus 0% control survival) and associated production of GP-specific IgGs generated by the ChAd3-MARV vaccine following a single dose of 1 × 1011 virus particles prepared in a new clinical formulation buffer designed to enhance product stability. These results are consistent with previously described data using the same vaccine in a different formulation and laboratory, demonstrating the reproducible and robust protective efficacy elicited by this promising vaccine for the prevention of MVD. Additionally, a qualified anti-GP MARV IgG ELISA was developed as a critical pre-requisite for clinical advancement and regulatory approval.
Collapse
|
research-article |
3 |
|
25
|
Hunegnaw R, Hait SH, Rahman MA, Enyindah-Asonye GM, Hoang T, Robert-Guroff M. Cervicovaginal and Alveolar Macrophage responses of Rhesus Macaques following Mucosal Adenovirus-SIV recombinant priming and systemic SIV envelope boosting. THE JOURNAL OF IMMUNOLOGY 2020. [DOI: 10.4049/jimmunol.204.supp.167.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Abstract
Vaccine strategies targeting the earliest stages of HIV infection at the mucosal portal of entry may prevent acquisition. Thus, understanding the immune profiles of mucosal cells after immunization is important for vaccine design. We vaccinated rhesus macaques with replicating Ad5hr-SIVenv/gag/nef or empty Ad5hr vector orally/intranasally and intra-tracheally, followed by intramuscular gp120 boosts in alum or alum only. Macaques were repeatedly challenged intravaginally with low doses of SIVmac251. We evaluated cervicovaginal macrophage (CM) responses to Ad5hr 3d post-immunization, and alveolar macrophage (AM) responses in BAL, as initial immunization was to the upper respiratory tract. CM showed significantly increased expression of the chemokines CCL3 (p<0.01), CCL4, CCL5 and CXCL8 (p<0.0001 for all) after the first prime, which decreased post-2nd boost. CD4+ T-cell frequency in the cervical mucosa was unchanged. CD16 expression was significantly increased post 2nd Ad and positively correlated with the number of challenges needed for infection (r=0.6763; p=0.0051). Immunization also increased expression of CD16 on AMs up to the 1st boost time point. Activation of AMs was evident by increased expression of CD40 and CD80 post-2nd Ad compared to naïve macaques. APRIL expression also significantly increased post-2nd Ad compared to naive levels and correlated with B cell frequency in BAL (r=0.7329; p=0.0019) and total IgG in BAL-Fluid (r=0.525; p=0.0471). These data indicate that the vaccine regimen did not induce recruitment of susceptible cells to the vaginal mucosa but increased CM CD16 expression associated with delayed SIV acquisition, and further induced AM cytokine expression that may be associated with B cell help.
Collapse
|
|
5 |
|