1
|
Yagi M, Kuroda R, Nagamune K, Yoshiya S, Kurosaka M. Double-bundle ACL reconstruction can improve rotational stability. Clin Orthop Relat Res 2007; 454:100-7. [PMID: 17091015 DOI: 10.1097/blo.0b013e31802ba45c] [Citation(s) in RCA: 334] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Double-bundle anterior cruciate ligament (ACL) reconstruction reproduces anteromedial and posterolateral bundles, and thus has theoretical advantages over conventional single-bundle reconstruction in controlling rotational torque in vitro. However, its superiority in clinical practice has not been proven. We analyzed rotational stability with three reconstruction techniques in 60 consecutive patients who were randomly divided into three groups (double-bundle, anteromedial single-bundle, posterolateral single-bundle). In the reconstructive procedure, the hamstring tendon was harvested and used as a free tendon graft. Followup examinations were performed 1 year after surgery. Anteroposterior laxity of the knee was examined with a KT-1000 arthrometer, whereas rotatory instability, as elicited by the pivot shift test, was assessed using a new measurement system incorporating three-dimensional electromagnetic sensors. Routine clinical evaluations, including KT examination, demonstrated no differences among the three groups. However, using the new measurement system, patients with double-bundle ACL reconstruction showed better pivot shift control of complex instability than patients with anteromedial and posterolateral single-bundle reconstruction.
Collapse
|
Comparative Study |
18 |
334 |
2
|
Kataoka K, Taneda M, Asai T, Kinoshita A, Ito M, Kuroda R. Structural fragility and inflammatory response of ruptured cerebral aneurysms. A comparative study between ruptured and unruptured cerebral aneurysms. Stroke 1999; 30:1396-401. [PMID: 10390313 DOI: 10.1161/01.str.30.7.1396] [Citation(s) in RCA: 315] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Despite technical advances in endovascular and microsurgical treatment, patients with aneurysmal subarachnoid hemorrhage still have a high mortality and morbidity rate. To improve the treatment results in patients with aneurysms, we must better understand the pathophysiology of cerebral aneurysms and the mechanisms leading to their rupture. Therefore, we studied the pathological differences between unruptured and ruptured aneurysms. METHODS Ruptured (n=44) and unruptured (n=27) aneurysms were obtained at surgery. The aneurysmal endothelium was scored from 0 (normal) to 5 (complete disruption) by using a scanning electron microscope. The aneurysmal wall was evaluated by immunohistochemical methods. The wall structure was scored from 1 (dense collagen and rich, smooth muscle cells) to 5 (hyaline-like structure). The degree of inflammatory cell invasion into the wall was also scored from 0 (very few cells) to 3 (many cells). RESULTS Ruptured aneurysms manifested significant endothelial damage (score of 3.7 versus 0.8; Mann-Whitney U test, P<10(-3)), significant structural changes of the wall (3.7 versus 1.7, P<10(-5)), and significant inflammatory cell invasion (2.2 versus 0.8, P<10(-4)) compared with unruptured aneurysms. There was a significant correlation between the score for wall structure and the score for inflammatory cell invasion (Rs=0. 63; Spearman rank correlation test, P<10(-5)). The pathophysiology of several symptomatic unruptured aneurysms was similar to that of ruptured aneurysms. CONCLUSIONS We conclude that the pathophysiology of unruptured, asymptomatic and ruptured aneurysms is different. The wall of ruptured aneurysms was found to be fragile, possibly because macrophage infiltration into the aneurysmal wall resulted in loss of smooth muscle cells and in degradation of matrix proteins.
Collapse
|
Comparative Study |
26 |
315 |
3
|
Kuroda R, Ishida K, Matsumoto T, Akisue T, Fujioka H, Mizuno K, Ohgushi H, Wakitani S, Kurosaka M. Treatment of a full-thickness articular cartilage defect in the femoral condyle of an athlete with autologous bone-marrow stromal cells. Osteoarthritis Cartilage 2007; 15:226-31. [PMID: 17002893 DOI: 10.1016/j.joca.2006.08.008] [Citation(s) in RCA: 309] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Accepted: 08/12/2006] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Human bone-marrow stromal cells are believed to be multipotent even in adults. This study assessed the effectiveness of autologous bone-marrow stromal cells, which were embedded within a collagen scaffold, to repair a full-thickness articular cartilage defect in the medial femoral condyle of an athlete. PATIENT AND METHODS A 31-year-old male judo player suffering from pain in the right knee was reviewed. A 20 x 30-mm full-thickness cartilage defect (International Cartilage Repair Society classification (ICRS) grade IV) was revealed in the weight-bearing area of the medial femoral condyle. With the informed consent of the patient, the defect was treated with autologous bone-marrow stromal cells. Bone marrow was aspirated from the iliac crest of the patient 4 weeks before surgery. After removing the erythrocytes, the remaining cells were expanded in culture. Adherent cells were collected and embedded within a collagen gel, which was transferred to the articular cartilage defect in the medial femoral condyle. The implant was covered with an autologous periosteal flap. RESULTS Seven months after surgery, arthroscopy revealed the defect to be covered with smooth tissues. Histologically, the defect was filled with a hyaline-like type of cartilage tissue which stained positively with Safranin-O. One year after surgery, the clinical symptoms had improved significantly. The patient had reattained his previous activity level and experienced neither pain nor other complications. CONCLUSIONS Our findings indicate that the transplantation of autologous bone-marrow stromal cells can promote the repair of large focal articular cartilage defects in young, active patients.
Collapse
|
Case Reports |
18 |
309 |
4
|
Ishida K, Kuroda R, Miwa M, Tabata Y, Hokugo A, Kawamoto T, Sasaki K, Doita M, Kurosaka M. The Regenerative Effects of Platelet-Rich Plasma on Meniscal CellsIn Vitroand ItsIn VivoApplication with Biodegradable Gelatin Hydrogel. ACTA ACUST UNITED AC 2007; 13:1103-12. [PMID: 17348798 DOI: 10.1089/ten.2006.0193] [Citation(s) in RCA: 237] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The objective of the study was to test the hypothesis that platelet-rich plasma (PRP) enhances meniscal tissue regeneration in vitro and in vivo. In the in vitro study, monolayer meniscal cell cultures were prepared, and 3-(4,5-dimethylthiazol-2yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium inner salt assay and 5-bromo-2'-deoxyuridine assay were performed to assess proliferative behavior in the presence of PRP. Alcian blue assay was performed to assess extracellular matrix (ECM) synthesis. To detect the fibrocartilage-related messenger ribonucleic acid (mRNA) expressions, real-time polymerase chain reaction was performed. In the in vivo study, 1.5-mm-diameter full-thickness defects were created in the avascular region of rabbit meniscus. Gelatin hydrogel (GH) was used as the drug delivery system for PRP growth factors. The defects were filled as follows: Group A, GH with PRP; Group B, GH with platelet-poor plasma; Group C, GH only. Each group was evaluated histologically at 4, 8, and 12 weeks after surgery. PRP stimulated deoxyribonucleic acid synthesis and ECM synthesis (p<0.05). Meniscal cells cultured with PRP showed greater mRNA expression of biglycan and decorin (p<0.05). Histological findings showed that remnants of gelatin hydrogels existed at 4 weeks, indicating that the hydrogels could control release for approximately 4 weeks. Histological scoring of the defect sites at 12 weeks revealed significantly better meniscal repair in animals that received PRP with GH than in the other two groups. These findings suggest that PRP enhances the healing of meniscal defects.
Collapse
|
|
18 |
237 |
5
|
Kuroda R, Usas A, Kubo S, Corsi K, Peng H, Rose T, Cummins J, Fu FH, Huard J. Cartilage repair using bone morphogenetic protein 4 and muscle-derived stem cells. ACTA ACUST UNITED AC 2006; 54:433-42. [PMID: 16447218 DOI: 10.1002/art.21632] [Citation(s) in RCA: 227] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Muscle-derived stem cells (MDSCs) isolated from mouse skeletal muscle exhibit long-time proliferation, high self-renewal, and multipotent differentiation. This study was undertaken to investigate the ability of MDSCs that were retrovirally transduced to express bone morphogenetic protein 4 (BMP-4) to differentiate into chondrocytes in vitro and in vivo and enhance articular cartilage repair. METHODS Using monolayer and micromass pellet culture systems, we evaluated the in vitro chondrogenic differentiation of LacZ- and BMP-4-transduced MDSCs with or without transforming growth factor beta1 (TGFbeta1) stimulation. We used a nude rat model of a full-thickness articular cartilage defect to assess the duration of LacZ transgene expression and evaluate the ability of transplanted cells to acquire a chondrocytic phenotype. We evaluated cartilage repair macroscopically and histologically 4, 8, 12, and 24 weeks after surgery, and performed histologic grading of the repaired tissues. RESULTS BMP-4-expressing MDSCs acquired a chondrocytic phenotype in vitro more effectively than did MDSCs expressing only LacZ; the addition of TGFbeta1 did not alter chondrogenic differentiation of the BMP-4-transduced MDSCs. LacZ expression within the repaired tissue continued for up to 12 weeks. Four weeks after surgery, we detected donor cells that coexpressed beta-galactosidase and type II collagen. Histologic scoring of the defect sites 24 weeks after transplantation revealed significantly better cartilage repair in animals that received BMP-4-transduced MDSCs than in those that received MDSCs expressing only LacZ. CONCLUSION Local delivery of BMP-4 by genetically engineered MDSCs enhanced chondrogenesis and significantly improved articular cartilage repair in rats.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
227 |
6
|
Wakitani S, Okabe T, Horibe S, Mitsuoka T, Saito M, Koyama T, Nawata M, Tensho K, Kato H, Uematsu K, Kuroda R, Kurosaka M, Yoshiya S, Hattori K, Ohgushi H. Safety of autologous bone marrow-derived mesenchymal stem cell transplantation for cartilage repair in 41 patients with 45 joints followed for up to 11 years and 5 months. J Tissue Eng Regen Med 2011; 5:146-50. [PMID: 20603892 DOI: 10.1002/term.299] [Citation(s) in RCA: 226] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Among autologous somatic stem cells, bone marrow-derived mesenchymal stem cells (BMSCs) are the most widely used worldwide to repair not only mesenchymal tissues (bone, cartilage) but also many other kinds of tissues, including heart, skin, and liver. Autologous BMSCs are thought to be safe because of the absence of immunological reaction and disease transmission. However, it is possible that they will form tumours during long-term follow-up. In 1988, we transplanted autologous BMSCs to repair articular cartilage, which was the first such trial ever reported. Subsequently we performed this procedure in about 40 patients. Demonstration that neither partial infections nor tumours appeared in these patients provided strong evidence for the safety of autologous BMSC transplantation. Thus, in this study we checked these patients for tumour development and infections. Between January 1998 and November 2008, 41 patients received 45 transplantations. We checked their records until their last visit. We telephoned or mailed the patients who had not visited the clinics recently to establish whether there were any abnormalities in the operated joints. Neither tumours nor infections were observed between 5 and 137 (mean 75) months of follow-up. Autologous BMSC transplantation is a safe procedure and will be widely used around the world.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
226 |
7
|
Sasaki H, Takayama K, Matsushita T, Ishida K, Kubo S, Matsumoto T, Fujita N, Oka S, Kurosaka M, Kuroda R. Autophagy modulates osteoarthritis-related gene expression in human chondrocytes. ACTA ACUST UNITED AC 2012; 64:1920-8. [DOI: 10.1002/art.34323] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
|
13 |
194 |
8
|
Takayama K, Ishida K, Matsushita T, Fujita N, Hayashi S, Sasaki K, Tei K, Kubo S, Matsumoto T, Fujioka H, Kurosaka M, Kuroda R. SIRT1 regulation of apoptosis of human chondrocytes. ACTA ACUST UNITED AC 2009; 60:2731-40. [PMID: 19714620 DOI: 10.1002/art.24864] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE SIRT1 is known to inhibit apoptosis and to promote survival of various types of cells. However, the roles of SIRT1 in apoptosis of human chondrocytes have never been reported. We undertook this study to investigate the relationship of SIRT1 to apoptosis of human chondrocytes, which is a characteristic feature of osteoarthritis (OA). METHODS The expression of SIRT1 in human chondrocytes was examined by reverse transcription-polymerase chain reaction, immunoblotting, and immunohistology of human cartilage samples. The expression of SIRT1 under catabolic, mechanical, and nutritional stresses was investigated by immunoblotting. To examine the effect of SIRT1 on apoptosis, SIRT1 was inhibited by small interfering RNA (siRNA) and activated by resveratrol during nitric oxide (NO)-induced apoptosis. TUNEL staining and immunoblotting of cleaved poly(ADP-ribose) polymerase (PARP) were performed to detect apoptosis. To examine the mechanisms of apoptosis, we used immunoblotting to determine the levels of cleaved caspases and mitochondria-related apoptotic signaling proteins, Bax and Bcl-2, in the mitochondrial fraction. RESULTS SIRT1 expression was confirmed in human chondrocytes and human cartilage samples. All catabolic, mechanical, and nutritional stresses inhibited SIRT1 expression. SIRT1 inhibition by siRNA for SIRT1 increased the percentage of TUNEL-positive cells and increased the amounts of cleaved PARP and cleaved caspases 3 and 9 induced by NO. In contrast, treatment with resveratrol decreased the percentage of TUNEL-positive cells and decreased the amounts of cleaved PARP and cleaved caspases 3 and 9 induced by NO. Furthermore, in the mitochondrial fraction, SIRT1 inhibition by siRNA for SIRT1 increased the amount of Bax but reduced the amount of Bcl-2, while resveratrol reduced the amount of Bax but increased the amount of Bcl-2. CONCLUSION These results indicate that SIRT1 regulates apoptosis in human chondrocytes through the modulation of mitochondria-related apoptotic signals. Further research on SIRT1 might contribute to resolving the pathogenesis of OA.
Collapse
|
Journal Article |
16 |
177 |
9
|
Cullen ME, Wyke AW, Kuroda R, Fisher LM. Cloning and characterization of a DNA gyrase A gene from Escherichia coli that confers clinical resistance to 4-quinolones. Antimicrob Agents Chemother 1989; 33:886-94. [PMID: 2548439 PMCID: PMC284251 DOI: 10.1128/aac.33.6.886] [Citation(s) in RCA: 162] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Nalidixic acid, enoxacin, and other antibacterial 4-quinolones inhibit DNA gyrase activity by interrupting DNA breakage and reunion by A subunits of the A2B2 gyrase complex. Despite their clinical importance, the mode of quinolone action and mechanisms of resistance are poorly understood at the molecular level. Using a DNA fragment enrichment procedure, we isolated the gyrA gene from a uropathogenic Escherichia coli strain that encodes a gyrase A protein cross-resistant to a variety of quinolones. When complemented with gyrase B subunit, the purified A protein reconstituted DNA supercoiling activity approximately 100-fold more resistant to inhibition by enoxacin than the susceptible enzyme and failed to mediate quinolone-dependent DNA cleavage. Nucleotide sequence analysis revealed that the gene differed at 58 nucleotide positions compared with the K-12 gyrA sequence. The 875-amino-acid residue-resistant gyrase A protein differed at three positions from its wild-type E. coli K-12 counterpart: tryptophan, glutamate, and serine replaced serine, aspartate, and alanine residues at positions 83, 678, and 828, respectively. By genetic analysis of chimeric gyrA genes in a gyrA(Ts) background, we showed that the Ser-83----Trp mutation in the gyrase A protein was solely responsible for high-level bacterial resistance to nalidixic acid and fluoroquinolones.
Collapse
|
research-article |
36 |
162 |
10
|
Matsumoto T, Kawamoto A, Kuroda R, Ishikawa M, Mifune Y, Iwasaki H, Miwa M, Horii M, Hayashi S, Oyamada A, Nishimura H, Murasawa S, Doita M, Kurosaka M, Asahara T. Therapeutic potential of vasculogenesis and osteogenesis promoted by peripheral blood CD34-positive cells for functional bone healing. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 169:1440-57. [PMID: 17003498 PMCID: PMC1698844 DOI: 10.2353/ajpath.2006.060064] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/20/2006] [Indexed: 12/20/2022]
Abstract
Failures in fracture healing are mainly caused by a lack of vascularization. Adult human circulating CD34+ cells, an endothelial/hematopoietic progenitor-enriched cell population, have been reported to differentiate into osteoblasts in vitro; however, the therapeutic potential of CD34+ cells for fracture healing is still unclear. Therefore, we performed a series of experiments to test our hypothesis that functional fracture healing is supported by vasculogenesis and osteogenesis via regenerative plasticity of CD34+ cells. Peripheral blood CD34+ cells, isolated from total mononuclear cells of adult human volunteers, showed gene expression of osteocalcin in 4 of 20 freshly isolated cells by single cell reverse transcriptase-polymerase chain reaction analysis. Phosphate-buffered saline, mononuclear cells, or CD34+ cells were intravenously transplanted after producing nonhealing femoral fractures in nude rats. Reverse transcriptase-polymerase chain reaction and immunohistochemical staining at the peri-fracture site demonstrated molecular and histological expression of human-specific markers for endothelial cells and osteoblasts at week 2. Functional bone healing assessed by biomechanical as well as radiological and histological examinations was significantly enhanced by CD34+ cell transplantation compared with the other groups. Our data suggest circulating human CD34+ cells have therapeutic potential to promote an environment conducive to neovascularization and osteogenesis in damaged skeletal tissue, allowing the complete healing of fractures.
Collapse
|
research-article |
19 |
161 |
11
|
Takayama K, Kawakami Y, Kobayashi M, Greco N, Cummins JH, Matsushita T, Kuroda R, Kurosaka M, Fu FH, Huard J. Local intra-articular injection of rapamycin delays articular cartilage degeneration in a murine model of osteoarthritis. Arthritis Res Ther 2014; 16:482. [PMID: 25403236 PMCID: PMC4269094 DOI: 10.1186/s13075-014-0482-4] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 11/05/2014] [Indexed: 02/07/2023] Open
Abstract
Introduction Recent studies have revealed that rapamycin activates autophagy in human chondrocytes preventing the development of osteoarthritis (OA) like changes in vitro, while the systemic injection of rapamycin reduces the severity of experimental osteoarthritis in a murine model of OA in vivo. Since the systemic use of rapamycin is associated with numerous side effects, the goal of the current study was to examine the beneficial effect of local intra-articular injection of rapamycin in a murine model of OA and to elucidate the mechanism of action of rapamycin on articular cartilage. Methods Destabilization of the medial meniscus (DMM) was performed on 10-week-old male mice to induce OA. Intra-articular injections of 10 μl of rapamycin (10 μM) were administered twice weekly for 8 weeks. Articular cartilage damage was analyzed by histology using a semi-quantitative scoring system at 8 and 12 weeks after surgery. Mammalian target of rapamycin (mTOR), light chain 3 (LC3), vascular endothelial growth factor (VEGF), collagen, type X alpha 1 (COL10A1), and matrix metallopeptidase 13 (MMP13) expressions were analyzed by immunohistochemistry. VEGF, COL10A1, and MMP13 expressions were further examined via quantitative RT-PCR (qPCR). Results Intra-articular injection of rapamycin significantly reduced the severity of articular cartilage degradation at 8 and 12 weeks after DMM surgery. A reduction in mTOR expression and the activation of LC3 (an autophagy marker) in the chondrocytes was observed in the rapamycin treated mice. Rapamycin treatment also reduced VEGF, COL10A1, and MMP13 expressions at 8 and 12 weeks after DMM surgery. Conclusion These results demonstrate that the intra-articular injection of rapamycin could reduce mTOR expression, leading to a delay in articular cartilage degradation in our OA murine model. Our observations suggest that local intra-articular injection of rapamycin could represent a potential therapeutic approach to prevent OA.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
11 |
147 |
12
|
Hoshino Y, Kuroda R, Nagamune K, Yagi M, Mizuno K, Yamaguchi M, Muratsu H, Yoshiya S, Kurosaka M. In vivo measurement of the pivot-shift test in the anterior cruciate ligament-deficient knee using an electromagnetic device. Am J Sports Med 2007; 35:1098-104. [PMID: 17351123 DOI: 10.1177/0363546507299447] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The pivot-shift test is commonly used for assessing dynamic instability in anterior cruciate ligament-insufficient knees, which is related to subjective knee function, unlike static load-displacement measurement. Conventional measurements of 3-dimensional position displacement cannot assess such dynamic instability in vivo and produce comparable parameters. Not only 3-dimensional position displacement but also its 3-dimensional acceleration should be measured for quantitative evaluation of the pivot-shift test. HYPOTHESIS Knees with a positive pivot-shift test result have increased tibial anterior translation and acceleration of its subsequent posterior translation, and they are correlated with clinical grading. STUDY DESIGN Controlled laboratory study. MATERIALS AND METHODS Thirty patients with isolated anterior cruciate ligament injury were included. Pivot-shift tests were evaluated under anesthesia manually and experimentally using an electromagnetic knee 6 degrees of freedom measurement system. From 60 Hz of 6 degrees of freedom data, coupled tibial anterior translation was calculated, and acceleration of posterior translation was computed by secondary derivative. RESULTS All anterior cruciate ligament-deficient knees demonstrated a positive pivot-shift test result. The coupled tibial anterior translation was 7.7 and 15.6 mm in anterior cruciate ligament-intact and -deficient knees, respectively. The acceleration of posterior translation was -797 and -2001 mm/s(2), respectively. These differences were significant (P < .01). The coupled tibial anterior translation and acceleration of posterior translation in the anterior cruciate ligament-deficient knee were larger in correlation with clinical grading (P = .03 and P < .01, respectively). CONCLUSION The increase of tibial anterior translation and acceleration of subsequent posterior translation could be detected in knees with a positive pivot-shift result, and this increase was correlated to clinical grading. CLINICAL RELEVANCE These measurements can be used for quantified evaluation of dynamic instability demonstrated by the pivot-shift test.
Collapse
|
|
18 |
143 |
13
|
Kawabata A, Kinoshita M, Nishikawa H, Kuroda R, Nishida M, Araki H, Arizono N, Oda Y, Kakehi K. The protease-activated receptor-2 agonist induces gastric mucus secretion and mucosal cytoprotection. J Clin Invest 2001; 107:1443-50. [PMID: 11390426 PMCID: PMC209315 DOI: 10.1172/jci10806] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2000] [Accepted: 05/01/2001] [Indexed: 01/12/2023] Open
Abstract
Protease-activated receptor-2 (PAR-2), a receptor activated by trypsin/tryptase, modulates smooth muscle tone and exocrine secretion in the salivary glands and pancreas. Given that PAR-2 is expressed throughout the gastrointestinal tract, we investigated effects of PAR-2 agonists on mucus secretion and gastric mucosal injury in the rat. PAR-2-activating peptides triggered secretion of mucus in the stomach, but not in the duodenum. This mucus secretion was abolished by pretreatment with capsaicin, which stimulates and ablates specific sensory neurons, but it was resistant to cyclo-oxygenase inhibition. In contrast, capsaicin treatment failed to block PAR-2-mediated secretion from the salivary glands. Intravenous calcitonin gene-related peptide (CGRP) and neurokinin A markedly elicited gastric mucus secretion, as did substance P to a lesser extent. Specific antagonists of the CGRP1 and NK2, but not the NK1, receptors inhibited PAR-2-mediated mucus secretion. Pretreatment with the PAR-2 agonist strongly prevented gastric injury caused by HCl-ethanol or indomethacin. Thus, PAR-2 activation triggers the cytoprotective secretion of gastric mucus by stimulating the release of CGRP and tachykinins from sensory neurons. In contrast, the PAR-2-mediated salivary exocrine secretion appears to be independent of capsaicin-sensitive sensory neurons.
Collapse
|
research-article |
24 |
131 |
14
|
Matsuzaki T, Matsushita T, Takayama K, Matsumoto T, Nishida K, Kuroda R, Kurosaka M. Disruption of Sirt1 in chondrocytes causes accelerated progression of osteoarthritis under mechanical stress and during ageing in mice. Ann Rheum Dis 2014; 73:1397-404. [PMID: 23723318 DOI: 10.1136/annrheumdis-2012-202620] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVES Important roles for SIRT1 are implicated in ageing and age-related diseases. The role of SIRT1 in osteoarthritis (OA), however, remains partially unknown. To investigate the role of SIRT1 in chondrocytes in vivo, cartilage-specific Sirt1-conditional knockout (CKO) mice were analysed using an experimental OA model. METHODS OA was surgically induced in 8-week-old C57BL6/J (wild-type) mice and Sirt1-CKO (Sirt1(flox)/(flox); Col2a1-Cre) mice generated using the Cre-loxP system. We examined changes in Sirt1 protein during the development of surgically-induced OA and during ageing in wild-type mice. OA progression in Sirt1-CKO mice was evaluated histologically at 2, 4 and 8 weeks after surgery, and at 1 year of age without surgery compared with control (Sirt1(flox)/(flox)) mice. RESULTS The number of Sirt1-positive chondrocytes decreased during ageing, and although it was increased at 2 weeks after surgery, then gradually decreased to the presurgical level during the progression of OA in wild-type mice. Sirt1-CKO mice showed no obvious skeletal abnormalities. The histological OA score was significantly higher in 1-year-old Sirt1-CKO mice than in control mice. Sirt1-CKO mice showed accelerated OA progression at 2 and 4 (but not 8) weeks compared with control mice. Immunohistochemical analysis revealed increases in type X collagen, matrix metalloproteinase 13, a disintegrin and metalloproteinase with thrombospondin motifs-5, apoptotic markers, and acetylated nuclear factor-κB p65 in Sirt1-CKO mice compared with control mice 2 weeks after surgery. CONCLUSIONS Loss of Sirt1 in chondrocytes led to the accelerated development of OA in mice. Our observations suggest that SIRT1 has a preventive role against the development of OA.
Collapse
MESH Headings
- Aging/genetics
- Aging/metabolism
- Aging/physiology
- Animals
- Arthritis, Experimental/genetics
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/physiopathology
- Cartilage, Articular/cytology
- Cartilage, Articular/metabolism
- Chondrocytes/metabolism
- Chondrocytes/physiology
- Disease Models, Animal
- Disease Progression
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Osteoarthritis, Knee/genetics
- Osteoarthritis, Knee/metabolism
- Osteoarthritis, Knee/physiopathology
- Sirtuin 1/genetics
- Sirtuin 1/metabolism
- Sirtuin 1/physiology
- Stress, Mechanical
Collapse
|
|
11 |
129 |
15
|
Hirata K, Kuroda R, Sakoda T, Katayama M, Inoue N, Suematsu M, Kawashima S, Yokoyama M. Inhibition of endothelial nitric oxide synthase activity by protein kinase C. Hypertension 1995; 25:180-5. [PMID: 7531174 DOI: 10.1161/01.hyp.25.2.180] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Nitric oxide (NO) is an important molecular messenger accounting for endothelium-derived relaxing factor. Recently, NO synthase (NOS) from cultured endothelial cells has been purified and molecularly cloned. To evaluate the effect of phosphorylation by protein kinase C (PKC) and cyclic AMP-dependent protein kinase (PKA) on endothelial constitutive NOS catalytic activity, we incubated purified endothelial NOS with PKC or PKA. Endothelial NOS was stoichiometrically phosphorylated by PKC and PKA. In intact bovine aortic endothelial cells (BAECs), NOS was phosphorylated by stimulation with 12-O-tetradecanoylphorbol-13-acetate (TPA). NOS activity measured by the conversion of [3H]arginine to [3H]citrulline in homogenates of BAECs treated with TPA or phorbol 12,13-dibutyrate was reduced by 30%, whereas dibutylyl cyclic AMP did not affect NOS activity. Moreover, we measured NO release from cultured BAECs by a chemiluminescence method to examine the effect of PKC and PKA on endothelial NOS activity. In cultured BAECs, ATP gamma S and A23187 induced NO release in time- and dose-dependent manners. Phorbol esters such as TPA and phorbol 12,13-dibutyrate dose dependently inhibited NO release stimulated by A23187 as well as ATP gamma S. Reduction of NO release by TPA was almost completely prevented by pretreatment with staurosporine, an inhibitor of PKC. NO release by A23187 was increased in PKC-downregulated BAECs. In contrast, dibutylyl cyclic AMP or 8-bromo cyclic GMP had no effect on NO release from BAECs induced by A23187 or ATP gamma S. These results indicate that phosphorylation of NOS by PKC is associated with a reduction of its catalytic activity in vascular endothelial cells.
Collapse
|
|
30 |
124 |
16
|
Fujita N, Matsushita T, Ishida K, Kubo S, Matsumoto T, Takayama K, Kurosaka M, Kuroda R. Potential involvement of SIRT1 in the pathogenesis of osteoarthritis through the modulation of chondrocyte gene expressions. J Orthop Res 2011; 29:511-5. [PMID: 21337390 DOI: 10.1002/jor.21284] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 09/17/2010] [Indexed: 02/04/2023]
Abstract
SIRT1 has been implicated as a key factor in aging-related diseases. Nevertheless, the role of SIRT1 in the pathogenesis of osteoarthritis (OA) is still unknown. We examined the expression of SIRT1 in cartilage samples and the effect of SIRT1 inhibition on chondrocyte gene expression changes to elucidate the role of SIRT1 in chondrocytes. SIRT1 expression was examined using cartilage samples from patients undergoing total knee arthroplasty and femoral head replacement by immunohistochemistry. The effect of SIRT1 inhibition by siRNA on chondrocyte gene expression was examined by real-time PCR and Western blotting. SIRT1 expression was barely detectable in the severely degenerated cartilage while SIRT1 was clearly expressed in the less damaged cartilage. The inhibition of SIRT1 by siRNA induced OA-like gene expression changes, namely the significant down-regulation of aggrecan and up-regulation of COL10A1 and ADAMTS-5. Our observations suggest that SIRT1 expression decreases with development of OA and the reduction of SIRT1 in chondrocytes may cause chondrocyte hypertrophy and cartilage matrix loss. SIRT1 might play important roles in the pathogenesis of OA.
Collapse
|
|
14 |
120 |
17
|
Matsumoto T, Takayama K, Ishida K, Hayashi S, Hashimoto S, Kuroda R. Radiological and clinical comparison of kinematically versus mechanically aligned total knee arthroplasty. Bone Joint J 2017; 99-B:640-646. [PMID: 28455473 DOI: 10.1302/0301-620x.99b5.bjj-2016-0688.r2] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 01/18/2017] [Indexed: 11/05/2022]
Abstract
AIMS The aim of this study was to compare the post-operative radiographic and clinical outcomes between kinematically and mechanically aligned total knee arthroplasties (TKAs). PATIENTS AND METHODS A total of 60 TKAs (30 kinematically and 30 mechanically aligned) were performed in 60 patients with varus osteoarthritis of the knee using a navigation system. The angles of orientation of the joint line in relation to the floor, the conventional and true mechanical axis (tMA) (the line from the centre of the hip to the lowest point of the calcaneus) were compared, one year post-operatively, on single-leg and double-leg standing long leg radiographs between the groups. The range of movement and 2011 Knee Society Scores were also compared between the groups at that time. RESULTS The angles of orientation of the joint line in the kinematic group changed from slight varus on double-leg standing to slight valgus with single-leg standing. The mechanical axes in the kinematic group passed through a neutral position of the knee in the true condition when the calcaneus was considered. The post-operative angles of flexion and functional activity scores were significantly better in the kinematic than in the mechanical group (p < 0.003 and 0.03, respectively). CONCLUSION A kinematically aligned TKA results in a joint line which has a more parallel orientation in relation to the floor during single- and double-leg standing, and more neutral weight-bearing in tMA than a mechanically aligned TKA. Cite this article: Bone Joint J 2017;99-B:640-6.
Collapse
|
Randomized Controlled Trial |
8 |
118 |
18
|
Kuroda R, Kambic H, Valdevit A, Andrish JT. Articular cartilage contact pressure after tibial tuberosity transfer. A cadaveric study. Am J Sports Med 2001; 29:403-9. [PMID: 11476376 DOI: 10.1177/03635465010290040301] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Medial transfer of the tibial tuberosity has been commonly used for treatment of recurrent dislocation of the patella and patellofemoral malalignment. In this study, six fresh human cadaveric knees were used. Static intrajoint loads were recorded using Fuji Prescale pressure-sensitive film for contact pressure and contact area determination in a closed kinetic chain knee testing protocol. Peak pressures, average contact pressures, and contact areas of the patellofemoral and tibiofemoral joints were calculated on native intact knee specimens and after tibial tuberosity transfer. All native intact knee specimens had a normal Q angle. Medialization of the tibial tuberosity significantly increased the patellofemoral contact pressure. Medial displacement of the tibial tuberosity also significantly increased the average contact pressure of the medial tibiofemoral compartment and changed the balance of tibiofemoral joint loading. The results of our study suggest that caution should be used when transferring a patellar tendon in the face of a preexisting normal Q angle as this will result in abnormally high peak pressure within the tibiofemoral joint. Overmedialization of the tibial tuberosity should be avoided in the varus knee, the knee after medial meniscectomy, and the knee with preexisting degenerative arthritis of the medial compartment.
Collapse
|
|
24 |
116 |
19
|
Matsumoto T, Kuroda R, Mifune Y, Kawamoto A, Shoji T, Miwa M, Asahara T, Kurosaka M. Circulating endothelial/skeletal progenitor cells for bone regeneration and healing. Bone 2008; 43:434-9. [PMID: 18547890 DOI: 10.1016/j.bone.2008.05.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 04/26/2008] [Accepted: 05/02/2008] [Indexed: 02/06/2023]
Abstract
An emerging strategy in the regeneration and repair of bone is to use stem cells, including bone marrow mesenchymal stem cells, which are the most investigated and reliable source for tissue engineering, as well as circulating skeletal stem/progenitor cells, which are receiving abundant attention in regenerative medicine due to their ease of isolation and high osteogenic potential. Because failures in fracture healing are largely due to poor vascularization among many environmental factors, we highlight the first proof-of-principle experiments that elucidated the collaborative multi-lineage differentiation of circulating CD34 positive cells - a cell-enriched population of endothelial/hematopoietic progenitor cells - into not only endothelial cells but also osteoblasts. These cells develop a favorable environment for fracture healing via vasculogenesis/angiogenesis and osteogenesis, ultimately leading to functional recovery from fracture. This review will also highlight current concepts of circulating stem/progenitor cell-based therapy and their potential application for bone repair.
Collapse
|
Review |
17 |
107 |
20
|
Shigenaga Y, Nakatani Z, Nishimori T, Suemune S, Kuroda R, Matano S. The cells of origin of cat trigeminothalamic projections: especially in the caudal medulla. Brain Res 1983; 277:201-22. [PMID: 6640296 DOI: 10.1016/0006-8993(83)90928-9] [Citation(s) in RCA: 107] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Thalamic projections from the caudal medulla of the cat were examined using the method of retrograde axonal transport of horseradish peroxidase (HRP). Injections were made unilaterally in various thalamic regions. Large injections labeled cells in the subnuclei: zonalis (Vcz), gelatinosus (Vcg), magnocellularis (Vcm), reticularis dorsalis (Vcrd) and ventralis (Vcv) medullae oblongatae. The largest number of labeled cells were in Vcz, Vcrd and Vcrv. Most of the labeled cells in Vcz and Vcrd were contralateral to the injection site, although the labeled cells in the Vcrv were bilateral. Small injections were made into the medial, lateral and dorsal regions of the nucleus ventralis posteromedialis (VPM), rostral regions of the posterior nuclei (POm and PO1), caudal POm, the nucleus centralis lateralis (CL) and the center median-parafascicular nuclear complex (CM-Pf). Most of the neurons in Vcz were found to project to the medial VPM and some to the caudal POm. A small number of cells in the Vcrd project to the medial VPM, but a large number project to the caudal POm and CM-Pf complex. The largest number of neurons projecting to the CM-Pf complex was present in Vcrv, where the labeled cells were bilateral. The types of trigeminothalamic projecting cells and the sizes of their somata were observed for different subnuclei and a considerable difference was found to exist among the subnuclei. This anatomical differentiation of the trigeminothalamic projections probably reflects a functional specialization of neuronal location since the functional properties of neurons vary according to their locations.
Collapse
|
|
42 |
107 |
21
|
Matsumoto T, Muratsu H, Tsumura N, Mizuno K, Kuroda R, Yoshiya S, Kurosaka M. Joint Gap Kinematics in Posterior-Stabilized Total Knee Arthroplasty Measured by a New Tensor With the Navigation System. J Biomech Eng 2006; 128:867-71. [PMID: 17154688 DOI: 10.1115/1.2354201] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Background: The management of soft tissue balance during surgery is essential for the success of total knee arthroplasty (TKA) but remains difficult, leaving it much to the surgeon’s feel. Previous assessments for soft tissue balance have been performed under unphysiological joint conditions, with patellar eversion and without the prosthesis only at extension and 90 deg of flexion. We therefore developed a new tensor for TKA procedures, enabling soft tissue balance assessment throughout the range of motion while reproducing postoperative joint alignment with the patellofemoral (PF) joint reduced and the tibiofemoral joint aligned. Our purpose in the present study was to clarify joint gap kinematics using the tensor with the CT-free computer assisted navigation system. Method of Approach: Joint gap kinematics, defined as joint gap change during knee motion, was evaluated during 30 consecutive, primary posterior-stabilized (PS) TKA with the navigation system in 30 osteoarthritic patients. Measurements were performed using a newly developed tensor, which enabled the measurement of the joint gap throughout the range of motion, including the joint conditions relevant after TKA with PF joint reduced and trial femoral component in place. Joint gap was assessed by the tensor at full extension, 5 deg, 10 deg, 15 deg, 30 deg, 45 deg, 60 deg, 90 deg, and 135 deg of flexion with the patella both everted and reduced. The navigation system was used to obtain the accuracy of implantations and to measure an accurate flexion angle of the knee during the intraoperative joint gap measurement. Results: Results showed that the joint gap varied depending on the knee flexion angle. Joint gap showed an accelerated decrease during full knee extension. With the PF joint everted, the joint gap increased throughout knee flexion. In contrast, the joint gap with the PF joint reduced increased with knee flexion but decreased after 60 deg of flexion. Conclusions: We clarified the characteristics of joint gap kinematics in PS TKA under physiological and reproducible joint conditions. Our findings can provide useful information for prosthetic design and selection and allow evaluation of surgical technique throughout the range of knee motion that may lead to consistent clinical outcomes after TKA.
Collapse
MESH Headings
- Aged
- Arthroplasty, Replacement, Knee/instrumentation
- Arthroplasty, Replacement, Knee/methods
- Equipment Design
- Equipment Failure Analysis
- Female
- Humans
- Joint Instability/diagnosis
- Joint Instability/etiology
- Joint Instability/physiopathology
- Joint Instability/prevention & control
- Male
- Monitoring, Intraoperative/instrumentation
- Monitoring, Intraoperative/methods
- Osteoarthritis, Knee/diagnosis
- Osteoarthritis, Knee/physiopathology
- Osteoarthritis, Knee/surgery
- Physical Examination/instrumentation
- Physical Examination/methods
- Range of Motion, Articular
- Reproducibility of Results
- Sensitivity and Specificity
Collapse
|
|
19 |
107 |
22
|
Matsushita T, Sasaki H, Takayama K, Ishida K, Matsumoto T, Kubo S, Matsuzaki T, Nishida K, Kurosaka M, Kuroda R. The overexpression of SIRT1 inhibited osteoarthritic gene expression changes induced by interleukin-1β in human chondrocytes. J Orthop Res 2013; 31:531-7. [PMID: 23143889 DOI: 10.1002/jor.22268] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 10/17/2012] [Indexed: 02/04/2023]
Abstract
In this study, we examined the effects of overexpression of SIRT1 on IL-1β-induced gene expression changes in human chondrocytes to explore a protective role of SIRT1 in human chondrocytes. SIRT1 was overexpressed in human chondrocytes by expression plasmid under stimulation with IL-1β. SIRT1 was also inhibited by siRNA under stimulation with IL-1β. Gene expression changes were examined by real-time PCR. The interaction of SIRT1 and p65 (NF-κB) were examined by Western blotting. SIRT1, MMP-13, and ADAMTS-5 expressions in human cartilage were examined by immunohistochemistry. IL-1β stimulation significantly up-regulated MMP-1, 2, 9, and 13 and ADAMTS-5. Overexpression of SIRT1 significantly inhibited the up-regulation of those genes caused by IL-1β while the inhibition of SIRT1 further increased them. In addition, the overexpression of SIRT1 markedly reduced the IL-1β-induced acetylation of p65. SIRT1 expression was clearly detected in the non-OA cartilage while MMP-13 and ADAMTS-5 were undetectable. In contrast, in the OA cartilage, SIRT1 expression was decreased while MMP-13 and ADAMTS-5 were increased. Our observations suggested that SIRT1 can play a protective role by suppressing IL-1β-induced expressions of cartilage-degrading enzymes partially through the modulation of the NF-κB pathway. SIRT1 overexpression might be a new therapeutic approach for OA.
Collapse
|
|
12 |
107 |
23
|
Araki D, Kuroda R, Kubo S, Fujita N, Tei K, Nishimoto K, Hoshino Y, Matsushita T, Matsumoto T, Nagamune K, Kurosaka M. A prospective randomised study of anatomical single-bundle versus double-bundle anterior cruciate ligament reconstruction: quantitative evaluation using an electromagnetic measurement system. INTERNATIONAL ORTHOPAEDICS 2010; 35:439-46. [PMID: 20734043 DOI: 10.1007/s00264-010-1110-9] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 07/27/2010] [Accepted: 07/27/2010] [Indexed: 12/23/2022]
Abstract
We conducted a prospective randomised study of anatomical single-bundle (A-SB group) versus double-bundle (A-DB group) anterior cruciate ligament (ACL) reconstruction using the hamstrings tendons. Twenty patients with unilateral ACL deficiency were randomised into two groups. We created the bone tunnels at the position of the original insertion of the anteromedial bundle footprint and posterolateral bundle footprint in the A-DB group and at the central position between these two bundles in the A-SB group. All of the patients were tested before ACL reconstruction and one year after surgery. The KT-1000 measurements, isokinetic muscle peak torque and heel-height difference were evaluated and the general knee condition was assessed by Lysholm score. For pre- and postoperative stability assessment, we used the six-degrees-of-freedom of knee kinematic measurement system using an electromagnetic device (the EMS) for quantitative assessment during the Lachman test and the pivot shift test. There were no significant differences in the KT-1000 measurements, isokinetic muscle peak torque, heel-height difference, and Lysholm score at one-year follow-up between these two groups. The EMS data showed there were significant differences in the acceleration of the pivot shift test between the operated knee and the contralateral normal knees in the A-SB group. In conclusion, clinical outcomes were equally good in both groups. However, the EMS data showed the anatomical double-bundle ACL reconstruction tended to be biomechanically superior to the single-bundle reconstruction.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
104 |
24
|
Kawabata A, Kuroda R, Minami T, Kataoka K, Taneda M. Increased vascular permeability by a specific agonist of protease-activated receptor-2 in rat hindpaw. Br J Pharmacol 1998; 125:419-22. [PMID: 9806321 PMCID: PMC1565636 DOI: 10.1038/sj.bjp.0702063] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The present study examined the effect of intraplantar (i.pl.) administration of a selective agonist of protease-activated receptor (PAR)-2, SLIGRL-NH2(PP6-NH2), on vascular permeability in rat hindpaw. PP6-NH2, administered i.pl. at 10-100 nmol per paw, enhanced vascular permeability and caused oedema formation in rat hindpaw. SLIGRL (PP6-OH) and trypsin, by i.pl. administration, also elicited an increase in vascular permeability, although i.pl. administration of the mixture of constituent amino acids of PP6-OH at an equivalent dose did not. The PP6-NH2-induced increase in vascular permeability was abolished by repeated pretreatment with compound 48/80 to deplete bioactive amines in mast cells. These findings suggest that the activation of PAR-2 induces acute inflammation, at least partially, via mast cell degranulation in rat hindpaw.
Collapse
|
other |
27 |
103 |
25
|
Sumi-Ichinose C, Urano F, Kuroda R, Ohye T, Kojima M, Tazawa M, Shiraishi H, Hagino Y, Nagatsu T, Nomura T, Ichinose H. Catecholamines and serotonin are differently regulated by tetrahydrobiopterin. A study from 6-pyruvoyltetrahydropterin synthase knockout mice. J Biol Chem 2001; 276:41150-60. [PMID: 11517215 DOI: 10.1074/jbc.m102237200] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
(6R)-L-erythro-5,6,7,8-Tetrahydrobiopterin (BH4) is an essential cofactor for tyrosine hydroxylase (TH), tryptophan hydroxylase, phenylalanine hydroxylase, and nitric-oxide synthase. These enzymes synthesize neurotransmitters, e.g. catecholamines, serotonin, and nitric oxide (NO). We established mice unable to synthesize BH4 by disruption of the 6-pyruvoyltetrahydropterin synthase gene, the encoded protein of which catalyzes the second step of BH4 biosynthesis. Homozygous mice were born at the almost expected Mendelian ratio, but died within 48 h after birth. In the brain of homozygous mutant neonates, levels of biopterin, catecholamines, and serotonin were extremely low. The number of TH molecules was highly dependent on the intracellular concentration of BH4 at nerve terminals. Alteration of the TH protein level by modulation of the BH4 content is a novel regulatory mechanism. Our data showing that catecholaminergic, serotonergic, and NO systems were differently affected by BH4 starvation suggest the possible involvement of BH4 synthesis in the etiology of monoamine-based neurological and neuropsychiatric disorders.
Collapse
|
|
24 |
101 |