1
|
Dykstra B, Kent D, Bowie M, McCaffrey L, Hamilton M, Lyons K, Lee SJ, Brinkman R, Eaves C. Long-term propagation of distinct hematopoietic differentiation programs in vivo. Cell Stem Cell 2008; 1:218-29. [PMID: 18371352 DOI: 10.1016/j.stem.2007.05.015] [Citation(s) in RCA: 463] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Revised: 01/30/2007] [Accepted: 05/14/2007] [Indexed: 12/17/2022]
Abstract
Heterogeneity in the differentiation behavior of hematopoietic stem cells is well documented but poorly understood. To investigate this question at a clonal level, we isolated a subpopulation of adult mouse bone marrow that is highly enriched for multilineage in vivo repopulating cells and transplanted these as single cells, or their short-term clonal progeny generated in vitro, into 352 recipients. Of the mice, 93 showed a donor-derived contribution to the circulating white blood cells for at least 4 months in one of four distinct patterns. Serial transplantation experiments indicated that two of the patterns were associated with extensive self-renewal of the original cell transplanted. However, within 4 days in vitro, the repopulation patterns subsequently obtained in vivo shifted in a clone-specific fashion to those with less myeloid contribution. Thus, primitive hematopoietic cells can maintain distinct repopulation properties upon serial transplantation in vivo, although these properties can also alter rapidly in vitro.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
463 |
2
|
Aghaeepour N, Finak G, Hoos H, Mosmann TR, Brinkman R, Gottardo R, Scheuermann RH. Critical assessment of automated flow cytometry data analysis techniques. Nat Methods 2013; 10:228-38. [PMID: 23396282 PMCID: PMC3906045 DOI: 10.1038/nmeth.2365] [Citation(s) in RCA: 368] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 01/14/2013] [Indexed: 12/14/2022]
Abstract
In this analysis, the authors directly compared the performance of flow cytometry data processing algorithms to manual gating approaches. The results offer information of practical utility about the performance of the algorithms as applied to different data sets and challenges. Traditional methods for flow cytometry (FCM) data processing rely on subjective manual gating. Recently, several groups have developed computational methods for identifying cell populations in multidimensional FCM data. The Flow Cytometry: Critical Assessment of Population Identification Methods (FlowCAP) challenges were established to compare the performance of these methods on two tasks: (i) mammalian cell population identification, to determine whether automated algorithms can reproduce expert manual gating and (ii) sample classification, to determine whether analysis pipelines can identify characteristics that correlate with external variables (such as clinical outcome). This analysis presents the results of the first FlowCAP challenges. Several methods performed well as compared to manual gating or external variables using statistical performance measures, which suggests that automated methods have reached a sufficient level of maturity and accuracy for reliable use in FCM data analysis.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
368 |
3
|
Johnston M, Andrews S, Brinkman R, Cooper J, Ding H, Dover J, Du Z, Favello A, Fulton L, Gattung S. Complete nucleotide sequence of Saccharomyces cerevisiae chromosome VIII. Science 1994; 265:2077-82. [PMID: 8091229 DOI: 10.1126/science.8091229] [Citation(s) in RCA: 249] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The complete nucleotide sequence of Saccharomyces cerevisiae chromosome VIII reveals that it contains 269 predicted or known genes (300 base pairs or larger). Fifty-nine of these genes (22 percent) were previously identified. Of the 210 novel genes, 65 are predicted to encode proteins that are similar to other proteins of known or predicted function. Sixteen genes appear to be relatively recently duplicated. On average, there is one gene approximately every 2 kilobases. Although the coding density and base composition across the chromosome are not uniform, no regular pattern of variation is apparent.
Collapse
|
|
31 |
249 |
4
|
Almqvist EW, Bloch M, Brinkman R, Craufurd D, Hayden MR. A worldwide assessment of the frequency of suicide, suicide attempts, or psychiatric hospitalization after predictive testing for Huntington disease. Am J Hum Genet 1999; 64:1293-304. [PMID: 10205260 PMCID: PMC1377865 DOI: 10.1086/302374] [Citation(s) in RCA: 201] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Prior to the implementation of predictive-testing programs for Huntington disease (HD), significant concern was raised concerning the likelihood of catastrophic events (CEs), particularly in those persons receiving an increased-risk result. We have investigated the frequency of CEs-that is, suicide, suicide attempt, and psychiatric hospitalization-after an HD predictive-testing result, through questionnaires sent to predictive-testing centers worldwide. A total of 44 persons (0.97%) in a cohort of 4,527 test participants had a CE: 5 successful suicides, 21 suicide attempts, and 18 hospitalizations for psychiatric reasons. All persons committing suicide had signs of HD, whereas 11 (52.4%) of 21 persons attempting suicide and 8 (44.4%) of 18 who had a psychiatric hospitalization were symptomatic. A total of 11 (84.6%) of 13 asymptomatic persons who experienced a CE during the first year after HD predictive testing received an increased-risk result. Factors associated with an increased risk of a CE included (a) a psychiatric history </=5 years prior to testing and (b) unemployed status. The frequency of CEs did not differ between those persons receiving results of predictive testing through linkage analysis in whom there was only changes in direction of risk and those persons receiving definitive results after analysis for the mutation underlying HD. These findings provide insights into the frequency, associated factors, and timing of CEs in a worldwide cohort of persons receiving predictive-testing results and, as such, highlight persons for whom ongoing support may be beneficial.
Collapse
|
research-article |
26 |
201 |
5
|
Bandrowski A, Brinkman R, Brochhausen M, Brush MH, Bug B, Chibucos MC, Clancy K, Courtot M, Derom D, Dumontier M, Fan L, Fostel J, Fragoso G, Gibson F, Gonzalez-Beltran A, Haendel MA, He Y, Heiskanen M, Hernandez-Boussard T, Jensen M, Lin Y, Lister AL, Lord P, Malone J, Manduchi E, McGee M, Morrison N, Overton JA, Parkinson H, Peters B, Rocca-Serra P, Ruttenberg A, Sansone SA, Scheuermann RH, Schober D, Smith B, Soldatova LN, Stoeckert CJ, Taylor CF, Torniai C, Turner JA, Vita R, Whetzel PL, Zheng J. The Ontology for Biomedical Investigations. PLoS One 2016; 11:e0154556. [PMID: 27128319 PMCID: PMC4851331 DOI: 10.1371/journal.pone.0154556] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/17/2016] [Indexed: 12/18/2022] Open
Abstract
The Ontology for Biomedical Investigations (OBI) is an ontology that provides terms with precisely defined meanings to describe all aspects of how investigations in the biological and medical domains are conducted. OBI re-uses ontologies that provide a representation of biomedical knowledge from the Open Biological and Biomedical Ontologies (OBO) project and adds the ability to describe how this knowledge was derived. We here describe the state of OBI and several applications that are using it, such as adding semantic expressivity to existing databases, building data entry forms, and enabling interoperability between knowledge resources. OBI covers all phases of the investigation process, such as planning, execution and reporting. It represents information and material entities that participate in these processes, as well as roles and functions. Prior to OBI, it was not possible to use a single internally consistent resource that could be applied to multiple types of experiments for these applications. OBI has made this possible by creating terms for entities involved in biological and medical investigations and by importing parts of other biomedical ontologies such as GO, Chemical Entities of Biological Interest (ChEBI) and Phenotype Attribute and Trait Ontology (PATO) without altering their meaning. OBI is being used in a wide range of projects covering genomics, multi-omics, immunology, and catalogs of services. OBI has also spawned other ontologies (Information Artifact Ontology) and methods for importing parts of ontologies (Minimum information to reference an external ontology term (MIREOT)). The OBI project is an open cross-disciplinary collaborative effort, encompassing multiple research communities from around the globe. To date, OBI has created 2366 classes and 40 relations along with textual and formal definitions. The OBI Consortium maintains a web resource (http://obi-ontology.org) providing details on the people, policies, and issues being addressed in association with OBI. The current release of OBI is available at http://purl.obolibrary.org/obo/obi.owl.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
142 |
6
|
Djoussé L, Knowlton B, Hayden M, Almqvist EW, Brinkman R, Ross C, Margolis R, Rosenblatt A, Durr A, Dode C, Morrison PJ, Novelletto A, Frontali M, Trent RJA, McCusker E, Gómez-Tortosa E, Mayo D, Jones R, Zanko A, Nance M, Abramson R, Suchowersky O, Paulsen J, Harrison M, Yang Q, Cupples LA, Gusella JF, MacDonald ME, Myers RH. Interaction of normal and expanded CAG repeat sizes influences age at onset of Huntington disease. Am J Med Genet A 2003; 119A:279-82. [PMID: 12784292 DOI: 10.1002/ajmg.a.20190] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Huntington disease (HD) is a neurodegenerative disorder caused by the abnormal expansion of CAG repeats in the HD gene on chromosome 4p16.3. Past studies have shown that the size of expanded CAG repeat is inversely associated with age at onset (AO) of HD. It is not known whether the normal Huntington allele size influences the relation between the expanded repeat and AO of HD. Data collected from two independent cohorts were used to test the hypothesis that the unexpanded CAG repeat interacts with the expanded CAG repeat to influence AO of HD. In the New England Huntington Disease Center Without Walls (NEHD) cohort of 221 HD affected persons and in the HD-MAPS cohort of 533 HD affected persons, we found evidence supporting an interaction between the expanded and unexpanded CAG repeat sizes which influences AO of HD (P = 0.08 and 0.07, respectively). The association was statistically significant when both cohorts were combined (P = 0.012). The estimated heritability of the AO residual was 0.56 after adjustment for normal and expanded repeats and their interaction. An analysis of tertiles of repeats sizes revealed that the effect of the normal allele is seen among persons with large HD repeat sizes (47-83). These findings suggest that an increase in the size of the normal repeat may mitigate the expression of the disease among HD affected persons with large expanded CAG repeats.
Collapse
|
|
22 |
124 |
7
|
|
Journal Article |
18 |
71 |
8
|
Abstract
Flow cytometry bioinformatics is the application of bioinformatics to flow cytometry data, which involves storing, retrieving, organizing, and analyzing flow cytometry data using extensive computational resources and tools. Flow cytometry bioinformatics requires extensive use of and contributes to the development of techniques from computational statistics and machine learning. Flow cytometry and related methods allow the quantification of multiple independent biomarkers on large numbers of single cells. The rapid growth in the multidimensionality and throughput of flow cytometry data, particularly in the 2000s, has led to the creation of a variety of computational analysis methods, data standards, and public databases for the sharing of results. Computational methods exist to assist in the preprocessing of flow cytometry data, identifying cell populations within it, matching those cell populations across samples, and performing diagnosis and discovery using the results of previous steps. For preprocessing, this includes compensating for spectral overlap, transforming data onto scales conducive to visualization and analysis, assessing data for quality, and normalizing data across samples and experiments. For population identification, tools are available to aid traditional manual identification of populations in two-dimensional scatter plots (gating), to use dimensionality reduction to aid gating, and to find populations automatically in higher dimensional space in a variety of ways. It is also possible to characterize data in more comprehensive ways, such as the density-guided binary space partitioning technique known as probability binning, or by combinatorial gating. Finally, diagnosis using flow cytometry data can be aided by supervised learning techniques, and discovery of new cell types of biological importance by high-throughput statistical methods, as part of pipelines incorporating all of the aforementioned methods. Open standards, data, and software are also key parts of flow cytometry bioinformatics. Data standards include the widely adopted Flow Cytometry Standard (FCS) defining how data from cytometers should be stored, but also several new standards under development by the International Society for Advancement of Cytometry (ISAC) to aid in storing more detailed information about experimental design and analytical steps. Open data is slowly growing with the opening of the CytoBank database in 2010 and FlowRepository in 2012, both of which allow users to freely distribute their data, and the latter of which has been recommended as the preferred repository for MIFlowCyt-compliant data by ISAC. Open software is most widely available in the form of a suite of Bioconductor packages, but is also available for web execution on the GenePattern platform.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
71 |
9
|
Brinkman R, Martin AH. A cytoarchitectonic study of the spinal cord of the domestic fowl Gallus gallus domesticus. I. Brachial region. Brain Res 1973; 56:43-62. [PMID: 4123715 DOI: 10.1016/0006-8993(73)90326-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
|
52 |
65 |
10
|
Brinkman R, Wildschut A, Wittermans A. On the occurrence of two kinds of haemoglobin in normal human blood. J Physiol 2007; 80:377-87. [PMID: 16994510 PMCID: PMC1394175 DOI: 10.1113/jphysiol.1934.sp003098] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
Journal Article |
18 |
56 |
11
|
|
Journal Article |
18 |
52 |
12
|
Brinkman R, Jonxis JH. Alkaline resistance and spreading velocity of foetal and adult types of mammalian haemoglobin. J Physiol 2007; 88:162-6. [PMID: 16994812 PMCID: PMC1395259 DOI: 10.1113/jphysiol.1936.sp003428] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
Journal Article |
18 |
31 |
13
|
Abeler-Dörner L, Laing AG, Lorenc A, Ushakov DS, Clare S, Speak AO, Duque-Correa MA, White JK, Ramirez-Solis R, Saran N, Bull KR, Morón B, Iwasaki J, Barton PR, Caetano S, Hng KI, Cambridge E, Forman S, Crockford TL, Griffiths M, Kane L, Harcourt K, Brandt C, Notley G, Babalola KO, Warren J, Mason JC, Meeniga A, Karp NA, Melvin D, Cawthorne E, Weinrick B, Rahim A, Drissler S, Meskas J, Yue A, Lux M, Song-Zhao GX, Chan A, Ballesteros Reviriego C, Abeler J, Wilson H, Przemska-Kosicka A, Edmans M, Strevens N, Pasztorek M, Meehan TF, Powrie F, Brinkman R, Dougan G, Jacobs W, Lloyd CM, Cornall RJ, Maloy KJ, Grencis RK, Griffiths GM, Adams DJ, Hayday AC. High-throughput phenotyping reveals expansive genetic and structural underpinnings of immune variation. Nat Immunol 2020; 21:86-100. [PMID: 31844327 PMCID: PMC7338221 DOI: 10.1038/s41590-019-0549-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 10/29/2019] [Indexed: 01/28/2023]
Abstract
By developing a high-density murine immunophenotyping platform compatible with high-throughput genetic screening, we have established profound contributions of genetics and structure to immune variation (http://www.immunophenotype.org). Specifically, high-throughput phenotyping of 530 unique mouse gene knockouts identified 140 monogenic 'hits', of which most had no previous immunologic association. Furthermore, hits were collectively enriched in genes for which humans show poor tolerance to loss of function. The immunophenotyping platform also exposed dense correlation networks linking immune parameters with each other and with specific physiologic traits. Such linkages limit freedom of movement for individual immune parameters, thereby imposing genetically regulated 'immunologic structures', the integrity of which was associated with immunocompetence. Hence, we provide an expanded genetic resource and structural perspective for understanding and monitoring immune variation in health and disease.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
30 |
14
|
Funk DJ, HayGlass KT, Koulack J, Harding G, Boyd A, Brinkman R. A randomized controlled trial on the effects of goal-directed therapy on the inflammatory response open abdominal aortic aneurysm repair. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:247. [PMID: 26062689 PMCID: PMC4479246 DOI: 10.1186/s13054-015-0974-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/04/2015] [Indexed: 12/15/2022]
Abstract
Introduction Goal-directed therapy (GDT) has been shown in numerous studies to decrease perioperative morbidity and mortality. The mechanism of benefit of GDT, however, has not been clearly elucidated. Targeted resuscitation of the vascular endothelium with GDT might alter the postoperative inflammatory response and be responsible for the decreased complications with this therapy. Methods This trial was registered at ClinicalTrials.gov as NCT01681251. Forty patients undergoing elective open repair of their abdominal aortic aneurysm, 18 years of age and older, were randomized to an interventional arm with GDT targeting stroke volume variation with an arterial pulse contour cardiac output monitor, or control, where fluid therapy was administered at the discretion of the attending anesthesiologist. We measured levels of several inflammatory cytokines (C-reactive protein, Pentraxin 3, suppressor of tumorgenicity--2, interleukin-1 receptor antagonist, and tumor necrosis factor receptor-III) preoperatively and at several postoperative time points to determine if there was a difference in inflammatory response. We also assessed each group for a composite of postoperative complications. Results Twenty patients were randomized to GDT and twenty were randomized to control. Length of stay was not different between groups. Intervention patients received less crystalloid and more colloid. At the end of the study, intervention patients had a higher cardiac index (3.4 ± 0.5 vs. 2.5 ± 0.7 l/minute per m2, p < 0.01) and stroke volume index (50.1 ± 7.4 vs. 38.1 ± 9.8 ml/m2, p < 0.01) than controls. There were significantly fewer complications in the intervention than control group (28 vs. 12, p = 0.02). The length of hospital and ICU stay did not differ between groups. There was no difference in the levels of inflammatory cytokines between groups. Conclusions Despite being associated with fewer complications and improved hemodynamics, there was no difference in the inflammatory response of patients treated with GDT. This suggests that the clinical benefit of GDT occurs in spite of a similar inflammatory burden. Further work needs to be performed to delineate the mechanism of benefit of GDT. Trial registration ClinicalTrials.gov Identifier: NCT01681251. Registered 18 May 2011.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
27 |
15
|
Brinkman R, HayGlass KT, Mutch W, Funk DJ. Acute Kidney Injury in Patients Undergoing Open Abdominal Aortic Aneurysm Repair: A Pilot Observational Trial. J Cardiothorac Vasc Anesth 2015; 29:1212-9. [DOI: 10.1053/j.jvca.2015.03.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Indexed: 12/14/2022]
|
|
10 |
26 |
16
|
Spidlen J, Breuer K, Brinkman R. Preparing a Minimum Information about a Flow Cytometry Experiment (MIFlowCyt) Compliant Manuscript Using the International Society for Advancement of Cytometry (ISAC) FCS File Repository (FlowRepository.org). ACTA ACUST UNITED AC 2012; Chapter 10:Unit 10.18. [DOI: 10.1002/0471142956.cy1018s61] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
|
13 |
22 |
17
|
Buytendyk FJ, Brinkman R, Mook HW. A Study of the System Carbonic Acid, Carbon Dioxide and Water: Determination of the True Dissociation-constant of Carbonic Acid. Biochem J 2006; 21:576-84. [PMID: 16743873 PMCID: PMC1251954 DOI: 10.1042/bj0210576] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
Journal Article |
19 |
21 |
18
|
|
Journal Article |
18 |
19 |
19
|
Chissoe SL, Marra MA, Hillier L, Brinkman R, Wilson RK, Waterston RH. Representation of cloned genomic sequences in two sequencing vectors: correlation of DNA sequence and subclone distribution. Nucleic Acids Res 1997; 25:2960-6. [PMID: 9224593 PMCID: PMC146865 DOI: 10.1093/nar/25.15.2960] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Representation of subcloned Caenorhabditis elegans and human DNA sequences in both M13 and pUC sequencing vectors was determined in the context of large scale genomic sequencing. In many cases, regions of subclone under-representation correlated with the occurrence of repeat sequences, and in some cases the under-representation was orientation specific. Factors which affected subclone representation included the nature and complexity of the repeat sequence, as well as the length of the repeat region. In some but not all cases, notable differences between the M13 and pUC subclone distributions existed. However, in all regions lacking one type of subclone (either M13 or pUC), an alternate subclone was identified in at least one orientation. This suggests that complementary use of M13 and pUC subclones would provide the most comprehensive subclone coverage of a given genomic sequence.
Collapse
|
research-article |
28 |
19 |
20
|
Brinkman R, Amadeo RJJ, Funk DJ, Girling LG, Grocott HP, Mutch WAC. Cerebral oxygen desaturation during one-lung ventilation: correlation with hemodynamic variables. Can J Anaesth 2013; 60:660-6. [DOI: 10.1007/s12630-013-9954-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 04/17/2013] [Indexed: 12/29/2022] Open
|
|
12 |
18 |
21
|
He Y, He Y, Cowell L, Diehl A, Mobley H, Peters B, Ruttenberg A, Scheuermann R, Brinkman R, Courtot M, Mungall C, Xiang Z, Chen F, Todd T, Colby L, Rush H, Whetzel T, Musen M, Athey B, Omenn G, Smith B. VO: Vaccine Ontology. ACTA ACUST UNITED AC 2009. [DOI: 10.1038/npre.2009.3553] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
|
16 |
17 |
22
|
Katsumata K, Wijffels SE, Steinberg CR, Brinkman R. Variability of the semidiurnal internal tides observed on the Timor Shelf. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jc006071] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
|
15 |
17 |
23
|
Vaudin M, Roopra A, Hillier L, Brinkman R, Sulston J, Wilson RK, Waterston RH. The construction and analysis of M13 libraries prepared from YAC DNA. Nucleic Acids Res 1995; 23:670-4. [PMID: 7899089 PMCID: PMC306736 DOI: 10.1093/nar/23.4.670] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Yeast artificial chromosomes (YACs) provide a powerful way to isolate and map large regions of genomic DNA and their use in genome analysis is now extensive. We modified a series of procedures to produce high quality shotgun libraries from small amounts of YAC DNA. Clones from several different libraries have been sequenced and analyzed for distribution, sequence integrity and degree of contamination from yeast DNA. We describe these procedures and analyses and show that sequencing at about 1-fold coverage, followed by database comparison (survey sequencing) offers a relatively quick method to determine the nature of previously uncharacterized cosmid or YAC clones.
Collapse
|
research-article |
30 |
15 |
24
|
Moss GS, Das Gupta TK, Brinkman R, Sehgal L, Newsom B. Changes in lung ultrastructure following heterologous and homologous serum albumin infusion in the treatment of hemorrhagic shock. Ann Surg 1979; 189:236-42. [PMID: 106780 PMCID: PMC1397023 DOI: 10.1097/00000658-197902000-00016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The object of this study was to compare the ultrastructure pulmonary effects of the infusion of homologous and heterologous serum albumin solution in the treatment of hemorrhagic shock in baboons. Adult baboons subjected to hemorrhagic shock were resuscitated with either baboon serum albumin, human serum albumin, or Ringer's lactate solution. The lungs were fixed in vivo with potassium pyroantimony, a solution which produces electron dense interstitial precipitation of sodium. The lungs from animals resuscitated with baboon serum albumin showed evidence of interstitial edema, including dispersion of collagen fibers, interstitial smudging and increased interstital sodium concentrations. Similar changes were seen following human serum albumin infusions. Lung tissue from animals treated with Ringer's lactate solution showed minimal changes from normal. These results suggest that interstitial pulmonary edema develops after either homologous or heterologous serum albumin infusion in the treatment of hemorrhagic shock in baboons.
Collapse
|
research-article |
46 |
14 |
25
|
Martin AH, Brinkman R. The dorsal horn of the avian spinal cord, a re-examination. EXPERIENTIA 1970; 26:887-9. [PMID: 5452027 DOI: 10.1007/bf02114240] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
|
55 |
11 |