1
|
Mick DU, Rodrigues RB, Leib RD, Adams CM, Chien AS, Gygi SP, Nachury MV. Proteomics of Primary Cilia by Proximity Labeling. Dev Cell 2015; 35:497-512. [PMID: 26585297 DOI: 10.1016/j.devcel.2015.10.015] [Citation(s) in RCA: 300] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/26/2015] [Accepted: 10/19/2015] [Indexed: 11/17/2022]
Abstract
While cilia are recognized as important signaling organelles, the extent of ciliary functions remains unknown because of difficulties in cataloguing proteins from mammalian primary cilia. We present a method that readily captures rapid snapshots of the ciliary proteome by selectively biotinylating ciliary proteins using a cilia-targeted proximity labeling enzyme (cilia-APEX). Besides identifying known ciliary proteins, cilia-APEX uncovered several ciliary signaling molecules. The kinases PKA, AMPK, and LKB1 were validated as bona fide ciliary proteins and PKA was found to regulate Hedgehog signaling in primary cilia. Furthermore, proteomics profiling of Ift27/Bbs19 mutant cilia correctly detected BBSome accumulation inside Ift27(-/-) cilia and revealed that β-arrestin 2 and the viral receptor CAR are candidate cargoes of the BBSome. This work demonstrates that proximity labeling can be applied to proteomics of non-membrane-enclosed organelles and suggests that proteomics profiling of cilia will enable a rapid and powerful characterization of ciliopathies.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
300 |
2
|
Mackinder LCM, Chen C, Leib RD, Patena W, Blum SR, Rodman M, Ramundo S, Adams CM, Jonikas MC. A Spatial Interactome Reveals the Protein Organization of the Algal CO 2-Concentrating Mechanism. Cell 2017; 171:133-147.e14. [PMID: 28938113 PMCID: PMC5616186 DOI: 10.1016/j.cell.2017.08.044] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/30/2017] [Accepted: 08/22/2017] [Indexed: 11/20/2022]
Abstract
Approximately one-third of global CO2 fixation is performed by eukaryotic algae. Nearly all algae enhance their carbon assimilation by operating a CO2-concentrating mechanism (CCM) built around an organelle called the pyrenoid, whose protein composition is largely unknown. Here, we developed tools in the model alga Chlamydomonas reinhardtii to determine the localizations of 135 candidate CCM proteins and physical interactors of 38 of these proteins. Our data reveal the identity of 89 pyrenoid proteins, including Rubisco-interacting proteins, photosystem I assembly factor candidates, and inorganic carbon flux components. We identify three previously undescribed protein layers of the pyrenoid: a plate-like layer, a mesh layer, and a punctate layer. We find that the carbonic anhydrase CAH6 is in the flagella, not in the stroma that surrounds the pyrenoid as in current models. These results provide an overview of proteins operating in the eukaryotic algal CCM, a key process that drives global carbon fixation.
Collapse
|
research-article |
8 |
185 |
3
|
Donald WA, Leib RD, O'Brien JT, Bush MF, Williams ER. Absolute standard hydrogen electrode potential measured by reduction of aqueous nanodrops in the gas phase. J Am Chem Soc 2008; 130:3371-81. [PMID: 18288835 PMCID: PMC2562797 DOI: 10.1021/ja073946i] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In solution, half-cell potentials are measured relative to those of other half cells, thereby establishing a ladder of thermochemical values that are referenced to the standard hydrogen electrode (SHE), which is arbitrarily assigned a value of exactly 0 V. Although there has been considerable interest in, and efforts toward, establishing an absolute electrochemical half-cell potential in solution, there is no general consensus regarding the best approach to obtain this value. Here, ion-electron recombination energies resulting from electron capture by gas-phase nanodrops containing individual [M(NH3)6]3+, M = Ru, Co, Os, Cr, and Ir, and Cu2+ ions are obtained from the number of water molecules that are lost from the reduced precursors. These experimental data combined with nanodrop solvation energies estimated from Born theory and solution-phase entropies estimated from limited experimental data provide absolute reduction energies for these redox couples in bulk aqueous solution. A key advantage of this approach is that solvent effects well past two solvent shells, that are difficult to model accurately, are included in these experimental measurements. By evaluating these data relative to known solution-phase reduction potentials, an absolute value for the SHE of 4.2 +/- 0.4 V versus a free electron is obtained. Although not achieved here, the uncertainty of this method could potentially be reduced to below 0.1 V, making this an attractive method for establishing an absolute electrochemical scale that bridges solution and gas-phase redox chemistry.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
96 |
4
|
Rumachik NG, Malaker SA, Poweleit N, Maynard LH, Adams CM, Leib RD, Cirolia G, Thomas D, Stamnes S, Holt K, Sinn P, May AP, Paulk NK. Methods Matter: Standard Production Platforms for Recombinant AAV Produce Chemically and Functionally Distinct Vectors. Mol Ther Methods Clin Dev 2020; 18:98-118. [PMID: 32995354 PMCID: PMC7488757 DOI: 10.1016/j.omtm.2020.05.018] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/19/2020] [Indexed: 12/19/2022]
Abstract
Different approaches are used in the production of recombinant adeno-associated virus (rAAV). The two leading approaches are transiently transfected human HEK293 cells and live baculovirus infection of Spodoptera frugiperda (Sf9) insect cells. Unexplained differences in vector performance have been seen clinically and preclinically. Thus, we performed a controlled comparative production analysis varying only the host cell species but maintaining all other parameters. We characterized differences with multiple analytical approaches: proteomic profiling by mass spectrometry, isoelectric focusing, cryo-EM (transmission electron cryomicroscopy), denaturation assays, genomic and epigenomic sequencing of packaged genomes, human cytokine profiling, and functional transduction assessments in vitro and in vivo, including in humanized liver mice. Using these approaches, we have made two major discoveries: (1) rAAV capsids have post-translational modifications (PTMs), including glycosylation, acetylation, phosphorylation, and methylation, and these differ between platforms; and (2) rAAV genomes are methylated during production, and these are also differentially deposited between platforms. Our data show that host cell protein impurities differ between platforms and can have their own PTMs, including potentially immunogenic N-linked glycans. Human-produced rAAVs are more potent than baculovirus-Sf9 vectors in various cell types in vitro (p < 0.05-0.0001), in various mouse tissues in vivo (p < 0.03-0.0001), and in human liver in vivo (p < 0.005). These differences may have clinical implications for rAAV receptor binding, trafficking, expression kinetics, expression durability, vector immunogenicity, as well as cost considerations.
Collapse
|
research-article |
5 |
94 |
5
|
Robinson EW, Leib RD, Williams ER. The role of conformation on electron capture dissociation of ubiquitin. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2006; 17:1470-1479. [PMID: 16890453 PMCID: PMC2562165 DOI: 10.1016/j.jasms.2006.06.027] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Revised: 05/25/2006] [Accepted: 06/27/2006] [Indexed: 05/11/2023]
Abstract
Effects of protein conformation on electron capture dissociation (ECD) were investigated using high-field asymmetric waveform ion mobility spectrometry (FAIMS) and Fourier-transform ion cyclotron resonance mass spectrometry. Under the conditions of these experiments, the electron capture efficiency of ubiquitin 6+ formed from three different solution compositions differs significantly, ranging from 51 +/- 7% for ions formed from an acidified water/methanol solution to 88 +/- 2% for ions formed from a buffered aqueous solution. This result clearly indicates that these protein ions retain a memory of their solution-phase structure and that conformational differences can be probed in an ECD experiment. Multiple conformers for the 7+ and 8+ charge states of ubiquitin were separated using FAIMS. ECD spectra of conformer selected ions of the same charge states differ both in electron capture efficiency and in the fragment ion intensities. Conformers of a given charge state that have smaller collisional cross sections can have either a larger or smaller electron capture efficiency. A greater electron capture efficiency was observed for ubiquitin 6+ that has the same collisional cross section as one ubiquitin 7+ conformer, despite the lower charge state. These results indicate that the shape of the molecule can have a greater effect on electron capture efficiency than either collisional cross section or charge state alone. The cleavage locations of different conformers of a given charge state were the same indicating that the presence of different conformers in the gas phase is not due to difference in where charges are located, but rather reflect conformational differences most likely originating from solution. Small neutral losses observed from the singly- and doubly-reduced ubiquitin 6+ do not show a temperature dependence to their formation, consistent with these ions being formed by nonergodic processes.
Collapse
|
research-article |
19 |
73 |
6
|
Chang SS, Eisenberg D, Zhao L, Adams C, Leib R, Morser J, Leung L. Chemerin activation in human obesity. Obesity (Silver Spring) 2016; 24:1522-9. [PMID: 27222113 DOI: 10.1002/oby.21534] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 03/28/2016] [Accepted: 03/29/2016] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Chemerin is an inflammatory adipokine, whose activity is regulated by successive proteolytic cleavages at its C-terminus. It is secreted as an inactive precursor (chem163S); cleavage at Lys158 converts it to chem158K with modest activity. Chem157S is the most potent form and chem155A is inactive. The aim of this study was to determine if chemerin was activated in samples from patients with obesity. METHODS Using specific ELISAs for different chemerin forms and a pan-chemerin ELISA, chemerin forms in human obesity were characterized. RESULTS Plasma chemerin from patients with obesity (BMI 44.3 ± 1.3 kg/m(2) , n = 29) was significantly higher than in lean controls (BMI 20.9 ± 0.7 kg/m(2) , n = 10) (160 ± 11 vs. 76.2 ± 5.5 ng/mL, respectively, P < 0.0001). This increase in chemerin was due to increased previously unattributed chemerin, with further C-terminal truncation demonstrated by mass spectrometry, accounting for ∼35% of total plasma chemerin. Chemerin forms in adipose tissue showed a different profile, with minimal chem163S and significant levels of chem157S. Chem155A was present in omental but not in subcutaneous adipose tissue. Unattributed chemerin forms were undetectable in adipose tissue. CONCLUSIONS Chemerin is activated in adipose tissue of subjects with obesity, and further C-terminal processing occurs during the disposition of chemerin from adipose tissue, resulting in substantial levels of novel degraded forms in plasma that correlate with obesity.
Collapse
|
|
9 |
65 |
7
|
Donald WA, Leib RD, Demireva M, O’Brien JT, Prell JS, Williams ER. Directly relating reduction energies of gaseous Eu(H2O)n(3+), n = 55-140, to aqueous solution: the absolute SHE potential and real proton solvation energy. J Am Chem Soc 2009; 131:13328-37. [PMID: 19711981 PMCID: PMC2909332 DOI: 10.1021/ja902815v] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In solution, half-cell potentials are measured relative to other half-cells resulting in a ladder of thermodynamic values that is anchored to the standard hydrogen electrode (SHE), which is assigned an arbitrary value of exactly 0 V. A new method for measuring the absolute SHE potential is introduced in which reduction energies of Eu(H(2)O)(n)(3+), from n = 55 to 140, are extrapolated as a function of the geometric dependence of the cluster reduction energy to infinite size. These measurements make it possible to directly relate absolute reduction energies of these gaseous nanodrops containing Eu(3+) to the absolute reduction enthalpy of this ion in bulk solution. From this value, an absolute SHE potential of +4.11 V and a real proton solvation energy of -269.0 kcal/mol are obtained. The infrared photodissociation spectrum of Eu(H(2)O)(119-124)(3+) indicates that the structure of the surface of the nanodrops is similar to that at the bulk air-water interface and that the hydrogen bonding of interior water molecules is similar to that in aqueous solution. These results suggest that the environment of Eu(3+) in these nanodrops and the surface potential of the nandrops are comparable to those of the condensed phase. This method for obtaining absolute potentials of redox couples has the advantage that no explicit solvation model is required, which eliminates uncertainties associated with these models, making this method potentially more accurate than previous methods.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
57 |
8
|
Oh S, Flynn RA, Floor SN, Purzner J, Martin L, Do BT, Schubert S, Vaka D, Morrissy S, Li Y, Kool M, Hovestadt V, Jones DTW, Northcott PA, Risch T, Warnatz HJ, Yaspo ML, Adams CM, Leib RD, Breese M, Marra MA, Malkin D, Lichter P, Doudna JA, Pfister SM, Taylor MD, Chang HY, Cho YJ. Medulloblastoma-associated DDX3 variant selectively alters the translational response to stress. Oncotarget 2018; 7:28169-82. [PMID: 27058758 PMCID: PMC5053718 DOI: 10.18632/oncotarget.8612] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 03/26/2016] [Indexed: 12/14/2022] Open
Abstract
DDX3X encodes a DEAD-box family RNA helicase (DDX3) commonly mutated in medulloblastoma, a highly aggressive cerebellar tumor affecting both children and adults. Despite being implicated in several facets of RNA metabolism, the nature and scope of DDX3′s interactions with RNA remain unclear. Here, we show DDX3 collaborates extensively with the translation initiation machinery through direct binding to 5′UTRs of nearly all coding RNAs, specific sites on the 18S rRNA, and multiple components of the translation initiation complex. Impairment of translation initiation is also evident in primary medulloblastomas harboring mutations in DDX3X, further highlighting DDX3′s role in this process. Arsenite-induced stress shifts DDX3 binding from the 5′UTR into the coding region of mRNAs concomitant with a general reduction of translation, and both the shift of DDX3 on mRNA and decreased translation are blunted by expression of a catalytically-impaired, medulloblastoma-associated DDX3R534H variant. Furthermore, despite the global repression of translation induced by arsenite, translation is preserved on select genes involved in chromatin organization in DDX3R534H-expressing cells. Thus, DDX3 interacts extensively with RNA and ribosomal machinery to help remodel the translation landscape in response to stress, while cancer-related DDX3 variants adapt this response to selectively preserve translation.
Collapse
|
Journal Article |
7 |
54 |
9
|
Leib RD, Donald WA, Bush MF, O’Brien JT, Williams ER. Internal energy deposition in electron capture dissociation measured using hydrated divalent metal ions as nanocalorimeters. J Am Chem Soc 2007; 129:4894-5. [PMID: 17394314 PMCID: PMC2560990 DOI: 10.1021/ja0666607] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
Research Support, U.S. Gov't, Non-P.H.S. |
18 |
53 |
10
|
Saito T, Miyagawa K, Chen SY, Tamosiuniene R, Wang L, Sharpe O, Samayoa E, Harada D, Moonen JRAJ, Cao A, Chen PI, Hennigs JK, Gu M, Li CG, Leib RD, Li D, Adams CM, Del Rosario PA, Bill M, Haddad F, Montoya JG, Robinson WH, Fantl WJ, Nolan GP, Zamanian RT, Nicolls MR, Chiu CY, Ariza ME, Rabinovitch M. Upregulation of Human Endogenous Retrovirus-K Is Linked to Immunity and Inflammation in Pulmonary Arterial Hypertension. Circulation 2017; 136:1920-1935. [PMID: 28935667 DOI: 10.1161/circulationaha.117.027589] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 08/31/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Immune dysregulation has been linked to occlusive vascular remodeling in pulmonary arterial hypertension (PAH) that is hereditary, idiopathic, or associated with other conditions. Circulating autoantibodies, lung perivascular lymphoid tissue, and elevated cytokines have been related to PAH pathogenesis but without a clear understanding of how these abnormalities are initiated, perpetuated, and connected in the progression of disease. We therefore set out to identify specific target antigens in PAH lung immune complexes as a starting point toward resolving these issues to better inform future application of immunomodulatory therapies. METHODS Lung immune complexes were isolated and PAH target antigens were identified by liquid chromatography tandem mass spectrometry, confirmed by enzyme-linked immunosorbent assay, and localized by confocal microscopy. One PAH antigen linked to immunity and inflammation was pursued and a link to PAH pathophysiology was investigated by next-generation sequencing, functional studies in cultured monocytes and endothelial cells, and hemodynamic and lung studies in a rat. RESULTS SAM domain and HD domain-containing protein 1 (SAMHD1), an innate immune factor that suppresses HIV replication, was identified and confirmed as highly expressed in immune complexes from 16 hereditary and idiopathic PAH versus 12 control lungs. Elevated SAMHD1 was localized to endothelial cells, perivascular dendritic cells, and macrophages, and SAMHD1 antibodies were prevalent in tertiary lymphoid tissue. An unbiased screen using metagenomic sequencing related SAMHD1 to increased expression of human endogenous retrovirus K (HERV-K) in PAH versus control lungs (n=4). HERV-K envelope and deoxyuridine triphosphate nucleotidohydrolase mRNAs were elevated in PAH versus control lungs (n=10), and proteins were localized to macrophages. HERV-K deoxyuridine triphosphate nucleotidohydrolase induced SAMHD1 and proinflammatory cytokines (eg, interleukin 6, interleukin 1β, and tumor necrosis factor α) in circulating monocytes, pulmonary arterial endothelial cells, and also activated B cells. Vulnerability of pulmonary arterial endothelial cells (PAEC) to apoptosis was increased by HERV-K deoxyuridine triphosphate nucleotidohydrolase in an interleukin 6-independent manner. Furthermore, 3 weekly injections of HERV-K deoxyuridine triphosphate nucleotidohydrolase induced hemodynamic and vascular changes of pulmonary hypertension in rats (n=8) and elevated interleukin 6. CONCLUSIONS Our study reveals that upregulation of the endogenous retrovirus HERV-K could both initiate and sustain activation of the immune system and cause vascular changes associated with PAH.
Collapse
|
Journal Article |
8 |
49 |
11
|
Donald WA, Demireva M, Leib RD, Aiken MJ, Williams ER. Electron Hydration and Ion−Electron Pairs in Water Clusters Containing Trivalent Metal Ions. J Am Chem Soc 2010; 132:4633-40. [DOI: 10.1021/ja9079385] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
|
15 |
48 |
12
|
Robinson EW, Garcia DE, Leib RD, Williams ER. Enhanced mixture analysis of poly(ethylene glycol) using high-field asymmetric waveform ion mobility spectrometry combined with fourier transform ion cyclotron resonance mass spectrometry. Anal Chem 2006; 78:2190-8. [PMID: 16579597 PMCID: PMC2562220 DOI: 10.1021/ac051709x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The combination of high-field asymmetric waveform ion mobility spectrometry (FAIMS) with Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) makes possible lower detection limits, increased sensitivity, and increased dynamic range in the analysis of poly(ethylene glycol) (PEG) samples of low molecular weight. The signal gain obtained using FAIMS depends on ion identity, with a range between 1.8x and 14x obtained for various molecular ions of PEG 600. A 1.7-fold reduction in noise is obtained using FAIMS due to the elimination of chemical noise. The improved detection performance is predominantly due to a reduction in adverse Coulomb effects as a result of ions being selectively introduced into the mass spectrometer. The high ion transmission obtained using FAIMS combined with the high sensitivity of FTICR-MS detection make possible separation of multiple gas-phase conformers of PEG molecular cations that have low abundance (less than 0.2% relative abundance) and that have not been detected previously. Mixed dications of PEG that have the same nominal mass but differ by the number polymer subunits (m/Delta m up to 25,000) can be separately introduced into the mass spectrometer using FAIMS. Interactions of the carrier gas with the metal ions that are attached to the PEG molecules appear to be the most significant factor in these FAIMS separations.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
45 |
13
|
Donald WA, Leib RD, O'Brien JT, Holm AIS, Williams ER. Nanocalorimetry in mass spectrometry: a route to understanding ion and electron solvation. Proc Natl Acad Sci U S A 2008; 105:18102-7. [PMID: 18687894 PMCID: PMC2587548 DOI: 10.1073/pnas.0801549105] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Indexed: 11/18/2022] Open
Abstract
A gaseous nanocalorimetry approach is used to investigate effects of hydration and ion identity on the energy resulting from ion-electron recombination. Capture of a thermally generated electron by a hydrated multivalent ion results in either loss of a H atom accompanied by water loss or exclusively loss of water. The energy resulting from electron capture by the precursor is obtained from the extent of water loss. Results for large-size-selected clusters of Co(NH(3))(6)(H(2)O)(n3)(+) and Cu(H(2)O)(n2)(+) indicate that the ion in the cluster is reduced on electron capture. The trend in the data for Co(NH(3))(6)(H(2)O)(n3)(+) over the largest sizes (n >/= 50) can be fit to that predicted by the Born solvation model. This agreement indicates that the decrease in water loss for these larger clusters is predominantly due to ion solvation that can be accounted for by using a model with bulk properties. In contrast, results for Ca(H(2)O)(n2)(+) indicate that an ion-electron pair is formed when clusters with more than approximately 20 water molecules are reduced. For clusters with n = approximately 20-47, these results suggest that the electron is located near the surface, but a structural transition to a more highly solvated electron is indicated for n = 47-62 by the constant recombination energy. These results suggest that an estimate of the adiabatic electron affinity of water could be obtained from measurements of even larger clusters in which an electron is fully solvated.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
42 |
14
|
Donald WA, Leib RD, O’Brien JT, Williams ER. Directly relating gas-phase cluster measurements to solution-phase hydrolysis, the absolute standard hydrogen electrode potential, and the absolute proton solvation energy. Chemistry 2009; 15:5926-34. [PMID: 19440999 PMCID: PMC2757329 DOI: 10.1002/chem.200900334] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Solution-phase, half-cell potentials are measured relative to other half-cell potentials, resulting in a thermochemical ladder that is anchored to the standard hydrogen electrode (SHE), which is assigned an arbitrary value of 0 V. A new method for measuring the absolute SHE potential is demonstrated in which gaseous nanodrops containing divalent alkaline-earth or transition-metal ions are reduced by thermally generated electrons. Energies for the reactions 1) M(H(2)O)(24)(2+)(g) + e(-)(g)-->M(H(2)O)(24)(+)(g) and 2) M(H(2)O)(24)(2+)(g) + e(-)(g)-->MOH(H(2)O)(23)(+)(g) + H(g) and the hydrogen atom affinities of MOH(H(2)O)(23)(+)(g) are obtained from the number of water molecules lost through each pathway. From these measurements on clusters containing nine different metal ions and known thermochemical values that include solution hydrolysis energies, an average absolute SHE potential of +4.29 V vs. e(-)(g) (standard deviation of 0.02 V) and a real proton solvation free energy of -265 kcal mol(-1) are obtained. With this method, the absolute SHE potential can be obtained from a one-electron reduction of nanodrops containing divalent ions that are not observed to undergo one-electron reduction in aqueous solution.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
42 |
15
|
Prell JS, O'Brien JT, Holm AIS, Leib RD, Donald WA, Williams ER. Electron capture by a hydrated gaseous peptide: effects of water on fragmentation and molecular survival. J Am Chem Soc 2008; 130:12680-9. [PMID: 18761457 DOI: 10.1021/ja8022434] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effects of water on electron capture dissociation products, molecular survival, and recombination energy are investigated for diprotonated Lys-Tyr-Lys solvated by between zero and 25 water molecules. For peptide ions with between 12 and 25 water molecules attached, electron capture results in a narrow distribution of product ions corresponding to primarily the loss of 10-12 water molecules from the reduced precursor. From these data, the recombination energy (RE) is determined to be equal to the energy that is lost by evaporating on average 10.7 water molecules, or 4.3 eV. Because water stabilizes ions, this value is a lower limit to the RE of the unsolvated ion, but it indicates that the majority of the available RE is deposited into internal modes of the peptide ion. Plotting the fragment ion abundances for ions formed from precursors with fewer than 11 water molecules as a function of hydration extent results in an energy resolved breakdown curve from which the appearance energies of the b 2 (+), y 2 (+), z 2 (+*), c 2 (+), and (KYK + H) (+) fragment ions formed from this peptide ion can be obtained; these values are 78, 88, 42, 11, and 9 kcal/mol, respectively. The propensity for H atom loss and ammonia loss from the precursor changes dramatically with the extent of hydration, and this change in reactivity can be directly attributed to a "caging" effect by the water molecules. These are the first experimental measurements of the RE and appearance energies of fragment ions due to electron capture dissociation of a multiply charged peptide. This novel ion nanocalorimetry technique can be applied more generally to other exothermic reactions that are not readily accessible to investigation by more conventional thermochemical methods.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
17 |
40 |
16
|
Jacob L, Leib R, Ollila HM, Bonvalet M, Adams CM, Mignot E. Comparison of Pandemrix and Arepanrix, two pH1N1 AS03-adjuvanted vaccines differentially associated with narcolepsy development. Brain Behav Immun 2015; 47:44-57. [PMID: 25452148 DOI: 10.1016/j.bbi.2014.11.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 11/02/2014] [Accepted: 11/06/2014] [Indexed: 01/08/2023] Open
Abstract
Narcolepsy onset in children has been associated with the 2009 influenza A H1N1 pandemic and vaccination with Pandemrix. However it was not clearly observed with other adjuvanted pH1N1 vaccines such as Arepanrix or Focetria. Our aim was to characterize the differences between Pandemrix and Arepanrix that might explain the risk for narcolepsy after Pandemrix vaccination using 2D-DIGE and mass spectrometry (MS). We found that Pandemrix (2009 batch) and Arepanrix (2010 batch) showed 5 main viral proteins: hemagglutinin HA1 and HA2 subunits, neuraminidase NA, nucleoprotein NP, and matrix protein MA1 and non-viral proteins from the Gallus gallus growth matrix used in the manufacturing of the vaccines. Latticed patterns of HA1, HA2 and NA indicated charge and molecular weight heterogeneity, a phenomenon likely caused by glycosylation and sulfation. Overall, Pandemrix contained more NP and NA, while Arepanrix displayed a larger diversity of viral and chicken proteins, with the exception of five chicken proteins (PDCD6IP, TSPAN8, H-FABP, HSP and TUB proteins) that were relatively more abundant in Pandemrix. Glycosylation patterns were similar in both vaccines. A higher degree of deamidation and dioxidation was found in Pandemrix, probably reflecting differential degradation across batches. Interestingly, HA1 146N (residue 129N in the mature protein) displayed a 10-fold higher deamidation in Arepanrix versus Pandemrix. In recent vaccine strains and Focetria, 146N is mutated to D which is associated with increased production yields suggesting that 146N deamidation may have also occurred during the manufacturing of Arepanrix. The presence of 146N in large relative amounts in Pandemrix and the wild type virus and in lower relative quantities in Arepanrix or other H1N1 vaccines may have affected predisposition to narcolepsy.
Collapse
|
Comparative Study |
10 |
39 |
17
|
Crapster JA, Rack PG, Hellmann ZJ, Le AD, Adams CM, Leib RD, Elias JE, Perrino J, Behr B, Li Y, Lin J, Zeng H, Chen JK. HIPK4 is essential for murine spermiogenesis. eLife 2020; 9:e50209. [PMID: 32163033 PMCID: PMC7067585 DOI: 10.7554/elife.50209] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 02/23/2020] [Indexed: 12/19/2022] Open
Abstract
Mammalian spermiogenesis is a remarkable cellular transformation, during which round spermatids elongate into chromatin-condensed spermatozoa. The signaling pathways that coordinate this process are not well understood, and we demonstrate here that homeodomain-interacting protein kinase 4 (HIPK4) is essential for spermiogenesis and male fertility in mice. HIPK4 is predominantly expressed in round and early elongating spermatids, and Hipk4 knockout males are sterile, exhibiting phenotypes consistent with oligoasthenoteratozoospermia. Hipk4 mutant sperm have reduced oocyte binding and are incompetent for in vitro fertilization, but they can still produce viable offspring via intracytoplasmic sperm injection. Optical and electron microscopy of HIPK4-null male germ cells reveals defects in the filamentous actin (F-actin)-scaffolded acroplaxome during spermatid elongation and abnormal head morphologies in mature spermatozoa. We further observe that HIPK4 overexpression induces branched F-actin structures in cultured fibroblasts and that HIPK4 deficiency alters the subcellular distribution of an F-actin capping protein in the testis, supporting a role for this kinase in cytoskeleton remodeling. Our findings establish HIPK4 as an essential regulator of sperm head shaping and potential target for male contraception.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
38 |
18
|
Donald WA, Leib RD, Demireva M, Negru B, Neumark DM, Williams ER. Average sequential water molecule binding enthalpies of M(H2O)(19-124)2+ (M = Co, Fe, Mn, and Cu) measured with ultraviolet photodissociation at 193 and 248 nm. J Phys Chem A 2010; 115:2-12. [PMID: 21142113 DOI: 10.1021/jp107547r] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The average sequential water molecule binding enthalpies to large water clusters (between 19 and 124 water molecules) containing divalent ions were obtained by measuring the average number of water molecules lost upon absorption of an UV photon (193 or 248 nm) and using a statistical model to account for the energy released into translations, rotations, and vibrations of the products. These values agree well with the trend established by more conventional methods for obtaining sequential binding enthalpies to much smaller hydrated divalent ions. The average binding enthalpies decrease to a value of ~10.4 kcal/mol for n > ~40 and are insensitive to the ion identity at large cluster size. This value is close to that of the bulk heat of vaporization of water (10.6 kcal/mol) and indicates that the structure of water in these clusters may more closely resemble that of bulk liquid water than ice, owing either to a freezing point depression or rapid evaporative cooling and kinetic trapping of the initial liquid droplet. A discrete implementation of the Thomson equation using parameters for liquid water at 0 °C generally fits the trend in these data but provides values that are ~0.5 kcal/mol too low.
Collapse
|
Journal Article |
15 |
38 |
19
|
Leib RD, Donald WA, Bush MF, O'Brien JT, Williams ER. Nonergodicity in electron capture dissociation investigated using hydrated ion nanocalorimetry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2007; 18:1217-31. [PMID: 17521917 PMCID: PMC2034202 DOI: 10.1016/j.jasms.2007.03.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 03/29/2007] [Accepted: 03/29/2007] [Indexed: 05/02/2023]
Abstract
Hydrated divalent magnesium and calcium clusters are used as nanocalorimeters to measure the internal energy deposited into size-selected clusters upon capture of a thermally generated electron. The infrared radiation emitted from the cell and vacuum chamber surfaces as well as from the heated cathode results in some activation of these clusters, but this activation is minimal. No measurable excitation due to inelastic collisions occurs with the low-energy electrons used under these conditions. Two different dissociation pathways are observed for the divalent clusters that capture an electron: loss of water molecules (Pathway I) and loss of an H atom and water molecules (Pathway II). For Ca(H(2)O)(n)(2+), Pathway I occurs exclusively for n >or= 30 whereas Pathway II occurs exclusively for n <or= 22 with a sharp transition in the branching ratio for these two processes that occurs for n approximately 24. The number of water molecules lost by both pathways increases with increasing cluster size reaching a broad maximum between n = 23 and 32, and then decreases for larger clusters. From the number of water molecules that are lost from the reduced cluster, the average and maximum possible internal energy is determined to be approximately 4.4 and 5.2 eV, respectively, for Ca(H(2)O)(30)(2+). This value is approximately the same as the calculated ionization energies of M(H(2)O)(n)(+), M = Mg and Ca, for large n indicating that the vast majority of the recombination energy is partitioned into internal modes of the ion and that the dissociation of these ions is statistical. For smaller clusters, estimates of the dissociation energies for the loss of H and of water molecules are obtained from theory. For Mg(H(2)O)(n)(2+), n = 4-6, the average internal energy deposition is estimated to be 4.2-4.6 eV. The maximum possible energy deposited into the n = 5 cluster is <7.1 eV, which is significantly less than the calculated recombination energy for this cluster. There does not appear to be a significant trend in the internal energy deposition with cluster size whereas the recombination energy is calculated to increase significantly for clusters with fewer than 10 water molecules. These, and other results, indicate that the dissociation of these smaller clusters is nonergodic.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
36 |
20
|
Shuken SR, Rutledge J, Iram T, Losada PM, Wilson EN, Andreasson KI, Leib RD, Wyss-Coray T. Limited Proteolysis-Mass Spectrometry Reveals Aging-Associated Changes in Cerebrospinal Fluid Protein Abundances and Structures. NATURE AGING 2022; 2:379-388. [PMID: 36741774 PMCID: PMC9893943 DOI: 10.1038/s43587-022-00196-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cerebrospinal fluid (CSF) proteins and their structures have been implicated repeatedly in aging and neurodegenerative diseases. Limited proteolysis-mass spectrometry (LiP-MS) is a method that enables proteome-wide screening for changes in both protein abundance and structure. To screen for novel aging-associated changes in the CSF proteome, we performed LiP-MS on CSF from young and old mice with a modified analysis pipeline. We found 38 protein groups change in abundance with aging, most dominantly immunoglobulins of the IgM subclass. We discovered six high-confidence candidates that appeared to change in structure with aging, of which Kng1, Itih2, Lp-PLA2, and 14-3-3 proteins have binding partners or proteoforms known previously to change in the brain with Alzheimer's disease. Intriguingly, using orthogonal validation by Western blot we found the LiP-MS hit Cd5l forms a covalent complex with IgM in mouse and human CSF whose abundance increases with aging. SOMAmer probe signals for all six LiP-MS hits in human CSF, especially 14-3-3 proteins, significantly associate with several clinical features relevant to cognitive function and neurodegeneration. Together, our findings show that LiP-MS can uncover age-related structural changes in CSF with relevance to neurodegeneration.
Collapse
|
research-article |
3 |
27 |
21
|
Leib RD, Donald WA, O'Brien JT, Bush MF, Williams ER. Reduction energy of 1 M aqueous ruthenium(III) hexaammine in the gas phase: a route toward establishing an absolute electrochemical scale. J Am Chem Soc 2007; 129:7716-7. [PMID: 17542579 PMCID: PMC2565573 DOI: 10.1021/ja067794n] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
Research Support, U.S. Gov't, Non-P.H.S. |
18 |
25 |
22
|
Donald WA, Leib RD, Demireva M, Williams ER. Ions in size-selected aqueous nanodrops: sequential water molecule binding energies and effects of water on ion fluorescence. J Am Chem Soc 2011; 133:18940-9. [PMID: 21999364 DOI: 10.1021/ja208072z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The effects of water on ion fluorescence were investigated, and average sequential water molecule binding energies to hydrated ions, M(z)(H(2)O)(n), at large cluster size were measured using ion nanocalorimetry. Upon 248-nm excitation, nanodrops with ~25 or more water molecules that contain either rhodamine 590(+), rhodamine 640(+), or Ce(3+) emit a photon with average energies of approximately 548, 590, and 348 nm, respectively. These values are very close to the emission maxima of the corresponding ions in solution, indicating that the photophysical properties of these ions in the nanodrops approach those of the fully hydrated ions at relatively small cluster size. As occurs in solution, these ions in nanodrops with 8 or more water molecules fluoresce with a quantum yield of ~1. Ce(3+) containing nanodrops that also contain OH(-) fluoresce, whereas those with NO(3)(-) do not. This indirect fluorescence detection method has the advantages of high sensitivity, and both the size of the nanodrops as well as their constituents can be carefully controlled. For ions that do not fluoresce in solution, such as protonated tryptophan, full internal conversion of the absorbed 248-nm photon occurs, and the average sequential water molecule binding energies to the hydrated ions can be accurately obtained at large cluster sizes. The average sequential water molecule binding energies for TrpH(+)(H(2)O)(n) and a doubly protonated tripeptide, [KYK + 2H](2+)(H(2)O)(n), approach asymptotic values of ~9.3 (n ≥ 11) and ~10.0 kcal/mol (n ≥ 25), respectively, consistent with a liquidlike structure of water in these nanodrops.
Collapse
|
Journal Article |
14 |
24 |
23
|
Evans AK, Park HH, Saw NL, Singhal K, Ogawa G, Leib RD, Shamloo M. Age-related neuroinflammation and pathology in the locus coeruleus and hippocampus: beta-adrenergic antagonists exacerbate impairment of learning and memory in aged mice. Neurobiol Aging 2021; 106:241-256. [PMID: 34320462 PMCID: PMC8419102 DOI: 10.1016/j.neurobiolaging.2021.06.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 06/01/2021] [Accepted: 06/14/2021] [Indexed: 11/21/2022]
Abstract
The locus coeruleus (LC) provides the primary noradrenergic input to the forebrain and hippocampus, and may be vulnerable to degeneration and contribute to age-related cognitive decline and neuroinflammation. Additionally, inhibition of noradrenergic transmission by brain-permeable beta-blockers could exacerbate cognitive impairment. This study examined effects of age and acute beta-blocker administration on LC and hippocampus pathology, neuroinflammation and learning and memory behavior in mice. Male mice, 3 and 18 months old, were administered propranolol (beta-blocker) or mabuterol (beta-adrenergic agonist) acutely around behavioral assessment. Terminal inflammatory markers in plasma, hippocampus and LC were assessed alongside histopathology. An increase in hippocampal and LC microgliosis and inflammatory proteins in the hippocampus was detected in aged mice. We report pathological hyperphosphorylation of the postsynaptic NMDA receptor subunit 2B (NR2B) in the hippocampus, suggesting neuronal hyperexcitability. Furthermore, the aged proteome revealed an induction in proteins related to energy metabolism, and mitochondria dysfunction in the LC and hippocampus. In a series of hippocampal dependent behavioral assessment tasks acute beta-adrenergic agonist or beta blocker administration altered learning and memory behavior in both aged and young mice. In Y-maze, propranolol and mabuterol differentially altered time spent in novel versus familiar arms in young and aged mice. Propranolol impaired Novel Object Recognition in both young and aged mice. Mabuterol enhanced trace learning in fear conditioning. Aged mice froze more to context and less to cue. Propranolol impaired contextual recall in aged mice. Concluding, aged mice show LC and hippocampus pathology and heightened effects of beta-adrenergic pharmacology on learning and memory.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
22 |
24
|
Seo JW, Ingham ES, Mahakian L, Tumbale S, Wu B, Aghevlian S, Shams S, Baikoghli M, Jain P, Ding X, Goeden N, Dobreva T, Flytzanis NC, Chavez M, Singhal K, Leib R, James ML, Segal DJ, Cheng RH, Silva EA, Gradinaru V, Ferrara KW. Positron emission tomography imaging of novel AAV capsids maps rapid brain accumulation. Nat Commun 2020; 11:2102. [PMID: 32355221 PMCID: PMC7193641 DOI: 10.1038/s41467-020-15818-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 03/31/2020] [Indexed: 01/07/2023] Open
Abstract
Adeno-associated viruses (AAVs) are typically single-stranded deoxyribonucleic acid (ssDNA) encapsulated within 25-nm protein capsids. Recently, tissue-specific AAV capsids (e.g. PHP.eB) have been shown to enhance brain delivery in rodents via the LY6A receptor on brain endothelial cells. Here, we create a non-invasive positron emission tomography (PET) methodology to track viruses. To provide the sensitivity required to track AAVs injected at picomolar levels, a unique multichelator construct labeled with a positron emitter (Cu-64, t1/2 = 12.7 h) is coupled to the viral capsid. We find that brain accumulation of the PHP.eB capsid 1) exceeds that reported in any previous PET study of brain uptake of targeted therapies and 2) is correlated with optical reporter gene transduction of the brain. The PHP.eB capsid brain endothelial receptor affinity is nearly 20-fold greater than that of AAV9. The results suggest that novel PET imaging techniques can be applied to inform and optimize capsid design. Adeno-associated viruses (AAVs) can be targeted in a tissue-specific manner, but their tissue accumulation cannot be assessed in a non-invasive manner. Here the authors conjugate a multivalent chelator labelled with Cu-64 to the surface of AAVs and image the brain accumulation of the PHB.eB capsid by PET.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
17 |
25
|
Moran BM, Payne CY, Powell DL, Iverson ENK, Donny AE, Banerjee SM, Langdon QK, Gunn TR, Rodriguez-Soto RA, Madero A, Baczenas JJ, Kleczko KM, Liu F, Matney R, Singhal K, Leib RD, Hernandez-Perez O, Corbett-Detig R, Frydman J, Gifford C, Schartl M, Havird JC, Schumer M. A lethal mitonuclear incompatibility in complex I of natural hybrids. Nature 2024; 626:119-127. [PMID: 38200310 PMCID: PMC10830419 DOI: 10.1038/s41586-023-06895-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/23/2023] [Indexed: 01/12/2024]
Abstract
The evolution of reproductive barriers is the first step in the formation of new species and can help us understand the diversification of life on Earth. These reproductive barriers often take the form of hybrid incompatibilities, in which alleles derived from two different species no longer interact properly in hybrids1-3. Theory predicts that hybrid incompatibilities may be more likely to arise at rapidly evolving genes4-6 and that incompatibilities involving multiple genes should be common7,8, but there has been sparse empirical data to evaluate these predictions. Here we describe a mitonuclear incompatibility involving three genes whose protein products are in physical contact within respiratory complex I of naturally hybridizing swordtail fish species. Individuals homozygous for mismatched protein combinations do not complete embryonic development or die as juveniles, whereas those heterozygous for the incompatibility have reduced complex I function and unbalanced representation of parental alleles in the mitochondrial proteome. We find that the effects of different genetic interactions on survival are non-additive, highlighting subtle complexity in the genetic architecture of hybrid incompatibilities. Finally, we document the evolutionary history of the genes involved, showing signals of accelerated evolution and evidence that an incompatibility has been transferred between species via hybridization.
Collapse
|
research-article |
1 |
14 |