1
|
Lin L, Faraco J, Li R, Kadotani H, Rogers W, Lin X, Qiu X, de Jong PJ, Nishino S, Mignot E. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 1999; 98:365-76. [PMID: 10458611 DOI: 10.1016/s0092-8674(00)81965-0] [Citation(s) in RCA: 1740] [Impact Index Per Article: 66.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Narcolepsy is a disabling sleep disorder affecting humans and animals. It is characterized by daytime sleepiness, cataplexy, and striking transitions from wakefulness into rapid eye movement (REM) sleep. In this study, we used positional cloning to identify an autosomal recessive mutation responsible for this sleep disorder in a well-established canine model. We have determined that canine narcolepsy is caused by disruption of the hypocretin (orexin) receptor 2 gene (Hcrtr2). This result identifies hypocretins as major sleep-modulating neurotransmitters and opens novel potential therapeutic approaches for narcoleptic patients.
Collapse
|
|
26 |
1740 |
2
|
Peyron C, Faraco J, Rogers W, Ripley B, Overeem S, Charnay Y, Nevsimalova S, Aldrich M, Reynolds D, Albin R, Li R, Hungs M, Pedrazzoli M, Padigaru M, Kucherlapati M, Fan J, Maki R, Lammers GJ, Bouras C, Kucherlapati R, Nishino S, Mignot E. A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat Med 2000; 6:991-7. [PMID: 10973318 DOI: 10.1038/79690] [Citation(s) in RCA: 1397] [Impact Index Per Article: 55.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We explored the role of hypocretins in human narcolepsy through histopathology of six narcolepsy brains and mutation screening of Hcrt, Hcrtr1 and Hcrtr2 in 74 patients of various human leukocyte antigen and family history status. One Hcrt mutation, impairing peptide trafficking and processing, was found in a single case with early onset narcolepsy. In situ hybridization of the perifornical area and peptide radioimmunoassays indicated global loss of hypocretins, without gliosis or signs of inflammation in all human cases examined. Although hypocretin loci do not contribute significantly to genetic predisposition, most cases of human narcolepsy are associated with a deficient hypocretin system.
Collapse
|
Case Reports |
25 |
1397 |
3
|
Abstract
We have investigated the feedback control that prevents cells with incompletely assembled spindles from leaving mitosis. We isolated budding yeast mutants sensitive to the anti-microtubule drug benomyl. Mitotic arrest-deficient (mad) mutants are the subclass of benomyl-sensitive mutants in which the completion of mitosis is not delayed in the presence of benomyl and that die as a consequence of their premature exit from mitosis. A number of properties of the mad mutants indicate that they are defective in the feedback control over the exit from mitosis: their killing by benomyl requires passage through mitosis; their benomyl sensitivity can be suppressed by an independent method for delaying the exit from mitosis; they have normal microtubules; and they have increased frequencies of chromosome loss. We cloned MAD2, which encodes a putative calcium-binding protein whose disruption is lethal. We discuss the role of feedback controls in coordinating events in the cell cycle.
Collapse
|
|
34 |
898 |
4
|
Lyons I, Parsons LM, Hartley L, Li R, Andrews JE, Robb L, Harvey RP. Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2-5. Genes Dev 1995; 9:1654-66. [PMID: 7628699 DOI: 10.1101/gad.9.13.1654] [Citation(s) in RCA: 848] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The murine homeo box gene Nkx2-5 is expressed in precardiac mesoderm and in the myocardium of embryonic and fetal hearts. Targeted interruption of Nkx2-5 resulted in abnormal heart morphogenesis, growth retardation and embryonic lethality at approximately 9-10 days postcoitum (p.c.). Heart tube formation occurred normally in mutant embryos, but looping morphogenesis, a critical determinant of heart form, was not initiated at the linear heart tube stage (8.25-8.5 days p.c.). Commitment to the cardiac muscle lineage, expression of most myofilament genes and myofibrillogenesis were not compromised. However, the myosin light-chain 2V gene (MLC2V) was not expressed in mutant hearts nor in mutant ES cell-derived cardiocytes. MLC2V expression normally occurs only in ventricular cells and is the earliest known molecular marker of ventricular differentiation. The regional expression in mutant hearts of two other ventricular markers, myosin heavy-chain beta and cyclin D2, indicated that not all ventricle-specific gene expression is dependent on Nkx2-5. The data demonstrate that Nkx2-5 is essential for normal heart morphogenesis, myogenesis, and function. Furthermore, this gene is a component of a genetic pathway required for myogenic specialization of the ventricles.
Collapse
|
|
30 |
848 |
5
|
Qi XL, Li R, Zang J, Zhang SC. Inducing a Magnetic Monopole with Topological Surface States. Science 2009; 323:1184-7. [DOI: 10.1126/science.1167747] [Citation(s) in RCA: 745] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
|
16 |
745 |
6
|
Köntgen F, Grumont RJ, Strasser A, Metcalf D, Li R, Tarlinton D, Gerondakis S. Mice lacking the c-rel proto-oncogene exhibit defects in lymphocyte proliferation, humoral immunity, and interleukin-2 expression. Genes Dev 1995; 9:1965-77. [PMID: 7649478 DOI: 10.1101/gad.9.16.1965] [Citation(s) in RCA: 584] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The c-rel proto-oncogene, which is expressed predominantly in hemopoietic cells encodes a subunit of the NF-kappa B-like family of transcription factors. In mice with an inactivated c-rel gene, whereas development of cells from all hemopoietic lineages appeared normal, humoral immunity was impaired and mature B and T cells were found to be unresponsive to most mitogenic stimuli. Phorbol ester and calcium ionophore costimulation, in contrast to certain membrane receptor-mediated signals, overcame the T cell-proliferative defect, demonstrating that T cell proliferation occurs by Rel-dependent and -independent mechanisms. The ability of exogenous interleukin-2 to restore T Cell, but not B cell, proliferation indicates that Rel regulates the expression of different genes in B and T cells that are crucial for cell division and immune function.
Collapse
|
|
30 |
584 |
7
|
Zhu YY, Machleder EM, Chenchik A, Li R, Siebert PD. Reverse transcriptase template switching: a SMART approach for full-length cDNA library construction. Biotechniques 2001; 30:892-7. [PMID: 11314272 DOI: 10.2144/01304pf02] [Citation(s) in RCA: 565] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Here, we describe a fast, simple method for constructing full-length cDNA libraries using SMART technology. This novel procedure uses the template-switching activity of Moloney murine leukemia virus (MMLV) reverse transcriptase to synthesize and anchor first-strand cDNA in one step. Following reverse transcription, three cycles of PCR are performed using a modified oligo(dT) primer and an anchor primer to enrich the cDNA population for full-length sequences. Starting with 1 microgram human skeletal muscle poly(A)+ RNA, a cDNA library was constructed that contained 3 x 10(6) independent clones with an average insert size of 2 kb. Sequence analysis of 172 randomly selected clones showed that 77% of cDNA clones corresponding to known genes contained intact open reading frames. The average length of complete open reading frames was 2.4 kb. Furthermore, 86% of the full-length clones retained longer 5' UTR sequences than the longest 5' end deposited in the GenBank database. cDNA libraries generated using this method will be useful for accelerating the collection of mRNA 5' end sequence information, which is currently very limited in GenBank.
Collapse
|
|
24 |
565 |
8
|
Li R, Waga S, Hannon GJ, Beach D, Stillman B. Differential effects by the p21 CDK inhibitor on PCNA-dependent DNA replication and repair. Nature 1994; 371:534-7. [PMID: 7935768 DOI: 10.1038/371534a0] [Citation(s) in RCA: 475] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In mammalian cells, DNA damage increases the levels of the nuclear tumour-suppressor p53, resulting in elevated synthesis of p21, an inhibitor of cyclin-dependent kinases (CDK). p21 may also directly block DNA replication by inhibiting the proliferating-cell nuclear antigen (PCNA), an essential DNA replication protein. However, PCNA is also required for nucleotide-excision repair of DNA, an intrinsic part of the cellular response to ultraviolet irradiation. Using an in vitro system, we now show that p21 does not block PCNA-dependent nucleotide-excision repair, in contrast to its inhibition of simian virus 40 DNA replication. Furthermore, the short gap-filling DNA synthesis by PCNA-dependent DNA polymerases delta and epsilon is less sensitive to inhibition by p21 than is long primer-extension synthesis. The ability of p21 to inhibit the role of PCNA in DNA replication but not in DNA repair rationalizes in vivo data showing that genetic damage leads to inactivation of chromosomal replication while allowing damage-responsive repair.
Collapse
|
|
31 |
475 |
9
|
Heikenfeld J, Jajack A, Rogers J, Gutruf P, Tian L, Pan T, Li R, Khine M, Kim J, Wang J, Kim J. Wearable sensors: modalities, challenges, and prospects. LAB ON A CHIP 2018; 18:217-248. [PMID: 29182185 PMCID: PMC5771841 DOI: 10.1039/c7lc00914c] [Citation(s) in RCA: 472] [Impact Index Per Article: 67.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Wearable sensors have recently seen a large increase in both research and commercialization. However, success in wearable sensors has been a mix of both progress and setbacks. Most of commercial progress has been in smart adaptation of existing mechanical, electrical and optical methods of measuring the body. This adaptation has involved innovations in how to miniaturize sensing technologies, how to make them conformal and flexible, and in the development of companion software that increases the value of the measured data. However, chemical sensing modalities have experienced greater challenges in commercial adoption, especially for non-invasive chemical sensors. There have also been significant challenges in making significant fundamental improvements to existing mechanical, electrical, and optical sensing modalities, especially in improving their specificity of detection. Many of these challenges can be understood by appreciating the body's surface (skin) as more of an information barrier than as an information source. With a deeper understanding of the fundamental challenges faced for wearable sensors and of the state-of-the-art for wearable sensor technology, the roadmap becomes clearer for creating the next generation of innovations and breakthroughs.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
472 |
10
|
Uruno T, Liu J, Zhang P, Egile C, Li R, Mueller SC, Zhan X. Activation of Arp2/3 complex-mediated actin polymerization by cortactin. Nat Cell Biol 2001; 3:259-66. [PMID: 11231575 DOI: 10.1038/35060051] [Citation(s) in RCA: 464] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cortactin, a filamentous actin (F-actin)-associated protein and prominent substrate of Src, is implicated in progression of breast tumours through gene amplification at chromosome 11q13. However, the function of cortactin remains obscure. Here we show that cortactin co-localizes with the Arp2/3 complex, a de novo actin nucleator, at dynamic particulate structures enriched with actin filaments. Cortactin binds directly to the Arp2/3 complex and activates it to promote nucleation of actin filaments. The interaction of cortactin with the Arp2/3 complex occurs at an amino-terminal domain that is rich in acidic amino acids. Mutations in a conserved amino-acid sequence of DDW abolish both the interaction with the Arp2/3 complex and complex activation. The N-terminal domain is not only essential but also sufficient to target cortactin to actin-enriched patches within cells. Interestingly, the ability of cortactin to activate the Arp2/3 complex depends on an activity for F-actin binding, which is almost 20-fold higher than that of the Arp2/3 complex. Our data indicate a new mechanism for activation of actin polymerization involving an enhanced interaction between the Arp2/3 complex and actin filaments.
Collapse
|
|
24 |
464 |
11
|
Robb L, Lyons I, Li R, Hartley L, Köntgen F, Harvey RP, Metcalf D, Begley CG. Absence of yolk sac hematopoiesis from mice with a targeted disruption of the scl gene. Proc Natl Acad Sci U S A 1995; 92:7075-9. [PMID: 7624372 PMCID: PMC41474 DOI: 10.1073/pnas.92.15.7075] [Citation(s) in RCA: 433] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The scl gene encodes a basic-helix-loop-helix transcription factor which was identified through its involvement in chromosomal translocations in T-cell leukemia. To elucidate its physiological role, scl was targeted in embryonic stem cells. Mice heterozygous for the scl null mutation were intercrossed and their offspring were genotyped. Homozygous mutant (scl-/-) pups were not detected in newborn litters, and analysis at earlier time points demonstrated that scl-/- embryos were dying around embryonic day 9.5. The scl-/- embryos were pale, edematous, and markedly growth retarded after embryonic day 8.75. Histological studies showed complete absence of recognizable hematopoiesis in the yolk sac of these embryos. Early organogenesis appeared to be otherwise normal. Culture of yolk sac cells of wild-type, heterozygous, and homozygous littermates confirmed the absence of hematopoietic cells in scl-/- yolk sacs. Reverse transcription PCR was used to examine the transcripts of several genes implicated in early hematopoiesis. Transcripts of GATA-1 and PU.1 transcription factors were absent from RNA from scl-/- yolk sacs and embryos. These results implicate scl as a crucial regulator of early hematopoiesis.
Collapse
|
research-article |
30 |
433 |
12
|
Yang Y, Li R, Qi M. In vivo analysis of plant promoters and transcription factors by agroinfiltration of tobacco leaves. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 22:543-51. [PMID: 10886774 DOI: 10.1046/j.1365-313x.2000.00760.x] [Citation(s) in RCA: 379] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A convenient, Agrobacterium-mediated transient expression assay has been evaluated for rapid analysis of plant promoters and transcription factors in vivo. By simple infiltration of Agrobacterium cells carrying appropriate plasmid constructs into tobacco leaves in planta, reproducible expression assays could be conducted in as little as 2-3 days without using expensive equipment (e.g. biolistic gun or electroporation apparatus) or complicated procedures (e.g. preparation of protoplasts). Biotic and abiotic treatments could be applied to the intact plant to examine their influence on promoter activity and gene expression. Using this method, we have tested the stress-responsive as-1 and heat shock elements, yeast GAL4 transactivation system, two promoters of pathogenesis-related (PR) genes as well as a heat shock promoter. Through deletion analyses of tobacco PR1a promoter and a novel myb1 promoter, we have also successfully identified the cis-regulatory regions in these promoters that are responsive to salicylic acid treatment or tobacco mosaic virus infection. Together, our results demonstrate that Agrobacterium-mediated transient expression is a simple and efficient method for in vivo assays of plant promoters and transcription factors.
Collapse
|
|
25 |
379 |
13
|
Squyres SW, Arvidson RE, Bell JF, Brückner J, Cabrol NA, Calvin W, Carr MH, Christensen PR, Clark BC, Crumpler L, Des Marais DJ, d'Uston C, Economou T, Farmer J, Farrand W, Folkner W, Golombek M, Gorevan S, Grant JA, Greeley R, Grotzinger J, Haskin L, Herkenhoff KE, Hviid S, Johnson J, Klingelhöfer G, Knoll A, Landis G, Lemmon M, Li R, Madsen MB, Malin MC, McLennan SM, McSween HY, Ming DW, Moersch J, Morris RV, Parker T, Rice JW, Richter L, Rieder R, Sims M, Smith M, Smith P, Soderblom LA, Sullivan R, Wänke H, Wdowiak T, Wolff M, Yen A. The Spirit Rover's Athena Science Investigation at Gusev Crater, Mars. Science 2004. [DOI: 10.1126/science.3050794] [Citation(s) in RCA: 337] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
|
21 |
337 |
14
|
Zhang J, Tian XJ, Zhang H, Teng Y, Li R, Bai F, Elankumaran S, Xing J. TGF- -induced epithelial-to-mesenchymal transition proceeds through stepwise activation of multiple feedback loops. Sci Signal 2014; 7:ra91. [DOI: 10.1126/scisignal.2005304] [Citation(s) in RCA: 326] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
|
11 |
326 |
15
|
Robb L, Li R, Hartley L, Nandurkar HH, Koentgen F, Begley CG. Infertility in female mice lacking the receptor for interleukin 11 is due to a defective uterine response to implantation. Nat Med 1998; 4:303-8. [PMID: 9500603 DOI: 10.1038/nm0398-303] [Citation(s) in RCA: 316] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
During early pregnancy, in response to the implanting embryo, the surrounding uterine stroma undergoes a dramatic transformation into a specialized tissue known as the decidua. The decidua encapsulates the developing embryo, facilitating nutrient transfer and limiting trophoblast invasion. Here we show that female mice with a null mutation of the interleukin-11 receptor alpha chain are infertile because of defective decidualization. A temporal analysis revealed IL-11 expression is maximal in the normal pregnant uterus at the time of decidualization, and in situ hybridization studies showed expression of the IL-11 and the IL-11 receptor alpha chain in the developing decidual cells. These observations reveal a previously unrecognized critical role for IL-11 signaling in female reproduction.
Collapse
|
|
27 |
316 |
16
|
Lippincott J, Li R. Sequential assembly of myosin II, an IQGAP-like protein, and filamentous actin to a ring structure involved in budding yeast cytokinesis. J Cell Biol 1998; 140:355-66. [PMID: 9442111 PMCID: PMC2132585 DOI: 10.1083/jcb.140.2.355] [Citation(s) in RCA: 305] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/1997] [Revised: 11/10/1997] [Indexed: 02/05/2023] Open
Abstract
We have identified a Saccharomyces cerevisiae protein, Cyk1p, that exhibits sequence similarity to the mammalian IQGAPs. Gene disruption of Cyk1p results in a failure in cytokinesis without affecting other events in the cell cycle. Cyk1p is diffused throughout most of the cell cycle but localizes to a ring structure at the mother-bud junction after the initiation of anaphase. This ring contains filamentous actin and Myo1p, a myosin II homologue. In vivo observation with green fluorescent protein-tagged Myo1p showed that the ring decreases drastically in size during cell division and therefore may be contractile. These results indicate that cytokinesis in budding yeast is likely to involve an actomyosin-based contractile ring. The assembly of this ring occurs in temporally distinct steps: Myo1p localizes to a ring that overlaps the septins at the G1-S transition slightly before bud emergence; Cyk1p and actin then accumulate in this ring after the activation of the Cdc15 pathway late in mitosis. The localization of myosin is abolished by a mutation in Cdc12p, implicating a role for the septin filaments in the assembly of the actomyosin ring. The accumulation of actin in the cytokinetic ring was not observed in cells depleted of Cyk1p, suggesting that Cyk1p plays a role in the recruitment of actin filaments, perhaps through a filament-binding activity similar to that demonstrated for mammalian IQGAPs.
Collapse
|
research-article |
27 |
305 |
17
|
Li R, Clark AE, Hench LL. An investigation of bioactive glass powders by sol-gel processing. JOURNAL OF APPLIED BIOMATERIALS : AN OFFICIAL JOURNAL OF THE SOCIETY FOR BIOMATERIALS 1999; 2:231-9. [PMID: 10171144 DOI: 10.1002/jab.770020403] [Citation(s) in RCA: 299] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Bioactive glass powders, with a composition of SiO 2-CaO-P 2O 5, have been successfully synthesized via a sol-gel process at considerably lower temperatures than required for conventional melting methods. Bioactive glass powders made via conventional methods form an interfacial bond with bone when they are implanted. Bonding is correlated with the formation of a surface hydroxyapatite layer. This study examined the formation of a hydroxyapatite layer in Tris-buffered solution as a function of SiO 2 content of sol-gel derived powders. A FT-IRRS technique was used to monitor the formation of the hydroxyapatite on the surface of the powders. X-ray diffraction analysis and BET were also used to characterize the chemical and physical properties of the sol-gel derived bioactive powders. It was discovered that: (a) the rate of hydroxyapatite formation decreased with increasing SiO 2 content for powders whose SiO 2 content was less than 90 mol%; (b) a hydroxyapatite film does not form for the powders whose SiO 2 content is more than 90 mol%; (c) the SiO 2 limit, beyond which the powders lost their bioactivity, was much higher for bioactive glass powders made through sol-gel process (90%) than those made by conventional melting methods (60%). These results indicate that it is possible to significantly expand the bioactive composition range through microstructural control made possible by sol-gel processing techniques.
Collapse
|
|
26 |
299 |
18
|
Zhong X, Chung ACK, Chen HY, Dong Y, Meng XM, Li R, Yang W, Hou FF, Lan HY. miR-21 is a key therapeutic target for renal injury in a mouse model of type 2 diabetes. Diabetologia 2013; 56:663-74. [PMID: 23292313 DOI: 10.1007/s00125-012-2804-x] [Citation(s) in RCA: 275] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 11/27/2012] [Indexed: 10/27/2022]
Abstract
AIMS/HYPOTHESIS As microRNA-21 (miR-21) plays a pathological role in fibrosis, we hypothesised that it may be a therapeutic target for diabetic nephropathy. METHODS Abundance of miR-21 was examined in diabetic kidneys from db/db mice. The therapeutic potential of miR-21 in diabetic kidney injury was examined in db/db mice by an ultrasound-microbubble-mediated miR-21 small hairpin RNA transfer. In addition, the role and mechanisms of miR-21 in diabetic renal injury were examined in vitro under diabetic conditions in rat mesangial and tubular epithelial cell lines by overexpressing or downregulating miR-21. RESULTS In db/db mice, a mouse model of type 2 diabetes, renal miR-21 at age 20 weeks was increased twofold compared with db/m (+) mice at the same age, and this increase was associated with the development of microalbuminuria and renal fibrosis and inflammation. More importantly, gene transfer of miR-21 knockdown plasmids into the diabetic kidneys of db/db mice at age 10 weeks significantly ameliorated microalbuminuria and renal fibrosis and inflammation at age 20 weeks, revealing a therapeutic potential for diabetic nephropathy by targeting miR-21. Overexpression of miR-21 in kidney cells enhanced, but knockdown of miR-21 suppressed, high-glucose-induced production of fibrotic and inflammatory markers. Targeting Smad7 may be a mechanism by which miR-21 regulates renal injury because knockdown of renal miR-21 restored Smad7 levels and suppressed activation of the TGF-β and NF-κB signalling pathways. CONCLUSIONS/INTERPRETATION Inhibition of miR-21 might be an effective therapy for diabetic nephropathy.
Collapse
|
|
12 |
275 |
19
|
Li R, Bianchet MA, Talalay P, Amzel LM. The three-dimensional structure of NAD(P)H:quinone reductase, a flavoprotein involved in cancer chemoprotection and chemotherapy: mechanism of the two-electron reduction. Proc Natl Acad Sci U S A 1995; 92:8846-50. [PMID: 7568029 PMCID: PMC41064 DOI: 10.1073/pnas.92.19.8846] [Citation(s) in RCA: 268] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Quinone reductase [NAD(P)H:(quinone acceptor) oxidoreductase, EC 1.6.99.2], also called DT diaphorase, is a homodimeric FAD-containing enzyme that catalyzes obligatory NAD(P)H-dependent two-electron reductions of quinones and protects cells against the toxic and neoplastic effects of free radicals and reactive oxygen species arising from one-electron reductions. These two-electron reductions participate in the reductive bioactivation of cancer chemotherapeutic agents such as mitomycin C in tumor cells. Thus, surprisingly, the same enzymatic reaction that protects normal cells activates cytotoxic drugs used in cancer chemotherapy. The 2.1-A crystal structure of rat liver quinone reductase reveals that the folding of a portion of each monomer is similar to that of flavodoxin, a bacterial FMN-containing protein. Two additional portions of the polypeptide chains are involved in dimerization and in formation of the two identical catalytic sites to which both monomers contribute. The crystallographic structures of two FAD-containing enzyme complexes (one containing NADP+, the other containing duroquinone) suggest that direct hydride transfers from NAD(P)H to FAD and from FADH2 to the quinone [which occupies the site vacated by NAD(P)H] provide a simple rationale for the obligatory two-electron reductions involving a ping-pong mechanism.
Collapse
|
research-article |
30 |
268 |
20
|
Robb L, Elwood NJ, Elefanty AG, Köntgen F, Li R, Barnett LD, Begley CG. The scl gene product is required for the generation of all hematopoietic lineages in the adult mouse. EMBO J 1996. [DOI: 10.1002/j.1460-2075.1996.tb00787.x] [Citation(s) in RCA: 266] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
|
29 |
266 |
21
|
Li R, Botchan MR. The acidic transcriptional activation domains of VP16 and p53 bind the cellular replication protein A and stimulate in vitro BPV-1 DNA replication. Cell 1993; 73:1207-21. [PMID: 8390328 DOI: 10.1016/0092-8674(93)90649-b] [Citation(s) in RCA: 256] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
For papillomavirus DNA replication, the E2 enhancer protein cooperatively assists in binding of the E1 helicase to the origin. We report that, at limiting E1 and E2 levels, the enhancer proteins GAL4-VP16 and GAL4-p53(1-73) stimulate BPV in vitro DNA replication. This cell-free system was used to ascertain whether the acidic activation domains have a cellular target important for replication. Cellular extracts were depleted of replication activity by passage through a VP16 affinity column. The protein depleted was the cellular factor replication protein A. The direct interaction between replication protein A and VP16, as well as the activation of replication by VP16, is dependent upon the C-terminus of the VP16 activation domain. E2 and the activation domain of p53 also interact with replication protein A. We suggest that a link between transcription and replication involves factors that help convert a closed DNA complex to an open complex.
Collapse
|
|
32 |
256 |
22
|
Li R, Knight JD, Jackson SP, Tjian R, Botchan MR. Direct interaction between Sp1 and the BPV enhancer E2 protein mediates synergistic activation of transcription. Cell 1991; 65:493-505. [PMID: 1850324 DOI: 10.1016/0092-8674(91)90467-d] [Citation(s) in RCA: 255] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The physical interaction of heterologous site-specific DNA-binding proteins is an important theme in eukaryotic transcriptional regulation. In this paper, we show that the cellular transcription factor Sp1 and the BPV-1 (bovine papillomavirus type 1) enhancer protein E2 activate transcription synergistically from two papilloma viral promoters and a series of synthetic promoter constructs in transient transfection experiments. Furthermore, Sp1 can target E2 to a promoter region even in the absence of a specific E2 DNA-binding motif. Biochemical experiments establish that Sp1 enhances E2 binding to its sites and that the two proteins form a specific complex. Sp1 sequesters distally bound E2 to the promoter region by formation of stable DNA loops, visualized by electron microscopy. These experiments substantiate the notion that enhancer binding proteins are targeted to promoter regions by direct interaction with proteins that bind proximal to the transcriptional start site.
Collapse
|
|
34 |
255 |
23
|
Li R, Kenyon GL, Cohen FE, Chen X, Gong B, Dominguez JN, Davidson E, Kurzban G, Miller RE, Nuzum EO. In vitro antimalarial activity of chalcones and their derivatives. J Med Chem 1995; 38:5031-7. [PMID: 8544179 DOI: 10.1021/jm00026a010] [Citation(s) in RCA: 252] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A series of chalcones and their derivatives have been synthesized and identified as novel potential antimalarials using both molecular modeling and in vitro testing against the intact parasite. A large number of chalcones and their derivatives were prepared using one-step Claisen-Schmidt condensations of aldehydes with methyl ketones. These condensates were screened in vitro against both chloroquine-sensitive and chloroquine-resistant strains of Plasmodium falciparum and shown to be active at concentrations in the nanomolar range. The most active chalcone derivative, 1-(2,5-dichlorophenyl)-3-(4-quinolinyl)-2-propen-1-one (7), had an IC50 value of 200 nM against both a chloroquine-resistant strain (W2) and a chloroquine-sensitive strain (D6). The resistance indexes for all compounds were substantially lower than for chloroquine, suggesting that this series will be active against chloroquine-resistant malaria. Structure-activity relationships (SAR) of the chalcones in the context of a homology-based model structure of the malaria trophozoite cysteine protease, the most likely target enzyme, are presented.
Collapse
|
|
30 |
252 |
24
|
Ren Y, Li R, Zheng Y, Busch H. Cloning and characterization of GEF-H1, a microtubule-associated guanine nucleotide exchange factor for Rac and Rho GTPases. J Biol Chem 1998; 273:34954-60. [PMID: 9857026 DOI: 10.1074/jbc.273.52.34954] [Citation(s) in RCA: 247] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Rho-related small GTPases are critical elements involved in regulation of signal transduction cascades from extracellular stimuli to cell nucleus and cytoskeleton. The Dbl-like guanine nucleotide exchange factors (GEF) have been implicated in direct activation of these GTPases. Here we have identified a new member of the Dbl family, GEF-H1, by screening a human HeLa cell cDNA library. GEF-H1 encodes a 100-kDa protein containing the conserved structural array of a Dbl homology domain in tandem with a pleckstrin homology domain and is most closely related to the lfc oncogene, but additionally it contains a unique coiled-coil domain at the carboxyl terminus. Biochemical analysis reveals that GEF-H1 is capable of stimulating guanine nucleotide exchange of Rac and Rho but is inactive toward Cdc42, TC10, or Ras. Moreover, GEF-H1 binds to Rac and Rho proteins in both the GDP- and guanosine 5'-3-O-(thio)triphosphate-bound states without detectable affinity for Cdc42 or Ras. Immunofluorescence reveals that GEF-H1 colocalizes with microtubules through the carboxyl-terminal coiled-coil domain. Overexpression of GEF-H1 in COS-7 cells results in induction of membrane ruffles. These results suggest that GEF-H1 may have a direct role in activation of Rac and/or Rho and in bringing the activated GTPase to specific target sites such as microtubules.
Collapse
|
|
27 |
247 |
25
|
Walter M, Liang S, Ghosh S, Hornsby PJ, Li R. Interleukin 6 secreted from adipose stromal cells promotes migration and invasion of breast cancer cells. Oncogene 2009; 28:2745-55. [PMID: 19483720 PMCID: PMC2806057 DOI: 10.1038/onc.2009.130] [Citation(s) in RCA: 243] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Excessive adiposity has long been associated with increased incidence of breast cancer in post-menopausal women, and with increased mortality from breast cancer, regardless of the menopausal status. Although adipose tissue-derived estrogen contributes to obesity-associated risk for estrogen receptor (ER)-positive breast cancer, the estrogen-independent impact of adipose tissue on tumor invasion and progression needs to be elucidated. Here, we show that adipose stromal cells (ASCs) significantly stimulate migration and invasion of ER-negative breast cancer cells in vitro and tumor invasion in a co-transplant xenograft mouse model. Our study also identifies cofilin-1, a known regulator of actin dynamics, as a determinant of the tumor-promoting activity of ASCs. The cofilin-1-dependent pathway affects the production of interleukin 6 (IL-6) in ASCs. Depletion of IL-6 from the ASC-conditioned medium abrogated the stimulatory effect of ASCs on the migration and invasion of breast tumor cells. Thus, our study uncovers a link between a cytoskeleton-based pathway in ASCs and the stromal impact on breast cancer cells.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
16 |
243 |