1
|
Simmons CA, Meguid SA, Pilliar RM. Mechanical regulation of localized and appositional bone formation around bone-interfacing implants. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 2001; 55:63-71. [PMID: 11426399 DOI: 10.1002/1097-4636(200104)55:1<63::aid-jbm90>3.0.co;2-v] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The local mechanical environment around bone-interfacing implants determines, in large part, whether bone formation leading to functional osseointegration will occur. Previous attempts to relate local peri-implant tissue strains to tissue formation have not accounted for implant surface geometry, which has been shown to influence early tissue healing in vivo. Furthermore, the process by which mechanically regulated peri-implant bone formation occurs has not been considered previously. In the current study, we used a unit cell approach and the finite element method to predict the local tissue strains around porous-surfaced and plasma-sprayed implants, and compared the predictions to patterns of bone formation reported in earlier in vivo experiments. Based on the finite element predictions, we determined that appositional bone formation occurred when the magnitudes of the strain components at the tissue-host bone interface were <8%. Localized, de novo bone formation occurred when the distortional tissue strains were less than approximately 3%. Based on these threshold tissue strains, we propose a mechanoregulatory model to relate local tissue strains to the process of peri-implant bone formation. The mechanoregulatory model is novel in that it predicts both appositional and localized bone formation and its predictions are dependent on implant surface geometry. The model provides initial criteria with which the osseointegration potential of bone-interfacing implants may be evaluated, particularly under conditions of immediate or early loading.
Collapse
|
|
24 |
47 |
2
|
Simmons CA, Meguid SA, Pilliar RM. Differences in osseointegration rate due to implant surface geometry can be explained by local tissue strains. J Orthop Res 2001; 19:187-94. [PMID: 11347689 DOI: 10.1016/s0736-0266(00)90006-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Experimental evidence indicates that the surface geometry of bone-interfacing implants influences the nature and rate of tissues formed around implants. In a previously reported animal model study, we showed that non-functional, press-fitted porous-surfaced implants placed in rabbit femoral condyle sites osseointegrated more rapidly than plasma-sprayed implants. We hypothesized that the accelerated osseointegration observed with the porous-surfaced design was the result of this design providing a local mechanical environment that was more favourable for bone formation. In the present study, we tested this hypothesis using finite element analysis and homogenization methods to predict the local strains in the pre-mineralized tissues formed around porous-surfaced and plasma-sprayed implants. We found that, for loading perpendicular to the implant interface, the porous surface structure provided a large region that experienced low distortional and volumetric strains, whereas the plasma-sprayed implant provided little local strain protection to the healing tissue. The strain protected region, which was within the pores of the sintered porous surface layer. corresponded to the region where the difference in the amount of mineralization between the two implant designs was the greatest. Low distortional and volumetric strains are believed to favour osteogenesis, and therefore the model results provide initial support for the hypothesis that the porous-surfaced geometry provides a local mechanical environment that favours more rapid bone formation in certain situations.
Collapse
|
|
24 |
46 |
3
|
Alian AR, Meguid SA. Molecular dynamics simulations of the effect of waviness and agglomeration of CNTs on interface strength of thermoset nanocomposites. Phys Chem Chem Phys 2018; 19:4426-4434. [PMID: 28120958 DOI: 10.1039/c6cp07464b] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Most existing molecular dynamics simulations in nanoreinforced composites assume carbon nanotubes (CNTs) to be straight and uniformly dispersed within thermoplastics. In reality, however, CNTs are typically curved, agglomerated and aggregated as a result of van der Waal interactions and electrostatic forces. In this paper, we account for both curvature and agglomeration of CNTs in extensive molecular dynamic (MD) simulations. The purpose of these simulations is to evaluate the influence of waviness and agglomeration of these curved and agglomerated CNTs on the interfacial strength of thermoset nanocomposite and upon their load transfer capability. Two aspects of the work were accordingly examined. In the first, realistic carbon nanotubes (CNTs) of the same length but varied curvatures were embedded in thermoset polymer composites and simulations of pull-out tests were conducted to evaluate the corresponding interfacial shear strength (ISS). In the second, the effect of the agglomerate size upon the ISS was determined using bundles of CNTs of different diameters. The results of our MD simulations revealed the following. The pull-out force of the curved CNTs is significantly higher than its straight counterpart and increases further with the increase in the waviness of the CNTs. This is attributed to the added pull-out energy dissipated in straightening the CNTs during the pull-out process. It also reveals that agglomeration of CNTs leads to a reduction in the ISS and poor load transferability, and that this reduction is governed by the size of the agglomerate. The simulation results were also used to develop a generalized relation for the ISS that takes into consideration the effect of waviness and agglomeration of CNTs of CNT-polymer composites.
Collapse
|
Journal Article |
7 |
42 |
4
|
Bao WS, Meguid SA, Zhu ZH, Meguid MJ. Modeling electrical conductivities of nanocomposites with aligned carbon nanotubes. NANOTECHNOLOGY 2011; 22:485704. [PMID: 22071680 DOI: 10.1088/0957-4484/22/48/485704] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We have developed an improved three-dimensional (3D) percolation model to investigate the effect of the alignment of carbon nanotubes (CNTs) on the electrical conductivity of nanocomposites. In this model, both intrinsic and contact resistances are considered, and a new method of resistor network recognition that employs periodically connective paths is developed. This method leads to a reduction in the size effect of the representative cuboid in our Monte Carlo simulations. With this new technique, we were able to effectively analyze the effects of the CNT alignment upon the electrical conductivity of nanocomposites. Our model predicted that the peak value of the conductivity occurs for partially aligned rather than perfectly aligned CNTs. It has also identified the value of the peak and the corresponding alignment for different volume fractions of CNTs. Our model works well for both multi-wall CNTs (MWCNTs) and single-wall CNTs (SWCNTs), and the numerical results show a quantitative agreement with existing experimental observations.
Collapse
|
|
14 |
26 |
5
|
Chen X, Meguid SA. Snap-through buckling of initially curved microbeam subject to an electrostatic force. Proc Math Phys Eng Sci 2015; 471:20150072. [PMID: 27547104 DOI: 10.1098/rspa.2015.0072] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this paper, the snap-through buckling of an initially curved microbeam subject to an electrostatic force, accounting for fringing field effect, is investigated. The general governing equations of the curved microbeam are developed using Euler-Bernoulli beam theory and used to develop a new criterion for the snap-through buckling of that beam. The size effect of the microbeam is accounted for using the modified couple stress theory, and intermolecular effects, such as van der Waals and Casimir forces, are also included in our snap-through formulations. The snap-through governing equations are solved using Galerkin decomposition of the deflection. The results of our work enable us to carefully characterize the snap-through behaviour of the initially curved microbeam. They further reveal the significant effect of the beam size, and to a much lesser extent, the effect of fringing field and intermolecular forces, upon the snap-through criterion for the curved beam.
Collapse
|
|
10 |
22 |
6
|
Li Y, Meguid SA, Fu Y, Xu D. Nonlinear analysis of thermally and electrically actuated functionally graded material microbeam. Proc Math Phys Eng Sci 2014; 470:20130473. [PMID: 24511250 DOI: 10.1098/rspa.2013.0473] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 11/04/2013] [Indexed: 11/12/2022] Open
Abstract
In this paper, we provide a unified and self-consistent treatment of a functionally graded material (FGM) microbeam with varying thermal conductivity subjected to non-uniform or uniform temperature field. Specifically, it is our objective to determine the effect of the microscopic size of the beam, the electrostatic gap, the temperature field and material property on the pull-in voltage of the microbeam under different boundary conditions. The non-uniform temperature field is obtained by integrating the steady-state heat conduction equation. The governing equations account for the microbeam size by introducing an internal material length-scale parameter that is based on the modified couple stress theory. Furthermore, it takes into account Casimir and van der Waals forces, and the associated electrostatic force with the first-order fringing field effects. The resulting nonlinear differential equations were converted to a coupled system of algebraic equations using the differential quadrature method. The outcome of our work shows the dramatic effect and dependence of the pull-in voltage of the FGM microbeam upon the temperature field, its gradient for a given boundary condition. Specifically, both uniform and non-uniform thermal loading can actuate the FGM microbeam even without an applied voltage. Our work also reveals that the non-uniform temperature field is more effective than the uniform temperature field in actuating a FGM cantilever-type microbeam. For the clamped-clamped case, care must be taken to account for the effective use of thermal loading in the design of microbeams. It is also observed that uniform thermal loading will lead to a reduction in the pull-in voltage of a FGM microbeam for all the three boundary conditions considered.
Collapse
|
Journal Article |
11 |
21 |
7
|
Zhang J, Meguid SA. Composition-dependent buckling behaviour of hybrid boron nitride–carbon nanotubes. Phys Chem Chem Phys 2015; 17:12796-803. [PMID: 25907227 DOI: 10.1039/c5cp00914f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This paper studies the buckling of hybrid BN–CNTs and proposes some applications of BN–CNTs based on the results.
Collapse
|
|
10 |
18 |
8
|
Chen X, Meguid SA. Asymmetric bifurcation of thermally and electrically actuated functionally graded material microbeam. Proc Math Phys Eng Sci 2016; 472:20150597. [PMID: 27118887 DOI: 10.1098/rspa.2015.0597] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this paper, we investigate the symmetric snap-through buckling and the asymmetric bifurcation behaviours of an initially curved functionally graded material (FGM) microbeam subject to the electrostatic force and uniform/non-uniform temperature field. The beam model is developed in the framework of Euler-Bernoulli beam theory, accounting for the through-thickness power law variation of the beam material and the physical neutral plane. Based on the Galerkin decomposition method, the beam model is simplified as a 2 d.f. reduced-order model, from which the necessary snap-through and symmetry breaking criteria are derived. The results of our work reveal the significant effects of the power law index on the snap-through and symmetry breaking criteria. Our results also reveal that the non-uniform temperature field can actuate the FGM microbeam and induce the snap-through and asymmetric bifurcation behaviours.
Collapse
|
|
9 |
9 |
9
|
Meguid SA, Elzaabalawy A. Potential of combating transmission of COVID-19 using novel self-cleaning superhydrophobic surfaces: part I-protection strategies against fomites. INTERNATIONAL JOURNAL OF MECHANICS AND MATERIALS IN DESIGN 2020; 16:423-431. [PMID: 38624551 PMCID: PMC7405757 DOI: 10.1007/s10999-020-09513-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 07/27/2020] [Indexed: 05/04/2023]
Abstract
According to the World Health Organisation, one of the main concerns of COVID-19 virus is its tenacity to spread from droplets that either land directly on a surface or are transmitted to a surface by an infected person. In this study, we report the potential of using superhydrophobic surfaces to combat the transmission and spread of fomites infected by COVID-19 virus strand. Fomites include clothes, utensils, furniture, regularly touched objects and personal protective equipment used by Health Care Workers to act as barriers against fluid transmission and/or fluid penetration. In this effort, we propose three strategies to combat the transmission and the spread of the virus: encapsulation, contamination suppression, and elimination. We believe that this can be achieved by the use of our recently developed superhydrophobic coating and regenerative monolith to encapsulate and suppress the virus. The newly developed superhydrophobic coating and monolith are scalable, economical, and facile with the monolith capable of regeneration. The elimination of the virus will be through the use of antiviral and antibacterial copper nanoparticles or dedicated copper surfaces.
Collapse
|
research-article |
5 |
9 |
10
|
Hussein AI, Stranart JC, Meguid SA, Bogoch ER. Biomechanical validation of finite element models for two silicone metacarpophalangeal joint implants. J Biomech Eng 2011; 133:024501. [PMID: 21280884 DOI: 10.1115/1.4003311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Silicone implants are used for prosthetic arthroplasty of metacarpophalangeal (MCP) joints severely damaged by rheumatoid arthritis. Different silicone elastomer MCP implant designs have been developed, including the Swanson and the NeuFlex implants. The goal of this study was to compare the in vitro mechanical behavior of Swanson and NeuFlex MCP joint implants. Three-dimensional (3D) finite element (FE) models of the silicone implants were modeled using the commercial software ANSYS and subjected to angular displacement from 0 deg to 90 deg. FE models were validated using mechanical tests of implants incrementally bent from 0 deg to 90 deg in a joint simulator. Swanson size 2 and 4 implants were compared with NeuFlex size 10 and 30 implants, respectively. Good agreement was observed throughout the range of motion for the flexion bending moment derived from 3D FE models and mechanical tests. From 30 deg to 90 deg, the Swanson 2 demonstrated a greater resistance to deformation than the NeuFlex 10 and required a greater bending moment for joint flexion. For larger implant sizes, the NeuFlex 30 had a steeper moment-displacement curve, but required a lower moment than the Swanson 4, due to implant preflexion. On average, the stress generated at the implant hinge from 30 deg to 90 deg was lower in the NeuFlex than in the Swanson. On average, starting from the neutral position of 30 deg for the preflexed NeuFlex implant, higher moments were required to extend the NeuFlex implants to 0 deg compared with the Swanson implants, which returned spontaneously to resting position. Implant toggling within the medullary canals was less in the NeuFlex than in the Swanson. The differential performance of these implants may be useful in implant selection based on the preoperative condition(s) of the joint and specific patient functional needs.
Collapse
|
Validation Study |
14 |
5 |
11
|
Elzaabalawy A, Meguid SA. Potential of combating transmission of COVID-19 using novel self-cleaning superhydrophobic surfaces: part II-thermal, chemical, and mechanical durability. INTERNATIONAL JOURNAL OF MECHANICS AND MATERIALS IN DESIGN 2020; 16:433-441. [PMID: 38624538 PMCID: PMC7405720 DOI: 10.1007/s10999-020-09512-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 07/27/2020] [Indexed: 08/01/2023]
Abstract
In part I, we identified encapsulation, contamination suppression, and virus elimination as our three governing strategies for developing surfaces to combat the transmission and spread of COVID-19. We showed that our recent superhydrophobic nanocomposites has the potential of encapsulating and suppressing the virus so as to limit its transmission and spread. In this study, we examine the durability of the newly developed surfaces when subjected to elevated temperature, chemical attack and mechanical damage in the form of abrasion and compressive load. Extensive tests were conducted to reveal the effect of these parameters on the surface performance. Three aspects of the work were accordingly examined. The first was concerned with controlled thermal stability tests in which the surfaces were subjected to elevated temperatures approaching 350 °C for silicone-based nanocomposites and 150 °C for epoxy-based nanocomposites. The second was concerned with subjecting the surfaces to alkaline and acidic solutions with pH concentrations ranging between 1 and 13. Finally, the third involved surface damage by abrasion tests. Our results show clearly that the newly developed superhydrophobic surfaces are capable of resisting the adverse effects of thermal and chemical attacks as well as mechanical abrasion owing to the excellent structural stability and mechanical properties of the constituents of the nanocomposite. Moreover, our superhydrophobic monolith demonstrated exceptional regenerative capabilities even after being subjected to damaging compressive stresses of up to 10 MPa.
Collapse
|
research-article |
5 |
3 |
12
|
Moussa HH, Meguid SA, Atalla MM. Studies in Stobbe condensation. Part 7: Synthesis and biological activity of some new cyclopentadienones and cyclopentadienes. DIE PHARMAZIE 1982; 37:352-4. [PMID: 7111361 DOI: 10.1002/chin.198241173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The condensation of cinnamaldehyde, thienyl and furyl acrolein with dimethyl succinate in the presence of potassium tert-butoxide, gives the corresponding acid-esters (la-c) (R1 = Me) as major products. These esters are further converted into cyclopentadiene and cyclopentadienone derivatives. Dicondensation products (2a-c) are also obtained. Furthermore, the correlation between the chemical structures of the studied compounds and their respective biological activities were discussed.
Collapse
|
|
43 |
|
13
|
Meguid SA, Kundalwal SI, Alian AR. Atomistic modeling of electromechanical properties of piezoelectric zinc oxide nanowires. NANOTECHNOLOGY 2024; 35:135701. [PMID: 38134438 DOI: 10.1088/1361-6528/ad1841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/22/2023] [Indexed: 12/24/2023]
Abstract
Currently, numerous articles are devoted to examining the influence of geometry and charge distribution on the mechanical properties and structural stability of piezoelectric nanowires (NWs). The varied modeling techniques adopted in earlier molecular dynamics (MD) works dictated the outcome of the different efforts. In this article, comprehensive MD studies are conducted to determine the influence of varied interatomic potentials (partially charged rigid ion model, [PCRIM] ReaxFF, charged optimized many-body [COMB], and Buckingham), geometrical parameters (cross-section geometry, wire diameter, and length), and charge distribution (uniform full charges versus partially charged surface atoms) on the resulting mechanical properties and structural stability of zinc oxide (ZnO) NWs. Our optimized parameters for the Buckingham interatomic potential are in good agreement with the existing experimental results. Furthermore, we found that the incorrect selection of interatomic potentials could lead to excessive overestimate (61%) of the elastic modulus of the NW. While NW length was found to dictate the strain distribution along the wire, impacting its predicted properties, the cross-section shape did not play a major role. Assigning uniform charges for both the core and surface atoms of ZnO NWs leads to a drastic decrease in fracture properties.
Collapse
|
|
1 |
|
14
|
Shang R, Wu T, Meguid SA. Molecular dynamics simulations of the effect of static electric field on progressive ice formation. J Chem Phys 2024; 161:094504. [PMID: 39230380 DOI: 10.1063/5.0226624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024] Open
Abstract
Ice accumulation under static electric fields presents a significant hazard to transmission lines and power grids. Contemporary computational studies of electrofreezing predominantly probed excessive electric fields (109 V/m) that are significantly higher than those typically encountered in proximity to transmission lines. To elucidate the influence of realistic electric fields (105 V/m) on ice crystallization, we run extensive molecular dynamics (MD) simulations across dual ice-water coexistence systems. Three aspects of work were accordingly examined. First, we investigated the influence of the effect of static electric fields, with a strength of 105 V/m, along three orthogonal axes on the phase transition during the encountered freezing and melting processes. Second, we established the mechanism of how the direction of an electric field, the initial ice crystallography, and the adjacent crystal planes influence the solidification process. Third, the results of our MD simulations were further post-processed to determine the dipole moment, radial distribution, and angle distribution resulting from the static electric field. Our results indicate that while weak electric fields do not cause complete polarization of liquid water molecules, they can induce a transition to a more structured ice-like geometry of the water molecules at the ice-water interphase region, particularly when applied perpendicular to the ice-water interphase. Notably, the interface adjacent to cubic ice exhibits a greater response to the electric fields than that adjacent to hexagonal ice. This is attributable to the intrinsic differences in their original hydrogen bonding networks.
Collapse
|
|
1 |
|