1
|
Wallace VP, Fitzgerald AJ, Shankar S, Flanagan N, Pye R, Cluff J, Arnone DD. Terahertz pulsed imaging of basal cell carcinoma ex vivo and in vivo. Br J Dermatol 2004; 151:424-32. [PMID: 15327550 DOI: 10.1111/j.1365-2133.2004.06129.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Terahertz radiation lies between the infrared and microwave regions of the electromagnetic spectrum and can be used to excite large amplitude vibrational modes of molecules and probe the weak interactions between them. Terahertz pulsed imaging (TPI) is a noninvasive imaging technique that utilises this radiation. OBJECTIVES To determine whether TPI could differentiate between basal cell carcinoma (BCC) and normal tissue and to test whether it can help facilitate delineation of tumour margins prior to surgery. METHODS A portable TPI system was used in the clinic to image 18 BCCs ex vivo and five in vivo. RESULTS The diseased tissue showed a change in terahertz properties compared with normal tissue, manifested through a broadening of the reflected terahertz pulse. Regions of disease identified in the terahertz image correlated well with histology. CONCLUSIONS This study has confirmed the potential of TPI to identify the extent of BCC in vivo and to delineate tumour margins. Further clinical study of TPI as a surgical tool is now required.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
102 |
2
|
Vohr BR, Oh W, Stewart EJ, Bentkover JD, Gabbard S, Lemons J, Papile LA, Pye R. Comparison of costs and referral rates of 3 universal newborn hearing screening protocols. J Pediatr 2001; 139:238-44. [PMID: 11487750 DOI: 10.1067/mpd.2001.115971] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To investigate the costs and referral rates of 3 universal newborn hearing screening programs: transient evoked otoacoustic emissions (TEOAE), automated auditory brainstem response (AABR), and a combination, two-step protocol in which TEOAE and AABR are used. STUDY DESIGN Clinical outcomes (referral rates) from 12,081 newborns at 5 sites were obtained by retrospective analysis. Prospective activity-based costing techniques (n = 1056) in conjunction with cost assumptions were used to analyze the costs based on an assumed annual birth rate of 1500 births. RESULTS Referral rates differed significantly among the 3 screening protocols (AABR, 3.21%; two-step, 4.67%; TEOAE, 6.49%; P <.01), with AABR achieving the best referral rate at discharge. Although AABR had the lowest referral rate at discharge and the highest pre-discharge costs, the total pre- and post-discharge costs per infant screened (AABR, $32.81; two-step, $33.05; TEOAE, $28.69) and costs per identified child (AABR, $16,405; two-step, $16,527; TEOAE, $14,347) were similar among programs. CONCLUSION Although AABR incurs higher costs during pre-discharge screening, it has lower referral rates than either the TEOAE or two-step program. As a result, the total costs of newborn hearing screening and diagnosis are similar among the 3 methods studied.
Collapse
|
Comparative Study |
24 |
80 |
3
|
Pye R, Hamede R, Siddle HV, Caldwell A, Knowles GW, Swift K, Kreiss A, Jones ME, Lyons AB, Woods GM. Demonstration of immune responses against devil facial tumour disease in wild Tasmanian devils. Biol Lett 2017; 12:rsbl.2016.0553. [PMID: 28120799 PMCID: PMC5095191 DOI: 10.1098/rsbl.2016.0553] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/22/2016] [Indexed: 01/02/2023] Open
Abstract
Devil facial tumour disease (DFTD) is a recently emerged fatal transmissible cancer decimating the wild population of Tasmanian devils (Sarcophilus harrisii). Biting transmits the cancer cells and the tumour develops in the new host as an allograft. The literature reports that immune escape mechanisms employed by DFTD inevitably result in host death. Here we present the first evidence that DFTD regression can occur and that wild devils can mount an immune response against the disease. Of the 52 devils tested, six had serum antibodies against DFTD cells and, in one case, prominent T lymphocyte infiltration in its tumour. Notably, four of the six devils with serum antibody had histories of DFTD regression. The novel demonstration of an immune response against DFTD in wild Tasmanian devils suggests that a proportion of wild devils can produce a protective immune response against naturally acquired DFTD. This has implications for tumour–host coevolution and vaccine development.
Collapse
|
Journal Article |
8 |
71 |
4
|
Pye R, Patchett A, McLennan E, Thomson R, Carver S, Fox S, Pemberton D, Kreiss A, Baz Morelli A, Silva A, Pearse MJ, Corcoran LM, Belov K, Hogg CJ, Woods GM, Lyons AB. Immunization Strategies Producing a Humoral IgG Immune Response against Devil Facial Tumor Disease in the Majority of Tasmanian Devils Destined for Wild Release. Front Immunol 2018. [PMID: 29515577 PMCID: PMC5826075 DOI: 10.3389/fimmu.2018.00259] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Devil facial tumor disease (DFTD) is renowned for its successful evasion of the host immune system. Down regulation of the major histocompatabilty complex class I molecule (MHC-I) on the DFTD cells is a primary mechanism of immune escape. Immunization trials on captive Tasmanian devils have previously demonstrated that an immune response against DFTD can be induced, and that immune-mediated tumor regression can occur. However, these trials were limited by their small sample sizes. Here, we describe the results of two DFTD immunization trials on cohorts of devils prior to their wild release as part of the Tasmanian Government’s Wild Devil Recovery project. 95% of the devils developed anti-DFTD antibody responses. Given the relatively large sample sizes of the trials (N = 19 and N = 33), these responses are likely to reflect those of the general devil population. DFTD cells manipulated to express MHC-I were used as the antigenic basis of the immunizations in both trials. Although the adjuvant composition and number of immunizations differed between trials, similar anti-DFTD antibody levels were obtained. The first trial comprised DFTD cells and the adjuvant combination of ISCOMATRIX™, polyIC, and CpG with up to four immunizations given at monthly intervals. This compared to the second trial whereby two immunizations comprising DFTD cells and the adjuvant combination ISCOMATRIX™, polyICLC (Hiltonol®) and imiquimod were given a month apart, providing a shorter and, therefore, more practical protocol. Both trials incorporated a booster immunization given up to 5 months after the primary course. A key finding was that devils in the second trial responded more quickly and maintained their antibody levels for longer compared to devils in the first trial. The different adjuvant combination incorporating the RNAase resistant polyICLC and imiquimod used in the second trial is likely to be responsible. The seroconversion in the majority of devils in these anti-DFTD immunization trials was remarkable, especially as DFTD is hallmarked by its immune evasion mechanisms. Microsatellite analyzes of MHC revealed that some MHC-I microsatellites correlated to stronger immune responses. These trials signify the first step in the long-term objective of releasing devils with immunity to DFTD into the wild.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
31 |
5
|
Stammnitz MR, Gori K, Kwon YM, Harry E, Martin FJ, Billis K, Cheng Y, Baez-Ortega A, Chow W, Comte S, Eggertsson H, Fox S, Hamede R, Jones M, Lazenby B, Peck S, Pye R, Quail MA, Swift K, Wang J, Wood J, Howe K, Stratton MR, Ning Z, Murchison EP. The evolution of two transmissible cancers in Tasmanian devils. Science 2023; 380:283-293. [PMID: 37079675 PMCID: PMC7614631 DOI: 10.1126/science.abq6453] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 03/20/2023] [Indexed: 04/22/2023]
Abstract
Tasmanian devils have spawned two transmissible cancer lineages, named devil facial tumor 1 (DFT1) and devil facial tumor 2 (DFT2). We investigated the genetic diversity and evolution of these clones by analyzing 78 DFT1 and 41 DFT2 genomes relative to a newly assembled, chromosome-level reference. Time-resolved phylogenetic trees reveal that DFT1 first emerged in 1986 (1982 to 1989) and DFT2 in 2011 (2009 to 2012). Subclone analysis documents transmission of heterogeneous cell populations. DFT2 has faster mutation rates than DFT1 across all variant classes, including substitutions, indels, rearrangements, transposable element insertions, and copy number alterations, and we identify a hypermutated DFT1 lineage with defective DNA mismatch repair. Several loci show plausible evidence of positive selection in DFT1 or DFT2, including loss of chromosome Y and inactivation of MGA, but none are common to both cancers. This study reveals the parallel long-term evolution of two transmissible cancers inhabiting a common niche in Tasmanian devils.
Collapse
|
research-article |
2 |
31 |
6
|
James S, Jennings G, Kwon YM, Stammnitz M, Fraik A, Storfer A, Comte S, Pemberton D, Fox S, Brown B, Pye R, Woods G, Lyons B, Hohenlohe PA, McCallum H, Siddle H, Thomas F, Ujvari B, Murchison EP, Jones M, Hamede R. Tracing the rise of malignant cell lines: Distribution, epidemiology and evolutionary interactions of two transmissible cancers in Tasmanian devils. Evol Appl 2019; 12:1772-1780. [PMID: 31548856 PMCID: PMC6752152 DOI: 10.1111/eva.12831] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/24/2019] [Accepted: 05/26/2019] [Indexed: 01/04/2023] Open
Abstract
Emerging infectious diseases are rising globally and understanding host-pathogen interactions during the initial stages of disease emergence is essential for assessing potential evolutionary dynamics and designing novel management strategies. Tasmanian devils (Sarcophilus harrisii) are endangered due to a transmissible cancer-devil facial tumour disease (DFTD)-that since its emergence in the 1990s, has affected most populations throughout Tasmania. Recent studies suggest that devils are adapting to the DFTD epidemic and that disease-induced extinction is unlikely. However, in 2014, a second and independently evolved transmissible cancer-devil facial tumour 2 (DFT2)-was discovered at the d'Entrecasteaux peninsula, in south-east Tasmania, suggesting that the species is prone to transmissible cancers. To date, there is little information about the distribution, epidemiology and effects of DFT2 and its interaction with DFTD. Here, we use data from monitoring surveys and roadkills found within and adjacent to the d'Entrecasteaux peninsula to determine the distribution of both cancers and to compare their epidemiological patterns. Since 2012, a total of 51 DFTD tumours have been confirmed among 26 individuals inside the peninsula and its surroundings, while 40 DFT2 tumours have been confirmed among 23 individuals, and two individuals co-infected with both tumours. All devils with DFT2 were found within the d'Entrecasteaux peninsula, suggesting that this new transmissible cancer is geographically confined to this area. We found significant differences in tumour bodily location in DFTD and DFT2, with non-facial tumours more commonly found in DFT2. There was a significant sex bias in DFT2, with most cases reported in males, suggesting that since DFT2 originated from a male host, females might be less susceptible to this cancer. We discuss the implications of our results for understanding the epidemiological and evolutionary interactions of these two contemporary transmissible cancers and evaluating the effectiveness of potential management strategies.
Collapse
|
research-article |
6 |
29 |
7
|
Kwon YM, Gori K, Park N, Potts N, Swift K, Wang J, Stammnitz MR, Cannell N, Baez-Ortega A, Comte S, Fox S, Harmsen C, Huxtable S, Jones M, Kreiss A, Lawrence C, Lazenby B, Peck S, Pye R, Woods G, Zimmermann M, Wedge DC, Pemberton D, Stratton MR, Hamede R, Murchison EP. Evolution and lineage dynamics of a transmissible cancer in Tasmanian devils. PLoS Biol 2020; 18:e3000926. [PMID: 33232318 PMCID: PMC7685465 DOI: 10.1371/journal.pbio.3000926] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/19/2020] [Indexed: 12/17/2022] Open
Abstract
Devil facial tumour 1 (DFT1) is a transmissible cancer clone endangering the Tasmanian devil. The expansion of DFT1 across Tasmania has been documented, but little is known of its evolutionary history. We analysed genomes of 648 DFT1 tumours collected throughout the disease range between 2003 and 2018. DFT1 diverged early into five clades, three spreading widely and two failing to persist. One clade has replaced others at several sites, and rates of DFT1 coinfection are high. DFT1 gradually accumulates copy number variants (CNVs), and its telomere lengths are short but constant. Recurrent CNVs reveal genes under positive selection, sites of genome instability, and repeated loss of a small derived chromosome. Cultured DFT1 cell lines have increased CNV frequency and undergo highly reproducible convergent evolution. Overall, DFT1 is a remarkably stable lineage whose genome illustrates how cancer cells adapt to diverse environments and persist in a parasitic niche.
Collapse
|
research-article |
5 |
17 |
8
|
Wilkinson V, Takano K, Nichols D, Martin A, Holme R, Phalen D, Mounsey K, Charleston M, Kreiss A, Pye R, Browne E, Næsborg-Nielsen C, Richards SA, Carver S. Fluralaner as a novel treatment for sarcoptic mange in the bare-nosed wombat (Vombatus ursinus): safety, pharmacokinetics, efficacy and practicable use. Parasit Vectors 2021; 14:18. [PMID: 33407820 PMCID: PMC7789169 DOI: 10.1186/s13071-020-04500-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/23/2020] [Indexed: 12/16/2022] Open
Abstract
Background Sarcoptic mange causes significant animal welfare and occasional conservation concerns for bare-nosed wombats (Vombatus ursinus) throughout their range. To date, in situ chemotherapeutic interventions have involved macrocytic lactones, but their short duration of action and need for frequent re-administration has limited treatment success. Fluralaner (Bravecto®; MSD Animal Health), a novel isoxazoline class ectoparasiticide, has several advantageous properties that may overcome such limitations. Methods Fluralaner was administered topically at 25 mg/kg (n = 5) and 85 mg/kg (n = 2) to healthy captive bare-nosed wombats. Safety was assessed over 12 weeks by clinical observation and monitoring of haematological and biochemical parameters. Fluralaner plasma pharmacokinetics were quantified using ultra-performance liquid chromatography and tandem mass spectrometry. Efficacy was evaluated through clinical assessment of response to treatment, including mange and body condition scoring, for 15 weeks after topical administration of 25 mg/kg fluralaner to sarcoptic mange-affected wild bare-nosed wombats (n = 3). Duration of action was determined through analysis of pharmacokinetic parameters and visual inspection of study subjects for ticks during the monitoring period. Methods for diluting fluralaner to enable ‘pour-on’ application were compared, and an economic and treatment effort analysis of fluralaner relative to moxidectin was undertaken. Results No deleterious health impacts were detected following fluralaner administration. Fluralaner was absorbed and remained quantifiable in plasma throughout the monitoring period. For the 25 mg/kg and 85 mg/kg treatment groups, the respective means for maximum recorded plasma concentrations (Cmax) were 6.2 and 16.4 ng/ml; for maximum recorded times to Cmax, 3.0 and 37.5 days; and for plasma elimination half-lives, 40.1 and 166.5 days. Clinical resolution of sarcoptic mange was observed in all study animals within 3–4 weeks of treatment, and all wombats remained tick-free for 15 weeks. A suitable product for diluting fluralaner into a ‘pour-on’ was found. Treatment costs were competitive, and predicted treatment effort was substantially lower relative to moxidectin. Conclusions Fluralaner appears to be a safe and efficacious treatment for sarcoptic mange in the bare-nosed wombat, with a single dose lasting over 1–3 months. It has economic and treatment-effort-related advantages over moxidectin, the most commonly used alternative. We recommend a dose of 25 mg/kg fluralaner and, based on the conservative assumption that at least 50% of a dose makes dermal contact, Bravecto Spot-On for Large Dogs as the most appropriate formulation for adult bare-nosed wombats. Graphical abstract ![]()
Collapse
|
Journal Article |
4 |
6 |
9
|
Wallace VP, Fitzgerald AJ, Shankar S, Flanagan N, Pye R, Cluff J, Arnone DD. Terahertz pulsed imaging of basal cell carcinoma ex vivo and in vivo. Br J Dermatol 2004. [PMID: 15327550 DOI: 10.1111/bjd.2004.151.issue-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
BACKGROUND Terahertz radiation lies between the infrared and microwave regions of the electromagnetic spectrum and can be used to excite large amplitude vibrational modes of molecules and probe the weak interactions between them. Terahertz pulsed imaging (TPI) is a noninvasive imaging technique that utilises this radiation. OBJECTIVES To determine whether TPI could differentiate between basal cell carcinoma (BCC) and normal tissue and to test whether it can help facilitate delineation of tumour margins prior to surgery. METHODS A portable TPI system was used in the clinic to image 18 BCCs ex vivo and five in vivo. RESULTS The diseased tissue showed a change in terahertz properties compared with normal tissue, manifested through a broadening of the reflected terahertz pulse. Regions of disease identified in the terahertz image correlated well with histology. CONCLUSIONS This study has confirmed the potential of TPI to identify the extent of BCC in vivo and to delineate tumour margins. Further clinical study of TPI as a surgical tool is now required.
Collapse
|
Evaluation Study |
21 |
5 |
10
|
Mallett R, Pye R. Risks and benefits of prophylactic antimalarial drugs. BMJ (CLINICAL RESEARCH ED.) 1989; 299:1400. [PMID: 2513979 PMCID: PMC1838225 DOI: 10.1136/bmj.299.6712.1400-a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
Case Reports |
36 |
5 |
11
|
Pye R, Darby J, Flies AS, Fox S, Carver S, Elmer J, Swift K, Hogg C, Pemberton D, Woods G, Lyons AB. Post-release immune responses of Tasmanian devils vaccinated with an experimental devil facial tumour disease vaccine. WILDLIFE RESEARCH 2021. [DOI: 10.1071/wr20210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Abstract
ContextDisease is increasingly becoming a driver of wildlife population declines and an extinction risk. Vaccines are one of the most successful health interventions in human history, but few have been tested for mitigating wildlife disease. The transmissible cancer, devil facial tumour disease (DFTD), triggered the Tasmanian devil’s (Sarcophilus harrisii) inclusion on the international endangered species list. In 2016, 33 devils from a DFTD-free insurance population were given an experimental DFTD vaccination before their wild release on the Tasmanian northern coast.
AimTo determine the efficacy of the vaccination protocol and the longevity of the induced responses.
MethodSix trapping trips took place over the 2.5 years following release, and both vaccinated and incumbent devils had blood samples and tumour biopsies collected.
Key resultsIn all, 8 of the 33 vaccinated devils were re-trapped, and six of those developed DFTD within the monitoring period. Despite the lack of protection provided by the vaccine, we observed signs of immune activation not usually found in unvaccinated devils. First, sera collected from the eight devils showed that anti-DFTD antibodies persisted for up to 2 years post-vaccination. Second, tumour-infiltrating lymphocytes were found in three of four biopsies collected from vaccinated devils, which contrasts with the ‘immune deserts’ typical of DFTs; only 1 of the 20 incumbent devils with DFTD had a tumour biopsy exhibiting immune-cell infiltrate. Third, immunohistochemical analysis of the vaccinated devils’ tumour biopsies identified the functional immune molecules associated with antigen-presenting cells (MHC-II) and T-cells (CD3), and the immune checkpoint molecule PD-1, all being associated with anti-tumour immunity in other species.
ConclusionsThese results correlate with our previous study on captive devils in which a prophylactic vaccine primed the devil immune system and, following DFTD challenge and tumour growth, immunotherapy induced complete tumour regressions. The field trial results presented here provide further evidence that the devil immune system can be primed to recognise DFTD cells, but additional immune manipulation could be needed for complete protection or induction of tumour regressions.
ImplicationsA protective DFTD vaccine would provide a valuable management approach for conservation of the Tasmanian devil.
Collapse
|
|
4 |
5 |
12
|
Wilkinson V, Takano K, Nichols D, Martin A, Holme R, Phalen D, Mounsey K, Charleston M, Kreiss A, Pye R, Browne E, Næsborg-Nielsen C, Richards SA, Carver S. Correction to: Fluralaner as a novel treatment for sarcoptic mange in the bare-nosed wombat (Vombatus ursinus): safety, pharmacokinetics, efficacy and practicable use. Parasit Vectors 2021; 14:140. [PMID: 33673849 PMCID: PMC7934268 DOI: 10.1186/s13071-021-04658-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
|
Published Erratum |
4 |
2 |
13
|
Connellan M, Orr Y, Pye R, Granger E, Dhital K, Soto C, Malouf M, Spratt P, Glanville A, Jansz P. 706 100% 3-Year Survival after Extracorporeal Membrane Oxygenation (ECMO) Bridge to Lung Transplantation (N=10). J Heart Lung Transplant 2012. [DOI: 10.1016/j.healun.2012.01.721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
|
13 |
1 |
14
|
Andvik S, Soto C, Jackson A, Pye R, Nichols M, Fulde G, Granger E. CPR-ECMO for In-Hospital Cardiac Arrest: What are the Predictive Factors for Survival and are We Missing Anyone? Heart Lung Circ 2012. [DOI: 10.1016/j.hlc.2012.05.582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
|
13 |
|
15
|
Slimani E, Soto C, Pye R, Granger E, Robson D, Macdonald P, Keogh A, Kotlyar E, Dhital K, Spratt P, Hayward C, Jansz P. 582 Veno-Pulmonary Arterial ECMO as Temporary Right Ventricular Support in Patients Undergoing Left Ventricular Assist Device Implantation. J Heart Lung Transplant 2012. [DOI: 10.1016/j.healun.2012.01.595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
|
13 |
|
16
|
Green T, Grant J, Pye R, Marcus R. Multiple primary cutaneous plasmacytomas. ARCHIVES OF DERMATOLOGY 1992; 128:962-5. [PMID: 1626965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Cutaneous plasmacytoma is an uncommon tumor and is mostly seen in the context of end-stage multiple myeloma. Only 20 cases of primary cutaneous plasmacytoma have been documented. A significant proportion of these patients went on to develop systemic disease with a poor prognosis. In a number of patients, however, the abnormal clone of plasma cells may arise in the skin and never progress to multiple myeloma involving the bone marrow. OBSERVATIONS We describe a patient who developed multiple primary cutaneous plasmacytomas after a possible insect bite reaction. The monoclonality of the tumor cells is demonstrated using immunohistochemical techniques. He has been treated vigorously with chemotherapy and local radiotherapy and remains well 3 years after diagnosis. Bone marrow has been harvested for use as an autologous bone marrow transplant in the event of systemic relapse. CONCLUSIONS Unlike previous reports of this rare entity, this case documents the monoclonality of tissue plasma cells with immunohistochemical techniques. As cutaneous plasmacytomas have been reported with an early significant mortality, unlike extramedullary plasmacytomas elsewhere, we have advocated combination chemotherapy and cryopreservation of uninvolved bone marrow for future autologous bone marrow transplantation should systemic myelomatosis develop in the patient.
Collapse
|
Case Reports |
33 |
|
17
|
Granger E, Soto C, Jackson A, Pye R, Jansz P, Dhital K, Hayward C, Macdonald P, Spratt P. Venous Arterial Ecmo: “Good for Some, Not for All”. Heart Lung Circ 2011. [DOI: 10.1016/j.hlc.2010.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
|
14 |
|
18
|
Breeding J, Nair P, Nguyen N, Buscher H, Frost C, Gopal M, Pye R, Whittam S. Is peripheral arterial waveform analysis continuous cardiac output monitoring useful with assessment of oxygenation status for patients on veno–venous extracorporeal membrane oxygenation? Aust Crit Care 2013. [DOI: 10.1016/j.aucc.2013.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
|
12 |
|
19
|
Hussey K, Caldwell A, Kreiss A, Skjødt K, Gastaldello A, Pye R, Hamede R, Woods GM, Siddle HV. Expression of the Nonclassical MHC Class I, Saha-UD in the Transmissible Cancer Devil Facial Tumour Disease (DFTD). Pathogens 2022; 11:pathogens11030351. [PMID: 35335675 PMCID: PMC8953681 DOI: 10.3390/pathogens11030351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/16/2022] Open
Abstract
Devil facial tumour disease (DFTD) is a transmissible cancer that has circulated in the Tasmanian devil population for >25 years. Like other contagious cancers in dogs and devils, the way DFTD escapes the immune response of its host is a central question to understanding this disease. DFTD has a low major histocompatibility complex class I (MHC-I) expression due to epigenetic modifications, preventing host immune recognition of mismatched MHC-I molecules by T cells. However, the total MHC-I loss should result in natural killer (NK) cell activation due to the ‘missing self’. Here, we have investigated the expression of the nonclassical MHC-I, Saha-UD as a potential regulatory or suppressive mechanism for DFTD. A monoclonal antibody was generated against the devil Saha-UD that binds recombinant Saha-UD by Western blot, with limited crossreactivity to the classical MHC-I, Saha-UC and nonclassical Saha-UK. Using this antibody, we confirmed the expression of Saha-UD in 13 DFTD tumours by immunohistochemistry (n = 15) and demonstrated that Saha-UD expression is heterogeneous, with 12 tumours showing intratumour heterogeneity. Immunohistochemical staining for the Saha-UD showed distinct patterns of expression when compared with classical MHC-I molecules. The nonclassical Saha-UD expression by DFTD tumours in vivo may be a mechanism for immunosuppression, and further work is ongoing to characterise its ligand on immune cells.
Collapse
|
research-article |
3 |
|