1
|
Basheer F, Giotopoulos G, Meduri E, Yun H, Mazan M, Sasca D, Gallipoli P, Marando L, Gozdecka M, Asby R, Sheppard O, Dudek M, Bullinger L, Döhner H, Dillon R, Freeman S, Ottmann O, Burnett A, Russell N, Papaemmanuil E, Hills R, Campbell P, Vassiliou GS, Huntly BJP. Contrasting requirements during disease evolution identify EZH2 as a therapeutic target in AML. J Exp Med 2019; 216:966-981. [PMID: 30890554 PMCID: PMC6446874 DOI: 10.1084/jem.20181276] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 01/02/2019] [Accepted: 02/13/2019] [Indexed: 12/16/2022] Open
Abstract
Epigenetic regulators, such as EZH2, are frequently mutated in cancer, and loss-of-function EZH2 mutations are common in myeloid malignancies. We have examined the importance of cellular context for Ezh2 loss during the evolution of acute myeloid leukemia (AML), where we observed stage-specific and diametrically opposite functions for Ezh2 at the early and late stages of disease. During disease maintenance, WT Ezh2 exerts an oncogenic function that may be therapeutically targeted. In contrast, Ezh2 acts as a tumor suppressor during AML induction. Transcriptional analysis explains this apparent paradox, demonstrating that loss of Ezh2 derepresses different expression programs during disease induction and maintenance. During disease induction, Ezh2 loss derepresses a subset of bivalent promoters that resolve toward gene activation, inducing a feto-oncogenic program that includes genes such as Plag1, whose overexpression phenocopies Ezh2 loss to accelerate AML induction in mouse models. Our data highlight the importance of cellular context and disease phase for the function of Ezh2 and its potential therapeutic implications.
Collapse
MESH Headings
- Animals
- Bone Marrow Cells/metabolism
- Bone Marrow Transplantation
- Cell Line, Tumor
- Cohort Studies
- Disease Models, Animal
- Disease Progression
- Enhancer of Zeste Homolog 2 Protein/genetics
- Gene Frequency
- Histones/metabolism
- Humans
- Leukemia, Myeloid, Acute/blood
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- Loss of Function Mutation
- Mice
- Mice, Inbred C57BL
- Prognosis
- Survival Rate
- Transduction, Genetic
- Transplantation, Homologous
Collapse
|
research-article |
6 |
89 |
2
|
Gong C, Krupka JA, Gao J, Grigoropoulos NF, Giotopoulos G, Asby R, Screen M, Usheva Z, Cucco F, Barrans S, Painter D, Zaini NBM, Haupl B, Bornelöv S, Ruiz De Los Mozos I, Meng W, Zhou P, Blain AE, Forde S, Matthews J, Khim Tan MG, Burke GAA, Sze SK, Beer P, Burton C, Campbell P, Rand V, Turner SD, Ule J, Roman E, Tooze R, Oellerich T, Huntly BJ, Turner M, Du MQ, Samarajiwa SA, Hodson DJ. Sequential inverse dysregulation of the RNA helicases DDX3X and DDX3Y facilitates MYC-driven lymphomagenesis. Mol Cell 2021; 81:4059-4075.e11. [PMID: 34437837 DOI: 10.1016/j.molcel.2021.07.041] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/17/2021] [Accepted: 07/28/2021] [Indexed: 12/23/2022]
Abstract
DDX3X is a ubiquitously expressed RNA helicase involved in multiple stages of RNA biogenesis. DDX3X is frequently mutated in Burkitt lymphoma, but the functional basis for this is unknown. Here, we show that loss-of-function DDX3X mutations are also enriched in MYC-translocated diffuse large B cell lymphoma and reveal functional cooperation between mutant DDX3X and MYC. DDX3X promotes the translation of mRNA encoding components of the core translational machinery, thereby driving global protein synthesis. Loss-of-function DDX3X mutations moderate MYC-driven global protein synthesis, thereby buffering MYC-induced proteotoxic stress during early lymphomagenesis. Established lymphoma cells restore full protein synthetic capacity by aberrant expression of DDX3Y, a Y chromosome homolog, the expression of which is normally restricted to the testis. These findings show that DDX3X loss of function can buffer MYC-driven proteotoxic stress and highlight the capacity of male B cell lymphomas to then compensate for this loss by ectopic DDX3Y expression.
Collapse
|
|
4 |
49 |
3
|
Anderson GS, Ballester-Beltran J, Giotopoulos G, Guerrero JA, Surget S, Williamson JC, So T, Bloxham D, Aubareda A, Asby R, Walker I, Jenkinson L, Soilleux EJ, Roy JP, Teodósio A, Ficken C, Officer-Jones L, Nasser S, Skerget S, Keats JJ, Greaves P, Tai YT, Anderson KC, MacFarlane M, Thaventhiran JE, Huntly BJ, Lehner PJ, Chapman MA. Unbiased cell surface proteomics identifies SEMA4A as an effective immunotherapy target for myeloma. Blood 2022; 139:2471-2482. [PMID: 35134130 PMCID: PMC11022854 DOI: 10.1182/blood.2021015161] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/04/2022] [Indexed: 11/20/2022] Open
Abstract
The accessibility of cell surface proteins makes them tractable for targeting by cancer immunotherapy, but identifying suitable targets remains challenging. Here we describe plasma membrane profiling of primary human myeloma cells to identify an unprecedented number of cell surface proteins of a primary cancer. We used a novel approach to prioritize immunotherapy targets and identified a cell surface protein not previously implicated in myeloma, semaphorin-4A (SEMA4A). Using knock-down by short-hairpin RNA and CRISPR/nuclease-dead Cas9 (dCas9), we show that expression of SEMA4A is essential for normal myeloma cell growth in vitro, indicating that myeloma cells cannot downregulate the protein to avoid detection. We further show that SEMA4A would not be identified as a myeloma therapeutic target by standard CRISPR/Cas9 knockout screens because of exon skipping. Finally, we potently and selectively targeted SEMA4A with a novel antibody-drug conjugate in vitro and in vivo.
Collapse
|
research-article |
3 |
17 |
4
|
Arede L, Foerner E, Wind S, Kulkarni R, Domingues AF, Giotopoulos G, Kleinwaechter S, Mollenhauer-Starkl M, Davison H, Chandru A, Asby R, Samarista R, Gupta S, Forte D, Curti A, Scheer E, Huntly BJP, Tora L, Pina C. KAT2A complexes ATAC and SAGA play unique roles in cell maintenance and identity in hematopoiesis and leukemia. Blood Adv 2022; 6:165-180. [PMID: 34654054 PMCID: PMC8753207 DOI: 10.1182/bloodadvances.2020002842] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/20/2021] [Indexed: 12/03/2022] Open
Abstract
Epigenetic histone modifiers are key regulators of cell fate decisions in normal and malignant hematopoiesis. Their enzymatic activities are of particular significance as putative therapeutic targets in leukemia. In contrast, less is known about the contextual role in which those enzymatic activities are exercised and specifically how different macromolecular complexes configure the same enzymatic activity with distinct molecular and cellular consequences. We focus on KAT2A, a lysine acetyltransferase responsible for histone H3 lysine 9 acetylation, which we recently identified as a dependence in acute myeloid leukemia stem cells and that participates in 2 distinct macromolecular complexes: Ada two-A-containing (ATAC) and Spt-Ada-Gcn5-Acetyltransferase (SAGA). Through analysis of human cord blood hematopoietic stem cells and progenitors, and of myeloid leukemia cells, we identify unique respective contributions of the ATAC complex to regulation of biosynthetic activity in undifferentiated self-renewing cells and of the SAGA complex to stabilization or correct progression of cell type-specific programs with putative preservation of cell identity. Cell type and stage-specific dependencies on ATAC and SAGA-regulated programs explain multilevel KAT2A requirements in leukemia and in erythroid lineage specification and development. Importantly, they set a paradigm against which lineage specification and identity can be explored across developmental stem cell systems.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
10 |
5
|
Woodley K, Dillingh LS, Giotopoulos G, Madrigal P, Rattigan KM, Philippe C, Dembitz V, Magee AMS, Asby R, van de Lagemaat LN, Mapperley C, James SC, Prehn JHM, Tzelepis K, Rouault-Pierre K, Vassiliou GS, Kranc KR, Helgason GV, Huntly BJP, Gallipoli P. Mannose metabolism inhibition sensitizes acute myeloid leukaemia cells to therapy by driving ferroptotic cell death. Nat Commun 2023; 14:2132. [PMID: 37059720 PMCID: PMC10104861 DOI: 10.1038/s41467-023-37652-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 03/24/2023] [Indexed: 04/16/2023] Open
Abstract
Resistance to standard and novel therapies remains the main obstacle to cure in acute myeloid leukaemia (AML) and is often driven by metabolic adaptations which are therapeutically actionable. Here we identify inhibition of mannose-6-phosphate isomerase (MPI), the first enzyme in the mannose metabolism pathway, as a sensitizer to both cytarabine and FLT3 inhibitors across multiple AML models. Mechanistically, we identify a connection between mannose metabolism and fatty acid metabolism, that is mediated via preferential activation of the ATF6 arm of the unfolded protein response (UPR). This in turn leads to cellular accumulation of polyunsaturated fatty acids, lipid peroxidation and ferroptotic cell death in AML cells. Our findings provide further support to the role of rewired metabolism in AML therapy resistance, unveil a connection between two apparently independent metabolic pathways and support further efforts to achieve eradication of therapy-resistant AML cells by sensitizing them to ferroptotic cell death.
Collapse
|
research-article |
2 |
5 |
6
|
Gupta S, Dovey OM, Domingues AF, Cyran OW, Cash CM, Giotopoulos G, Rak J, Cooper J, Gozdecka M, Dijkhuis L, Asby RJ, Al-Jabery N, Hernandez-Hernandez V, Prabakaran S, Huntly BJ, Vassiliou GS, Pina C. Transcriptional variability accelerates preleukemia by cell diversification and perturbation of protein synthesis. SCIENCE ADVANCES 2022; 8:eabn4886. [PMID: 35921412 PMCID: PMC9348803 DOI: 10.1126/sciadv.abn4886] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Transcriptional variability facilitates stochastic cell diversification and can in turn underpin adaptation to stress or injury. We hypothesize that it may analogously facilitate progression of premalignancy to cancer. To investigate this, we initiated preleukemia in mouse cells with enhanced transcriptional variability due to conditional disruption of the histone lysine acetyltransferase gene Kat2a. By combining single-cell RNA sequencing of preleukemia with functional analysis of transformation, we show that Kat2a loss results in global variegation of cell identity and accumulation of preleukemic cells. Leukemia progression is subsequently facilitated by destabilization of ribosome biogenesis and protein synthesis, which confer a transient transformation advantage. The contribution of transcriptional variability to early cancer evolution reflects a generic role in promoting cell fate transitions, which, in the case of well-adapted malignancies, contrastingly differentiates and depletes cancer stem cells. That is, transcriptional variability confers forward momentum to cell fate systems, with differential multistage impact throughout cancer evolution.
Collapse
|
research-article |
3 |
4 |
7
|
Gozdecka M, Dudek M, Wen S, Gu M, Stopforth RJ, Rak J, Damaskou A, Grice GL, McLoughlin MA, Bond L, Wilson R, Giotopoulos G, Mahalingam Shanmugiah V, Bakar RB, Yankova E, Cooper JL, Narayan N, Horton SJ, Asby R, Pask DC, Mupo A, Duddy G, Marando L, Georgomanolis T, Carter P, Ramesh AP, Dunn WG, Barcena C, Gallipoli P, Yusa K, Petrovski S, Wright P, Quiros PM, Frezza C, Nathan JA, Kaser A, Kar S, Tzelepis K, Mitchell J, Fabre MA, Huntly BJP, Vassiliou GS. Mitochondrial metabolism sustains DNMT3A-R882-mutant clonal haematopoiesis. Nature 2025:10.1038/s41586-025-08980-6. [PMID: 40239706 DOI: 10.1038/s41586-025-08980-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/04/2025] [Indexed: 04/18/2025]
Abstract
Somatic DNMT3A R882 codon mutations drive the most common form of clonal haematopoiesis (CH) and are associated with increased acute myeloid leukaemia (AML) risk1,2. Preventing expansion of DNMT3A-R882-mutant haematopoietic stem/progenitor cells (HSPCs) may therefore avert progression to AML. To identify DNMT3A-R882-mutant-specific vulnerabilities, we conducted a genome-wide CRISPR screen on primary mouse Dnmt3aR882H/+ HSPCs. Amongst the 640 vulnerability genes identified, many were involved in mitochondrial metabolism and metabolic flux analysis confirmed enhanced oxidative phosphorylation usage in Dnmt3aR882H/+ vs Dnmt3a+/+ (WT) HSPCs. We selected citrate/malate transporter Slc25a1 and complex I component Ndufb11, for which pharmacological inhibitors are available, for downstream studies. In vivo administration of SLC25A1 inhibitor CTPI2 and complex I inhibitors IACS-010759 and metformin, suppressed post-transplantation clonal expansion of Dnmt3aR882H/+, but not WT, LT-HSC. The effect of metformin was recapitulated using a primary human DNMT3A-R882 CH sample. Notably, analysis of 412,234 UK Biobank (UKB) participants revealed that individuals taking metformin had markedly lower prevalence of DNMT3A-R882-mutant CH, after controlling for potential confounders including glycated haemoglobin, diabetes and body mass index. Collectively, our data propose modulation of mitochondrial metabolism as a therapeutic strategy for prevention of DNMT3A-R882-mutant AML.
Collapse
|
|
1 |
|
8
|
Williams MJ, Wang X, Bastos HP, Grondys-Kotarba G, Wu Q, Jin S, Johnson C, Mende N, Calderbank E, Wantoch M, Park HJ, Mantica G, Hannah R, Wilson NK, Pask DC, Hamilton TL, Kinston SJ, Asby R, Sneade R, Baxter EJ, Campbell P, Vassiliou GS, Laurenti E, Li J, Göttgens B, Green AR. Maintenance of hematopoietic stem cells by tyrosine-unphosphorylated STAT5 and JAK inhibition. Blood Adv 2025; 9:291-309. [PMID: 39374575 PMCID: PMC7617191 DOI: 10.1182/bloodadvances.2024014046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/04/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024] Open
Abstract
ABSTRACT Adult hematopoietic stem cells (HSCs) are responsible for the lifelong production of blood and immune cells, a process regulated by extracellular cues, including cytokines. Many cytokines signal through the conserved Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway in which tyrosine-phosphorylated STATs (pSTATs) function as transcription factors. STAT5 is a pivotal downstream mediator of several cytokines known to regulate hematopoiesis, but its function in the HSC compartment remains poorly understood. In this study, we show that STAT5-deficient HSCs exhibit an unusual phenotype, including reduced multilineage repopulation and self-renewal, combined with reduced exit from quiescence and increased differentiation. This was driven not only by the loss of canonical pSTAT5 signaling, but also by the loss of distinct transcriptional functions mediated by STAT5 that lack canonical tyrosine phosphorylation (uSTAT5). Consistent with this concept, expression of an unphosphorylatable STAT5 mutant constrained wild-type HSC differentiation, promoted their maintenance, and upregulated transcriptional programs associated with quiescence and stemness. The JAK1/2 inhibitor, ruxolitinib, which increased the uSTAT5:pSTAT5 ratio, had similar effects on murine HSC function; it constrained HSC differentiation and proliferation, promoted HSC maintenance, and upregulated transcriptional programs associated with stemness. Ruxolitinib also enhanced serial replating of normal human hematopoietic stem and progenitor cells (HSPCs), calreticulin-mutant murine HSCs, and HSPCs obtained from patients with myelofibrosis. Our results therefore reveal a previously unrecognized interplay between pSTAT5 and uSTAT5 in the control of HSC function and highlight JAK inhibition as a potential strategy for enhancing HSC function during ex vivo culture. Increased levels of uSTAT5 may also contribute to the failure of JAK inhibitors to eradicate myeloproliferative neoplasms.
Collapse
|
research-article |
1 |
|