1
|
Abstract
PURPOSE OF REVIEW PTSD in youth is common and debilitating. In contrast to adult PTSD, relatively little is known about the neurobiology of pediatric PTSD, nor how neurodevelopment may be altered. This review summarizes recent neuroimaging studies in pediatric PTSD and discusses implications for future study. RECENT FINDINGS Pediatric PTSD is characterized by abnormal structure and function in neural circuitry supporting threat processing and emotion regulation. Furthermore, cross-sectional studies suggest that youth with PTSD have abnormal frontolimbic development compared to typically developing youth. Examples include declining hippocampal volume, increasing amygdala reactivity, and declining amygdala-prefrontal coupling with age. Pediatric PTSD is characterized by both overt and developmental abnormalities in frontolimbic circuitry. Notably, abnormal frontolimbic development may contribute to increasing threat reactivity and weaker emotion regulation as youth age. Longitudinal studies of pediatric PTSD are needed to characterize individual outcomes and determine whether current treatments are capable of restoring healthy neurodevelopment.
Collapse
|
Review |
8 |
129 |
2
|
Keding TJ, Herringa RJ. Abnormal structure of fear circuitry in pediatric post-traumatic stress disorder. Neuropsychopharmacology 2015; 40:537-45. [PMID: 25212487 PMCID: PMC4289962 DOI: 10.1038/npp.2014.239] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/05/2014] [Accepted: 09/07/2014] [Indexed: 11/09/2022]
Abstract
Structural brain studies of adult post-traumatic stress disorder (PTSD) show reduced gray matter volume (GMV) in fear regulatory areas including the ventromedial prefrontal cortex (vmPFC) and hippocampus. Surprisingly, neither finding has been reported in pediatric PTSD. One possibility is that they represent age-dependent effects that are not fully apparent until adulthood. In addition, lower-resolution MRI and image processing in prior studies may have limited detection of such differences. Here we examine fear circuitry GMV, including age-related differences, using higher-resolution MRI in pediatric PTSD vs healthy youth. In a cross-sectional design, 3 T anatomical brain MRI was acquired in 27 medication-free youth with PTSD and 27 healthy non-traumatized youth of comparable age, sex, and IQ. Voxel-based morphometry was used to compare GMV in a priori regions including the medial prefrontal cortex and amygdala/hippocampus. Compared with healthy youth, PTSD youth had reduced GMV but no age-related differences in anterior vmPFC (BA 10/11, Z=4.5), which inversely correlated with PTSD duration. In contrast, although there was no overall group difference in hippocampal volume, a group × age interaction (Z=3.6) was present in the right anterior hippocampus. Here, age positively predicted hippocampal volume in healthy youth but negatively predicted volume in PTSD youth. Within the PTSD group, re-experiencing symptoms inversely correlated with subgenual anterior cingulate cortex (sgACC, Z=3.7) and right anterior hippocampus (Z=3.5) GMV. Pediatric PTSD is associated with abnormal structure of the vmPFC and age-related differences in the hippocampus, regions important in the extinction and contextual gating of fear. Reduced anterior vmPFC volume may confer impaired recovery from illness, consistent with its role in the allocation of attentional resources. In contrast, individual differences in sgACC volume were associated with re-experiencing symptoms, consistent with the role of the sgACC in fear extinction. The negative relationship between age and hippocampal volume in youth with PTSD may suggest an ongoing neurotoxic process over development, which further contributes to illness expression. Future studies employing a longitudinal design would be merited to further explore these possibilities.
Collapse
|
research-article |
10 |
97 |
3
|
Birn RM, Patriat R, Phillips ML, Germain A, Herringa RJ. Childhood maltreatment and combat posttraumatic stress differentially predict fear-related fronto-subcortical connectivity. Depress Anxiety 2014; 31:880-892. [PMID: 25132653 PMCID: PMC4205190 DOI: 10.1002/da.22291] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 05/30/2014] [Accepted: 06/13/2014] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Adult posttraumatic stress disorder (PTSD) has been characterized by altered fear-network connectivity. Childhood trauma is a major risk factor for adult PTSD, yet its contribution to fear-network connectivity in PTSD remains unexplored. We examined, within a single model, the contribution of childhood maltreatment, combat exposure, and combat-related posttraumatic stress symptoms (PTSS) to resting-state connectivity (rs-FC) of the amygdala and hippocampus in military veterans. METHODS Medication-free male veterans (n = 27, average 26.6 years) with a range of PTSS completed resting-state fMRI. Measures including the Clinician-Administered PTSD Scale (CAPS), Childhood Trauma Questionnaire (CTQ), and Combat Exposure Scale (CES) were used to predict rs-FC using multilinear regression. Fear-network seeds included the amygdala and hippocampus. RESULTS Amygdala: CTQ predicted lower connectivity to ventromedial prefrontal cortex (vmPFC), but greater anticorrelation with dorsal/lateral PFC. CAPS positively predicted connectivity to insula, and loss of anticorrelation with dorsomedial/dorsolateral (dm/dl)PFC. Hippocampus: CTQ predicted lower connectivity to vmPFC, but greater anticorrelation with dm/dlPFC. CES predicted greater anticorrelation, whereas CAPS predicted less anticorrelation with dmPFC. CONCLUSIONS Childhood trauma, combat exposure, and PTSS differentially predict fear-network rs-FC. Childhood maltreatment may weaken ventral prefrontal-subcortical circuitry important in automatic fear regulation, but, in a compensatory manner, may also strengthen dorsal prefrontal-subcortical pathways involved in more effortful emotion regulation. PTSD symptoms, in turn, appear to emerge with the loss of connectivity in the latter pathway. These findings suggest potential mechanisms by which developmental trauma exposure leads to adult PTSD, and which brain mechanisms are associated with the emergence of PTSD symptoms.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
90 |
4
|
Patriat R, Birn RM, Keding TJ, Herringa RJ. Default-Mode Network Abnormalities in Pediatric Posttraumatic Stress Disorder. J Am Acad Child Adolesc Psychiatry 2016; 55:319-27. [PMID: 27015723 PMCID: PMC4808564 DOI: 10.1016/j.jaac.2016.01.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 12/23/2015] [Accepted: 01/29/2016] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Resting-state functional magnetic resonance imaging (rs-fMRI) studies of adult posttraumatic stress disorder (PTSD) have identified default-mode network (DMN) abnormalities, including reduced within-network connectivity and reduced anticorrelation between the DMN and task-positive network (TPN). However, no prior studies have specifically examined DMN connectivity in pediatric PTSD, which may differ due to neurodevelopmental factors. METHOD A total of 29 youth with PTSD and 30 nontraumatized healthy youth of comparable age and sex completed rs-fMRI. DMN properties were examined using posterior cingulate cortex (PCC) seed-based connectivity and independent component analysis (ICA). RESULTS Contrary to findings in adult studies, youth with PTSD displayed increased connectivity within the DMN, including increased PCC-inferior parietal gyrus connectivity, and age-related increases in PCC-ventromedial prefrontal cortex connectivity. Strikingly, youth with PTSD also displayed greater anticorrelation between the PCC and multiple nodes within salience and attentional control networks of the TPN. ICA revealed greater anticorrelation between the entire DMN and TPN networks in youth with PTSD. Furthermore, DMN and TPN connectivity strength were positively and negatively associated, respectively, with re-experiencing symptoms of PTSD. CONCLUSION Pediatric PTSD is characterized by heightened within-DMN connectivity, which may contribute to re-experiencing symptoms of PTSD and is consistent with the role of the DMN in autobiographical memory. At the same time, greater anticorrelation between the DMN and attentional control networks may represent compensatory mechanisms aimed at suppressing trauma-related thought, a notion supported by the inverse relationship between TPN strength and re-experiencing. These findings provide new insights into large-scale network abnormalities underlying pediatric PTSD, which could serve as biomarkers of illness and treatment response.
Collapse
|
research-article |
9 |
60 |
5
|
Herringa RJ, Burghy CA, Stodola DE, Fox ME, Davidson RJ, Essex MJ. Enhanced prefrontal-amygdala connectivity following childhood adversity as a protective mechanism against internalizing in adolescence. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2016; 1:326-334. [PMID: 27725969 PMCID: PMC5055123 DOI: 10.1016/j.bpsc.2016.03.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Much research has focused on the deleterious neurobiological effects of childhood adversity that may underlie internalizing disorders. While most youth show emotional adaptation following adversity, the corresponding neural mechanisms remain poorly understood. METHODS In this longitudinal community study, we examined the associations among childhood family adversity, adolescent internalizing symptoms, and their interaction on regional brain activation and amygdala/hippocampus functional connectivity during emotion processing in 132 adolescents. RESULTS Consistent with prior work, childhood adversity predicted heightened amygdala reactivity to negative, but not positive, images in adolescence. However, amygdala reactivity was not related to internalizing symptoms. Furthermore, childhood adversity predicted increased fronto-amygdala connectivity to negative, but not positive, images, yet only in lower internalizing adolescents. Childhood adversity also predicted increased fronto-hippocampal connectivity to negative images, but was not moderated by internalizing. These findings were unrelated to adolescence adversity or externalizing symptoms, suggesting specificity to childhood adversity and adolescent internalizing. CONCLUSIONS Together, these findings suggest that adaptation to childhood adversity is associated with augmentation of fronto-subcortical circuits specifically for negative emotional stimuli. Conversely, insufficient enhancement of fronto-amygdala connectivity, with increasing amygdala reactivity, may represent a neural signature of vulnerability for internalizing by late adolescence. These findings implicate early childhood as a critical period in determining the brain's adaptation to adversity, and suggest that even normative adverse experiences can have significant impact on neurodevelopment and functioning. These results offer potential neural mechanisms of adaptation and vulnerability which could be used in the prediction of risk for psychopathology following childhood adversity.
Collapse
|
research-article |
9 |
53 |
6
|
Germain A, James J, Insana S, Herringa RJ, Mammen O, Price J, Nofzinger E. A window into the invisible wound of war: functional neuroimaging of REM sleep in returning combat veterans with PTSD. Psychiatry Res 2013; 211:176-9. [PMID: 23149024 PMCID: PMC3570584 DOI: 10.1016/j.pscychresns.2012.05.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 05/21/2012] [Accepted: 05/22/2012] [Indexed: 10/27/2022]
Abstract
Relative regional cerebral metabolic rate of glucose in rapid eye movement (REM) sleep and wakefulness was explored in combat veterans with and without posttraumatic stress disorder PTSD, using positron emission tomography. Hypermetabolism in brain regions involved in arousal regulation, fear responses, and reward processing persist during REM sleep in combat veterans with PTSD.
Collapse
|
research-article |
12 |
50 |
7
|
Keding TJ, Herringa RJ. Paradoxical Prefrontal-Amygdala Recruitment to Angry and Happy Expressions in Pediatric Posttraumatic Stress Disorder. Neuropsychopharmacology 2016; 41:2903-2912. [PMID: 27329685 PMCID: PMC5061882 DOI: 10.1038/npp.2016.104] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/29/2016] [Accepted: 06/15/2016] [Indexed: 11/09/2022]
Abstract
The neural substrates of pediatric posttraumatic stress disorder (PTSD) remain incompletely understood, but likely involve abnormal function and development of emotion processing circuitry. Valence-specific and age-related abnormalities during emotion processing have not been elucidated. We examined implicit emotional face processing in pediatric PTSD, predicting abnormalities specific to threat-related emotion. Youth (ages 8-18 years) with PTSD (n=25) and healthy youth (n=28) completed a dynamic emotional face task during fMRI, viewing faces changing from neutral to angry or happy, or changing shape control. Group and cross-sectional age-related differences in activation and functional connectivity were examined in amygdala/hippocampus, medial prefrontal cortex (mPFC), and whole-brain analyses. The post hoc analyses examined the relationship of neural abnormalities with symptom measures of PTSD, anxiety, and depression. Compared with decreased activation with age in healthy youth, PTSD youth showed increased amygdala activation to emotional faces with age. In a group by emotion interaction, PTSD youth showed dorsal (d)ACC hyperactivation to happy faces relative to healthy youth, with no difference for angry faces. Connectivity analyses revealed paradoxical coupling in prefrontal-amygdala circuits, including dACC-dorsomedial (dm)PFC, amygdala-dmPFC, and amygdala-ventrolateral (vl)PFC. In each case, PTSD youth showed reduced connectivity to angry faces, but increased connectivity to happy faces, the reverse of healthy youth. Valence-abnormal recruitment was associated with greater symptom severity, implicating a role in trauma-related psychopathology in youth. Notably, impaired recruitment during angry faces and heightened recruitment to happy faces may reflect increased salience and ambiguity of positive emotional expressions in pediatric PTSD. Finally, age-related findings suggest a developmental sensitization of the amygdala across emotional expressions in youth with PTSD. These findings provide novel insights into the underlying pathophysiology of pediatric PTSD, extending beyond abnormal neural responses to canonical threat.
Collapse
|
research-article |
9 |
49 |
8
|
Herringa RJ, Phillips ML, Fournier JC, Kronhaus DM, Germain A. Childhood and adult trauma both correlate with dorsal anterior cingulate activation to threat in combat veterans. Psychol Med 2013; 43:1533-1542. [PMID: 23171514 PMCID: PMC3686816 DOI: 10.1017/s0033291712002310] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Prior studies of adult post-traumatic stress disorder (PTSD) suggest abnormal functioning of prefrontal and limbic regions. Cumulative childhood and adult trauma exposures are major risk factors for developing adult PTSD, yet their contribution to neural dysfunction in PTSD remains poorly understood. This study aimed to examine the neural correlates of childhood and adult trauma exposure and post-traumatic stress symptoms (PTSS) within a single model. Method Medication-free male combat veterans (n = 28, average age 26.6 years) with a wide range of PTSS were recruited from the community between 2010 and 2011. Subjects completed an emotional face-morphing task while undergoing functional magnetic resonance imaging (fMRI). Clinical ratings included the Clinician-Administered PTSD Scale (CAPS), Childhood Trauma Questionnaire (CTQ) and Combat Exposure Scale (CES). A priori regions were examined through multivariate voxelwise regression in SPM8, using depressive symptoms and IQ as covariates. RESULTS In the angry condition, CAPS scores correlated positively with activation in the medial prefrontal cortex [mPFC; Brodmann area (BA) 10, z = 3.51], hippocampus (z = 3.47), insula (z = 3.62) and, in earlier blocks, the amygdala. CES and CTQ correlated positively with activation in adjacent areas of the dorsal anterior cingulate cortex (dACC; BA 32, z = 3.70 and BA 24, z = 3.88 respectively). In the happy condition, CAPS, CTQ and CES were not correlated significantly with activation patterns. CONCLUSIONS dACC activation observed in prior studies of PTSD may be attributable to the cumulative effects of childhood and adult trauma exposure. By contrast, insula, hippocampus and amygdala activation may be specific to PTSS. The specificity of these results to threat stimuli, but not to positive stimuli, is consistent with abnormalities in threat processing associated with PTSS.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
47 |
9
|
Herringa RJ, Nanda SA, Hsu DT, Roseboom PH, Kalin NH. The effects of acute stress on the regulation of central and basolateral amygdala CRF-binding protein gene expression. ACTA ACUST UNITED AC 2005; 131:17-25. [PMID: 15530648 DOI: 10.1016/j.molbrainres.2004.08.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2004] [Indexed: 10/26/2022]
Abstract
Corticotropin-releasing factor (CRF) is a key mediator of the behavioral, autonomic, and endocrine responses to stress. CRF binds two receptors and a CRF-binding protein (CRF-BP), which may inactivate or modulate the actions of CRF at its receptors. The amygdala is an important anatomical substrate for CRF and contains CRF, its receptors, and CRF-BP. Few studies have examined the effects of acute stress on the regulation of amygdala CRF-BP with other CRF system genes. Therefore, we examined the time course of the effects of acute restraint stress on central (CeA) and basolateral (BLA) amygdala CRF system genes. Consistent with our previous study, acute stress increased BLA CRF-BP mRNA shortly after stress offset. Surprisingly, BLA CRF-BP mRNA remained elevated up to 21 h after the stressor. This effect was selective in the BLA as stress did not alter CeA CRF-BP mRNA, and there were no changes in CRF or CRF receptor mRNAs in either amygdala nucleus. These results suggest that alterations in BLA CRF-BP gene expression are a primary response of the BLA/CeA CRF system to acute stress. Because CRF-BP can modulate CRF action, changes in amygdala CRF-BP levels after stress exposure may affect the ability of an organism to adapt to future stressors.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
39 |
10
|
Weems CF, Russell JD, Herringa RJ, Carrion VG. Translating the neuroscience of adverse childhood experiences to inform policy and foster population-level resilience. ACTA ACUST UNITED AC 2021; 76:188-202. [PMID: 33734788 DOI: 10.1037/amp0000780] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Imaging methods have elucidated several neurobiological correlates of traumatic and adverse experiences in childhood. This knowledge base may foster the development of programs and policies that aim to build resilience and adaptation in children and youth facing adversity. Translation of this research requires both effective and accurate communication of the science. This review begins with a discussion of integrating the language used to describe and identify childhood adversity and their outcomes to clarify the translation of neurodevelopmental findings. An integrative term, Traumatic and Adverse Childhood Experiences (TRACEs+) is proposed, alongside a revised adverse childhood experiences (ACEs) pyramid that emphasizes that a diversity of adverse experiences may lead to a common outcome and that a diversity of outcomes may result from a common adverse experience. This term facilitates linkages between the ACEs literature and the emerging neurodevelopmental knowledge surrounding the effect of traumatic adverse childhood experiences on youth in terms of the knowns and unknowns about neural connectivity in youth samples. How neuroscience findings may lead directly or indirectly to specific techniques or targets for intervention and the reciprocal nature of these relationships is addressed. Potential implications of the neuroscience for policy and intervention at multiple levels are illustrated using existing policy programs that may be informed by (and inform) neuroscience. The need for transdisciplinary models to continue to move the science to action closes the article. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
33 |
11
|
Lombardo KA, Herringa RJ, Balachandran JS, Hsu DT, Bakshi VP, Roseboom PH, Kalin NH. Effects of acute and repeated restraint stress on corticotropin-releasing hormone binding protein mRNA in rat amygdala and dorsal hippocampus. Neurosci Lett 2001; 302:81-4. [PMID: 11290392 DOI: 10.1016/s0304-3940(01)01680-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Corticotropin-releasing hormone (CRH) mediates endocrine, behavioral, and autonomic responses to stress. In addition to binding to two receptor subtypes, CRH binds to a CRH-binding protein (CRH-BP). While CRH-BP is hypothesized to play a role in regulating levels of free CRH and modulating the stress response, the effects of stressors on brain CRH-BP are relatively unexplored. The present study determined effects of acute and repeated restraint on CRH-BP mRNA in basolateral amygdala (BLA) and dorsal hippocampus (DH), brain regions involved in fear and motivation. Using in situ hybridization, we found that a single acute period of restraint significantly increased CRH-BP mRNA in BLA by 20% but had no effect in DH. Repeated restraint had no effect on basal levels of CRH-BP mRNA in BLA or DH. Importantly, repeated restraint blocked the effects of acute restraint in the BLA. These results demonstrate differential effects of acute and repeated restraint on CRH-BP mRNA.
Collapse
|
|
24 |
33 |
12
|
Keding TJ, Heyn SA, Russell JD, Zhu X, Cisler J, McLaughlin KA, Herringa RJ. Differential Patterns of Delayed Emotion Circuit Maturation in Abused Girls With and Without Internalizing Psychopathology. Am J Psychiatry 2021; 178:1026-1036. [PMID: 34407623 PMCID: PMC8570983 DOI: 10.1176/appi.ajp.2021.20081192] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Childhood abuse represents one of the most potent risk factors for developing psychopathology, especially in females. Evidence suggests that exposure to early-life adversity may be related to advanced maturation of emotion processing neural circuits. However, it remains unknown whether abuse is related to early circuit maturation and whether maturation patterns depend on the presence of psychopathology. METHODS A multisite sample of 234 girls (ages 8-18 years) completed clinical assessment, maltreatment histories, and high-resolution T1-weighted structural MRI. Girls were stratified by abuse history and internalizing disorder diagnosis into typically developing (no abuse/no diagnosis), resilient (abuse/no diagnosis), and susceptible (abuse/current diagnosis) groups. Machine learning models of normative brain development were aggregated in a stacked generalization framework trained to predict chronological age using gray matter volume in whole-brain, emotion, and language circuit parcellations. Brain age gap estimations (BrainAGEs; predicted age minus true chronological age) were calculated as indices of relative circuit maturation. RESULTS Childhood abuse was related to reduced BrainAGE (delayed maturation) specific to emotion circuits. Delayed emotion circuit BrainAGE was further related to increased hyperarousal symptoms. Childhood physical neglect was associated with increased whole-brain BrainAGE (advanced maturation). Neural contributors to emotion circuit BrainAGE differed in girls with and without an internalizing diagnosis, especially in the lateral prefrontal, parietal, and insular cortices and the hippocampus. CONCLUSIONS Abuse exposure in girls is associated with a delayed structural maturation pattern specific to emotion circuitry, a potentially adaptive mechanism enhancing threat generalization. Physical neglect, on the other hand, is associated with a broader brain-wide pattern of advanced structural maturation. The differential influence of fronto-parietal cortices and the hippocampus on emotion circuit maturity in resilient girls may represent neurodevelopmental markers of reduced psychiatric risk following abuse.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
32 |
13
|
Herringa RJ, Roseboom PH, Kalin NH. Decreased amygdala CRF-binding protein mRNA in post-mortem tissue from male but not female bipolar and schizophrenic subjects. Neuropsychopharmacology 2006; 31:1822-31. [PMID: 16482088 DOI: 10.1038/sj.npp.1301038] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Stressful life events are commonly associated with the onset and maintenance of psychopathology and much research has focused on the role of the corticotropin-releasing factor (CRF) system in mediating psychopathology. Since CRF serves to integrate the stress response, it is possible that the CRF system plays a role as a neurochemical linkage between stress and psychopathology. CRF-binding protein (CRF-BP) is thought to modulate CRF activity by decreasing its actions. Therefore, in some psychopathological states, alterations in CRF-BP function may contribute to dysregulation of the CRF system. Since the amygdala CRF system mediates stress- and anxiety-related behaviors and alterations in amygdala function are associated with psychopathology, we examined amygdala CRF-BP gene expression in post-mortem brains from subjects with major depression, bipolar disorder, and schizophrenia as well as in controls. In addition to characterizing the anatomic distribution of CRF-BP mRNA in the human amygdala and medial temporal lobe region, we found a significant decrease in CRF-BP mRNA levels in the basolateral amygdala of male bipolar and male schizophrenic subjects and the lateral amygdala of male bipolar subjects. These results raise the possibility that men with decreased amygdala CRF-BP may be more vulnerable to the effects of stress exposure on the etiology or maintenance of bipolar disorder or schizophrenia.
Collapse
|
Comparative Study |
19 |
31 |
14
|
Cisler JM, Herringa RJ. Posttraumatic Stress Disorder and the Developing Adolescent Brain. Biol Psychiatry 2021; 89:144-151. [PMID: 32709416 PMCID: PMC7725977 DOI: 10.1016/j.biopsych.2020.06.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023]
Abstract
Posttraumatic stress disorder (PTSD) in adolescents is common and debilitating. In contrast to adult PTSD, relatively little is known about the neurobiology of adolescent PTSD, nor about how current treatments may alter adolescent neurodevelopment to allow recovery from PTSD. Improving our understanding of biological mechanisms of adolescent PTSD, taken in the context of neurodevelopment, is crucial for developing novel and personalized treatment approaches. In this review, we highlight prevailing constructs of PTSD and current findings on these domains in adolescent PTSD. Notably, little data exist in adolescent PTSD for prominent adult PTSD constructs, including threat learning and attentional threat bias. Most work to date has examined general threat processing, emotion regulation, and their neural substrates. These studies suggest that adolescent PTSD, while phenomenologically similar to adult PTSD, shows unique neurodevelopmental substrates that may impair recovery but could also be targeted in the context of adolescent neuroplasticity to improve outcomes. Both cross-sectional and longitudinal data suggest abnormal frontolimbic development compared with typically developing youths, a pattern that may differ from resilient youths. Whether current treatments such as trauma-focused psychotherapy engage these targets and restore healthy neurodevelopment remains an open question. We end our review by highlighting emerging areas and knowledge gaps that could be addressed to better characterize the biology underlying adolescent PTSD. Emerging studies in computational modeling of decision making, caregiver-related transmission of traumatic stress, and other areas may offer new targets that could harness adolescent neurobehavioral plasticity to improve resilience and recovery for some of our most vulnerable youths.
Collapse
|
research-article |
4 |
30 |
15
|
Cisler JM, Privratsky AA, Sartin-Tarm A, Sellnow K, Ross M, Weaver S, Hahn E, Herringa RJ, James GA, Kilts CD. L-DOPA and consolidation of fear extinction learning among women with posttraumatic stress disorder. Transl Psychiatry 2020; 10:287. [PMID: 32801342 PMCID: PMC7429959 DOI: 10.1038/s41398-020-00975-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/23/2020] [Accepted: 08/03/2020] [Indexed: 01/11/2023] Open
Abstract
This study tested whether L-DOPA delivered during the consolidation window following fear extinction learning reduces subsequent fear responding among women with PTSD. Adult women diagnosed with PTSD completed a contextual fear acquisition and extinction task during fMRI and then immediately received either placebo (n = 34), 100/25 mg L-DOPA/carbidopa (n = 28), or 200/50 mg L-DOPA/carbidopa (n = 29). Participants completed a resting-state scan before the task and again 45 min following drug ingestion to characterize effects of L-DOPA on extinction memory neural reactivation patterns during consolidation. Twenty-four hours later, participants returned for tests of context renewal, extinction recall, and reinstatement during fMRI with concurrent skin conductance responding (SCR) assessment. Both active drug groups demonstrated increased reactivation of extinction encoding in the amygdala during the post-task resting-state scan. For SCR data, both drug groups exhibited decreased Day 2 reinstatement across all stimuli compared to placebo, and there was some evidence for decreased context renewal to the fear stimulus in the 100 mg group compared to placebo. For imaging data, both drug groups demonstrated decreased Day 2 reinstatement across stimuli in a bilateral insula network compared to placebo. There was no evidence in SCR or neural activity that L-DOPA improved extinction recall. Reactivation of extinction encodings in the amygdala during consolidation on Day 1 predicted Day 2 activation of the insula network. These results support a role for dopamine during the consolidation window in boosting reactivation of amygdala extinction encodings and reducing reinstatement, but not improving extinction recall, in women with PTSD.
Collapse
|
research-article |
5 |
28 |
16
|
Cisler JM, Privratsky A, Smitherman S, Herringa RJ, Kilts CD. Large-scale brain organization during facial emotion processing as a function of early life trauma among adolescent girls. NEUROIMAGE-CLINICAL 2017. [PMID: 29527485 PMCID: PMC5842665 DOI: 10.1016/j.nicl.2017.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background A wealth of research has investigated the impact of early life trauma exposure on functional brain activation during facial emotion processing and has often demonstrated amygdala hyperactivity and weakened connectivity between amygdala and medial PFC (mPFC). There have been notably limited investigations linking these previous node-specific findings into larger-scale network models of brain organization. Method To address these gaps, we applied graph theoretical analyses to fMRI data collected during a facial emotion processing task among 88 adolescent girls (n = 59 exposed to direct physical or sexual assault; n = 29 healthy controls), aged 11-17, during fMRI. Large-scale organization indices of modularity, assortativity, and global efficiency were calculated for stimulus-specific functional connectivity using an 883 region-of-interest parcellation. Results Among the entire sample, more severe early life trauma was associated with more modular and assortative, but less globally efficient, network organization across all stimulus categories. Among the assaulted girls, severity of early life trauma and PTSD diagnoses were both simultaneously related to increased modular brain organization. We also found that more modularized network organization was related both to amygdala hyperactivation and weakened connectivity between amygdala and medial PFC. Conclusions These results demonstrate that early life trauma is associated with enhanced brain organization during facial emotion processing and that this pattern of brain organization might explain the commonly observed association between childhood trauma and amygdala hyperactivity and weakened connectivity with mPFC. Implications of these results for neurocircuitry models are discussed.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
25 |
17
|
Marin MF, Bilodeau-Houle A, Morand-Beaulieu S, Brouillard A, Herringa RJ, Milad MR. Vicarious conditioned fear acquisition and extinction in child-parent dyads. Sci Rep 2020; 10:17130. [PMID: 33051522 PMCID: PMC7555483 DOI: 10.1038/s41598-020-74170-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/23/2020] [Indexed: 01/01/2023] Open
Abstract
The biological mechanisms involved in fear transmission within families have been scarcely investigated in humans. Here we studied (1) how children acquired conditioned fear from observing their parent, or a stranger, being exposed to a fear conditioning paradigm, and (2) the subsequent fear extinction process in these children. Eighty-three child-parent dyads were recruited. The parent was filmed while undergoing a conditioning procedure where one cue was paired with a shock (CS + Parent) and one was not (CS −). Children (8 to 12 years old) watched this video and a video of an adult stranger who underwent conditioning with a different cue reinforced (CS + Stranger). Children were then exposed to all cues (no shocks were delivered) while skin conductance responses (SCR) were recorded. Children exhibited higher SCR to the CS + Parent and CS + Stranger relative to the CS −. Physiological synchronization between the child’s SCR during observational learning and the parent’s SCR during the actual process of fear conditioning predicted higher SCR for the child to the CS + Parent. Our data suggest that children acquire fear vicariously and this can be measured physiologically. These data lay the foundation to examine observational fear learning mechanisms that might contribute to fear and anxiety disorders transmission in clinically affected families.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
23 |
18
|
Bach DR, Sporrer J, Abend R, Beckers T, Dunsmoor JE, Fullana MA, Gamer M, Gee DG, Hamm A, Hartley CA, Herringa RJ, Jovanovic T, Kalisch R, Knight DC, Lissek S, Lonsdorf TB, Merz CJ, Milad M, Morriss J, Phelps EA, Pine DS, Olsson A, van Reekum CM, Schiller D. Consensus design of a calibration experiment for human fear conditioning. Neurosci Biobehav Rev 2023; 148:105146. [PMID: 36990370 PMCID: PMC10618407 DOI: 10.1016/j.neubiorev.2023.105146] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
Fear conditioning is a widely used laboratory model to investigate learning, memory, and psychopathology across species. The quantification of learning in this paradigm is heterogeneous in humans and psychometric properties of different quantification methods can be difficult to establish. To overcome this obstacle, calibration is a standard metrological procedure in which well-defined values of a latent variable are generated in an established experimental paradigm. These intended values then serve as validity criterion to rank methods. Here, we develop a calibration protocol for human fear conditioning. Based on a literature review, series of workshops, and survey of N = 96 experts, we propose a calibration experiment and settings for 25 design variables to calibrate the measurement of fear conditioning. Design variables were chosen to be as theory-free as possible and allow wide applicability in different experimental contexts. Besides establishing a specific calibration procedure, the general calibration process we outline may serve as a blueprint for calibration efforts in other subfields of behavioral neuroscience that need measurement refinement.
Collapse
|
Review |
2 |
21 |
19
|
Hsu DT, Lombardo KA, Herringa RJ, Bakshi VP, Roseboom PH, Kalin NH. Corticotropin-releasing hormone messenger RNA distribution and stress-induced activation in the thalamus. Neuroscience 2001; 105:911-21. [PMID: 11530229 DOI: 10.1016/s0306-4522(01)00239-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Corticotropin-releasing hormone plays a critical role in mediating the stress response. Brain circuits hypothesized to mediate stress include the thalamus, which plays a pivotal role in distributing sensory information to cortical and subcortical structures. In situ hybridization revealed neurons containing corticotropin-releasing hormone messenger RNA in the posterior thalamic nuclear group and the central medial nucleus of the thalamus, which interfaces with the ventral posteromedial nucleus (parvicellular part). These regions are of interest because they process somatosensory and visceral information. In the first experiment, the effect of acute stress on thalamic corticotropin-releasing hormone messenger RNA levels was assessed. Rats restrained for 1 h and killed 1 h later were found to have increased corticotropin-releasing hormone messenger RNA in the posterior thalamic nuclear group. The time course of these changes was examined in a second experiment in which rats were killed immediately or 3 h after restraint. While no changes occurred in the thalamus immediately after restraint, 3 h after restraint, increases in corticotropin-releasing hormone messenger RNA occurred in both the posterior thalamic nuclear group and the central medial-ventral posteromedial nucleus (parvicellular part) of the thalamus. A different pattern of activation was observed in the paraventricular nucleus of the hypothalamus with increased corticotropin-releasing hormone messenger RNA immediately after restraint, but not 1 or 3 h later. In addition to the stress-induced changes, a prominent decrease in baseline thalamic corticotropin-releasing hormone messenger RNA was observed from 1000 to 1300 h. These results show that the thalamus contains corticotropin-releasing hormone messenger RNA that increases after restraint stress, indicating a role for thalamic corticotropin-releasing hormone systems in the stress response. Stress-induced changes in thalamic corticotropin-releasing hormone messenger RNA expression appears to be regulated differently than that in the paraventricular nucleus of the hypothalamus, and may be influenced by diurnal mechanisms.
Collapse
|
|
24 |
19 |
20
|
Heyn SA, Keding TJ, Ross MC, Cisler JM, Mumford JA, Herringa RJ. Abnormal Prefrontal Development in Pediatric Posttraumatic Stress Disorder: A Longitudinal Structural and Functional Magnetic Resonance Imaging Study. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2018; 4:171-179. [PMID: 30343133 DOI: 10.1016/j.bpsc.2018.07.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/27/2018] [Accepted: 07/27/2018] [Indexed: 11/18/2022]
Abstract
BACKGROUND Prior studies of pediatric posttraumatic stress disorder (PTSD) have reported cross-sectional and age-related structural and functional brain abnormalities in networks associated with cognitive, affective, and self-referential processing. However, no reported studies have comprehensively examined longitudinal gray matter development and its intrinsic functional correlates in pediatric PTSD. METHODS Twenty-seven youths with PTSD and 21 nontraumatized typically developing (TD) youths were assessed at baseline and 1-year follow-up. At each visit, youths underwent structural magnetic resonance imaging and resting-state functional magnetic resonance imaging. Regions with volumetric abnormalities in whole-brain structural analyses were identified and used as seeds in exploratory intrinsic connectivity analyses. RESULTS Youths with PTSD exhibited sustained reductions in gray matter volume (GMV) in right ventromedial prefrontal cortex (PFC) and bilateral ventrolateral PFC. Group-by-time analyses revealed aberrant longitudinal development in dorsolateral PFC, where typically developing youths exhibited normative decreases in GMV between baseline and follow-up, and youths with PTSD showed increases in GMV. Using these regions as seeds, patients with PTSD exhibited atypical longitudinal decreases in intrinsic PFC-amygdala and PFC-hippocampus connectivity, in contrast to increases in typically developing youths. Specifically, youths with PTSD showed decreasing ventromedial PFC-amygdala connectivity as well as decreasing ventrolateral PFC-hippocampus connectivity over time. Notably, volumetric abnormalities in ventromedial PFC and ventrolateral PFC were predictive of symptom severity. CONCLUSIONS These findings represent novel longitudinal volumetric and connectivity changes in pediatric PTSD. Atypical prefrontal GMV and prefrontal-amygdala/hippocampus development may underlie persistence of PTSD in youths and could serve as future therapeutic targets.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
7 |
18 |
21
|
Bilodeau-Houle A, Bouchard V, Morand-Beaulieu S, Herringa RJ, Milad MR, Marin MF. Anxiety Sensitivity Moderates the Association Between Father-Child Relationship Security and Fear Transmission. Front Psychol 2020; 11:579514. [PMID: 33162918 PMCID: PMC7591469 DOI: 10.3389/fpsyg.2020.579514] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/17/2020] [Indexed: 11/13/2022] Open
Abstract
Observational fear learning can contribute to the development of fear-related psychopathologies, such as anxiety disorders and post-traumatic stress disorder. Observational fear learning is especially relevant during childhood. Parent-child attachment and anxiety sensitivity modulate fear reactions and fear learning but their impact on observational fear learning has not been investigated. This study investigated how these factors contribute to observational fear learning in children. We examined this question among 55 healthy parent-child dyads. Children (8–12 years old) watched a video of their parent undergoing a direct fear conditioning protocol, where one stimulus (CS+Parent) was paired with a shock and one was not (CS−), and a video of a stranger for whom a different stimulus was reinforced (CS+Stranger). Subsequently, all stimuli were presented to children (without shocks) while skin conductance responses were recorded to evaluate fear levels. Our results showed that children more sensitive to anxiety and who had lower father-child relationship security levels exhibited higher skin conductance responses to the CS+Parent. Our data suggest that the father-child relationship security influences vicarious fear transmission in children who are more sensitive to anxiety. This highlights the importance of the father-child relationship security as a potential modulator of children’s vulnerability to fear-related psychopathologies.
Collapse
|
|
5 |
13 |
22
|
Heyn SA, Herringa RJ. Longitudinal cortical markers of persistence and remission of pediatric PTSD. NEUROIMAGE-CLINICAL 2019; 24:102028. [PMID: 31670153 PMCID: PMC6831901 DOI: 10.1016/j.nicl.2019.102028] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/10/2019] [Accepted: 10/02/2019] [Indexed: 01/05/2023]
Abstract
Neural correlates of clinical outcomes in pediatric PTSD are poorly understood. Remission and persistence show unique patterns of cortical development over time. Nonremitters exhibit atypical decreases in prefrontal, parietal, and occipital CSA. PTSD remission was associated with cortical expansion in the prefrontal cortex. Background Previous studies have identified structural brain abnormalities in pediatric PTSD. However, little is known about what structural brain substrates may confer recovery versus persistence of PTSD in the context of the developing brain. Methods This naturalistic longitudinal study used T1-weighted MRI to evaluate cortical thickness and surface area in youth with a PTSD diagnosis (n = 28) and typically developing healthy youth (TD; n = 27) at baseline and one-year follow-up. Of the PTSD group, 10 youth were remitters at one-year follow up while 18 had persistent PTSD. Whole-brain estimates of cortical thickness and surface area were extracted to identify differences in cortical architecture associated with PTSD remission and persistence as compared to typical development. Results Youth who achieved PTSD remission entered the study with significantly lower trauma exposure and reduced symptom severity as compared to nonremitters. PTSD persistence was associated with decreased surface area over time in the ventrolateral prefrontal cortex (vlPFC) as compared to both remitters and TD youth. In contrast, PTSD remission was associated with expansion of frontal pole surface area and ventromedial PFC (vmPFC) thickness over time. Across clinical groups, vmPFC thickness was further inversely associated with symptom severity. Conclusions To our knowledge, these findings represent the first report of cortical substrates underlying persistence versus remission in pediatric PTSD. Together, these findings suggest active structural developmental processes unique to both remission and nonremission in youth with PTSD. In particular, expansion of prefrontal regions implicated in emotion regulation may facilitate recovery from PTSD in youth and would warrant further study.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
12 |
23
|
Novins DK, Stoddard J, Althoff RR, Charach A, Cortese S, Cullen KR, Frazier JA, Glatt SJ, Henderson SW, Herringa RJ, Hulvershorn L, Kieling C, McBride AB, McCauley E, Middeldorp CM, Reiersen AM, Rockhill CM, Sagot AJ, Scahill L, Simonoff E, Stewart SE, Szigethy E, Taylor JH, White T, Zima BT. Editors' Note and Special Communication: Research Priorities in Child and Adolescent Mental Health Emerging From the COVID-19 Pandemic. J Am Acad Child Adolesc Psychiatry 2021; 60:544-554.e8. [PMID: 33741474 PMCID: PMC9188438 DOI: 10.1016/j.jaac.2021.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/09/2021] [Indexed: 01/07/2023]
Abstract
Over the last year, the coronavirus disease 2019 (COVID-19) pandemic has resulted in profound disruptions across the globe, with school closures, social isolation, job loss, illness, and death affecting the lives of children and families in myriad ways. In an Editors' Note in our June 2020 issue,1 our senior editorial team described this Journal's role in advancing knowledge in child and adolescent mental health during the pandemic and outlined areas we identified as important for science and practice in our field. Since then, the Journal has published articles on the impacts of the pandemic on child and adolescent mental health and service systems,2-5 which are available in a special collection accessible through the Journal's website.6 Alongside many opinion papers, the pace of publication of empirical research in this area is rapidly expanding, covering important issues such as increased frequency of mental health symptoms among children and adolescents3,5,7-10 and changes in patterns of clinical service use such as emergency department visits.11-14 As the Senior Editors prepared that Editors' Note, they were acutely aware that the priorities that they identified were broad and generated by only a small group of scientists and clinicians. Although this had the advantage of enabling us to get this information out to readers quickly, we decided that a more systematic approach to developing recommendations for research priorities would be of greater long-term value. We were particularly influenced by the efforts of the partnership between the UK Academy of Medical Scientists and a UK mental health research charity (MQ: Transforming Mental Health) to detail COVID-19-related research priorities for "Mental Health Science" that was published online by Holmes et al. in The Lancet Psychiatry in April 2020.15 Consistent with its focus on mental health research across the lifespan, several recommendations highlighted child development and children's mental health. However, a more detailed assessment of research priorities related to child and adolescent mental health was beyond the scope of that paper. Furthermore, the publication of that position paper preceded the death of George Floyd at the hands of Minneapolis police on May 25, 2020, which re-energized efforts to acknowledge and to address racism and healthcare disparities in the United States and many other countries. To build upon the JAACAP Editors' Note1 and the work of Holmes et al.,15 we conducted an international survey of professionals-practitioners and researchers-working on child and adolescent development and pediatric mental health to identify concerns about the impact of the pandemic on children, adolescents, and their families, as well as what is helping families navigate these impacts, and the specific research topics that are of greatest importance.
Collapse
|
editorial |
4 |
12 |
24
|
Ensink JBM, Keding TJ, Henneman P, Venema A, Papale LA, Alisch RS, Westerman Y, van Wingen G, Zantvoord J, Middeldorp CM, Mannens MMAM, Herringa RJ, Lindauer RJL. Differential DNA Methylation Is Associated With Hippocampal Abnormalities in Pediatric Posttraumatic Stress Disorder. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 6:1063-1070. [PMID: 33964519 DOI: 10.1016/j.bpsc.2021.04.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/01/2021] [Accepted: 04/26/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Recent findings in neuroimaging and epigenetics offer important insights into brain structures and biological pathways of altered gene expression associated with posttraumatic stress disorder (PTSD). However, it is unknown to what extent epigenetic mechanisms are associated with PTSD and its neurobiology in youth. METHODS In this study, we combined a methylome-wide association study and structural neuroimaging measures in a Dutch cohort of youths with PTSD (8-18 years of age). We aimed to replicate findings in a similar independent U.S. cohort. RESULTS We found significant methylome-wide associations for pediatric PTSD (false discovery rate p < .05) compared with non-PTSD control groups (traumatized and nontraumatized youths). Methylation differences on nine genes were replicated, including genes related to glucocorticoid functioning. In both cohorts, methylation on OLFM3 gene was further associated with anterior hippocampal volume. CONCLUSIONS These findings point to molecular pathways involved in inflammation, stress response, and neuroplasticity as potential contributors to neural abnormalities and provide potentially unique biomarkers and treatment targets for pediatric PTSD.
Collapse
|
Journal Article |
4 |
8 |
25
|
Banihashemi L, Wallace ML, Sheu LK, Lee MC, Gianaros PJ, Mackenzie RP, Insana SP, Germain A, Herringa RJ. Childhood maltreatment moderates the effect of combat exposure on cingulum structural integrity. Dev Psychopathol 2017; 29:1735-1747. [PMID: 29162178 PMCID: PMC5773248 DOI: 10.1017/s0954579417001365] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Limbic white matter pathways link emotion, cognition, and behavior and are potentially malleable to the influences of traumatic events throughout development. However, the impact of interactions between childhood and later life trauma on limbic white matter pathways has yet to be examined. Here, we examined whether childhood maltreatment moderated the effect of combat exposure on diffusion tensor imaging measures within a sample of military veterans (N = 28). We examined five limbic tracts of interest: two components of the cingulum (cingulum, cingulate gyrus, and cingulum hippocampus [CGH]), the uncinate fasciculus, the fornix/stria terminalis, and the anterior limb of the internal capsule. Using effect sizes, clinically meaningful moderator effects were found only within the CGH. Greater combat exposure was associated with decreased CGH fractional anisotropy (overall structural integrity) and increased CGH radial diffusivity (perpendicular water diffusivity) among individuals with more severe childhood maltreatment. Our findings provide preliminary evidence of the moderating effect of childhood maltreatment on the relationship between combat exposure and CGH structural integrity. These differences in CGH structural integrity could have maladaptive implications for emotion and memory, as well as provide a potential mechanism by which childhood maltreatment induces vulnerability to later life trauma exposure.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
7 |