1
|
Everett SA, Dennis MF, Patel KB, Maddix S, Kundu SC, Willson RL. Scavenging of nitrogen dioxide, thiyl, and sulfonyl free radicals by the nutritional antioxidant beta-carotene. J Biol Chem 1996; 271:3988-94. [PMID: 8626730 DOI: 10.1074/jbc.271.8.3988] [Citation(s) in RCA: 161] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Mechanisms of free radical scavenging by the nutritional antioxidant beta-carotene have been investigated by pulse radiolysis. Free radicals, which can initiate the chain of lipid peroxidation, including nitrogen dioxide (NO2.), thiyl (RS.), and sulfonyl (RSO2.) radicals, are rapidly scavenged by beta-carotene. Absolute rate constant k[NO2. + beta-carotene] = (1.1 +/- 0.1) x 10(8) m-1 s-1 and for the glutathione thiyl radical k[GS. + beta-carotene] = (2.2 +/- 0.1) x 10(8) m-1 s-1 have been determined. The mechanisms however are mutually exclusive, the former involving electron transfer to generate the radical-cation [ beta-carotene]+. and the latter by radical-addition to generate an adduct-radical [RS... beta-carotene].. Rate constants for thiyl radical-addition reactions vary from 10(6) to 10(9) m-1 s-1 and correlate with the lipophilicity of the thiyl radical under study. Sulfonyl radicals undergo both electron abstraction, [ beta-carotene]+. and radical-addition, [RSO2... beta-carotene]. in an approximate 3:1 ratio. The beta-carotene radical-cation and adduct-radicals are highly resonance stabilized and undergo slow bimolecular decay to non-radical products. These carotenoid-derived radicals react differently with oxygen, a factor which is expected to influence the antioxidant activity of beta-carotene within tissues of varying oxygen tension in vivo.
Collapse
|
Comparative Study |
29 |
161 |
2
|
Kundu SC, Kundu B, Talukdar S, Bano S, Nayak S, Kundu J, Mandal BB, Bhardwaj N, Botlagunta M, Dash BC, Acharya C, Ghosh AK. Nonmulberry silk biopolymers. Biopolymers 2012; 97:455-67. [DOI: 10.1002/bip.22024] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 12/21/2011] [Indexed: 11/10/2022]
|
|
13 |
143 |
3
|
Subia B, Kundu SC. Drug loading and release on tumor cells using silk fibroin-albumin nanoparticles as carriers. NANOTECHNOLOGY 2013; 24:035103. [PMID: 23262833 DOI: 10.1088/0957-4484/24/3/035103] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Polymeric and biodegradable nanoparticles are frequently used in drug delivery systems. In this study silk fibroin-albumin blended nanoparticles were prepared using the desolvation method without any surfactant. These nanoparticles are easily internalized by the cells, reside within perinuclear spaces and act as carriers for delivery of the model drug methotrexate. Methotrexate loaded nanoparticles have better encapsulation efficiency, drug loading ability and less toxicity. The in vitro release behavior of methotrexate from the nanoparticles suggests that about 85% of the drug gets released after 12 days. The encapsulation and loading of a drug would depend on factors such as size, charge and hydrophobicity, which affect drug release. MTT assay and conjugation of particles with FITC demonstrate that the silk fibroin-albumin nanoparticles do not affect the viability and biocompatibility of cells. This blended nanoparticle, therefore, could be a promising nanocarrier for the delivery of drugs and other bioactive molecules.
Collapse
|
|
12 |
96 |
4
|
Mandal BB, Kundu SC. A novel method for dissolution and stabilization of non-mulberry silk gland protein fibroin using anionic surfactant sodium dodecyl sulfate. Biotechnol Bioeng 2008; 99:1482-9. [DOI: 10.1002/bit.21699] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
|
17 |
89 |
5
|
Acharya C, Ghosh SK, Kundu SC. Silk fibroin protein from mulberry and non-mulberry silkworms: cytotoxicity, biocompatibility and kinetics of L929 murine fibroblast adhesion. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2008; 19:2827-2836. [PMID: 18322779 DOI: 10.1007/s10856-008-3408-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Accepted: 02/07/2008] [Indexed: 05/26/2023]
Abstract
Silks fibers and films fabricated from fibroin protein of domesticated mulberry silkworm cocoon have been traditionally utilized as sutures in surgery and recently as biomaterial films respectively. Here, we explore the possibility of application of silk fibroin protein from non-mulberry silkworm cocoon as a potential biomaterial aid. In terms of direct inflammatory potential, fibroin proteins from Antheraea mylitta and Bombyx mori are immunologically inert and invoke minimal immune response. Stimulation of murine peritoneal macrophages and RAW 264.7 murine macrophages by these fibroin proteins both in solution and in the form of films assayed in terms of nitric oxide and TNFalpha production showed comparable stimulation as in collagen. Kinetics of adhesion of L929 murine fibroblasts, for biocompatibility evaluation, monitored every 4 h from seeding and studied over a period of 24 h, reveal A. mylitta fibroin film to be a better substrate in terms of rapid and easier cellularization. Cell viability studies by MTT assay and flow cytometric analyses indicate the ability of fibroin matrices to support cell growth and proliferation comparable to collagen for long-term culture. This matrix may have potential to serve in those injuries where rapid cellularization is essential.
Collapse
|
|
17 |
74 |
6
|
Mandal BB, Kundu SC. Self-assembled silk sericin/poloxamer nanoparticles as nanocarriers of hydrophobic and hydrophilic drugs for targeted delivery. NANOTECHNOLOGY 2009; 20:355101. [PMID: 19671963 DOI: 10.1088/0957-4484/20/35/355101] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In recent times self-assembled micellar nanoparticles have been successfully employed in tissue engineering for targeted drug delivery applications. In this review, silk sericin protein from non-mulberry Antheraea mylitta tropical tasar silk cocoons was blended with pluronic F-127 and F-87 in the presence of solvents to achieve self-assembled micellar nanostructures capable of carrying both hydrophilic (FITC-inulin) and hydrophobic (anticancer drug paclitaxel) drugs. The fabricated nanoparticles were subsequently characterized for their size distribution, drug loading capability, cellular uptake and cytotoxicity. Nanoparticle sizes ranged between 100 and 110 nm in diameter as confirmed by dynamic light scattering. Rapid uptake of these particles into cells was observed in in vitro cellular uptake studies using breast cancer MCF-7 cells. In vitro cytotoxicity assay using paclitaxel-loaded nanoparticles against breast cancer cells showed promising results comparable to free paclitaxel drugs. Drug-encapsulated nanoparticle-induced apoptosis in MCF-7 cells was confirmed by FACS and confocal microscopic studies using Annexin V staining. Up-regulation of pro-apoptotic protein Bax, down-regulation of anti-apoptotic protein Bcl-2 and cleavage of regulatory protein PARP through Western blot analysis suggested further drug-induced apoptosis in cells. This study projects silk sericin protein as an alternative natural biomaterial for fabrication of self-assembled nanoparticles in the presence of poloxamer for successful delivery of both hydrophobic and hydrophilic drugs to target sites.
Collapse
|
|
16 |
74 |
7
|
Dash R, Ghosh SK, Kaplan DL, Kundu SC. Purification and biochemical characterization of a 70 kDa sericin from tropical tasar silkworm, Antheraea mylitta. Comp Biochem Physiol B Biochem Mol Biol 2007; 147:129-34. [PMID: 17350301 DOI: 10.1016/j.cbpb.2007.01.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Revised: 01/07/2007] [Accepted: 01/08/2007] [Indexed: 11/17/2022]
Abstract
Sericin isolated from the cocoon of the tropical tasar silkmoth Antheraea mylitta showed three major bands, with the lowest 70 kDa. This band was purified by anion exchange chromatography. Immunoblotting with concanavalin-A suggests a glycoprotein and CD analysis of secondary structure includes beta-sheet. Amino acid analysis shows that the protein is enriched in glycine and serine while the mole percentages of these two amino acids are different from sericin of mulberry silkworm. An anti A. mylitta sericin antibody was able to cross-react with sericin from A. assamensis but not the sericin of Bombyx mori and Philosamia ricini. Immunoblot analysis with proteins isolated from middle silk gland of A. mylitta at different developmental stages of larva showed that the 70 kDa sericin is developmentally regulated. These data extend the range of biochemical features found in this unusual family of proteins and may help in developing an improved understanding of their role in forming environmentally stable fibroin fiber-sericin composite structures (cocoons).
Collapse
|
|
18 |
66 |
8
|
Dash R, Mukherjee S, Kundu SC. Isolation, purification and characterization of silk protein sericin from cocoon peduncles of tropical tasar silkworm, Antheraea mylitta. Int J Biol Macromol 2006; 38:255-8. [PMID: 16620954 DOI: 10.1016/j.ijbiomac.2006.03.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2005] [Revised: 03/01/2006] [Accepted: 03/01/2006] [Indexed: 11/18/2022]
Abstract
A high molecular weight water-soluble glue protein, sericin was identified in the cocoon peduncle (a strong thread connecting the cocoons to the branches of the tree with a ring) of the tropical tasar silkworm, Antheraea mylitta. The sericin was isolated by 8M urea containing 1% sodium dodecyl sulfate and beta-mercaptoethenol (2%) or by 1% sodium chloride. The protein was purified by gel filtration chromatography. In SDS-PAGE, a single band of approximately 200kDa was detected both in non-reducing and reducing conditions. Amino acid analysis showed that the protein is enriched in glycine and serine. There is a slight difference observed in amino acid composition between the sericin from cocoon peduncle and cocoon of A. mylitta. Secondary structure estimation by circular dichroism spectrometry showed 36.7% beta-sheets, 52.7% random coils, 10.6% turns and no helices.
Collapse
|
|
19 |
60 |
9
|
Nayak S, Kundu SC. Sericin-carboxymethyl cellulose porous matrices as cellular wound dressing material. J Biomed Mater Res A 2013; 102:1928-40. [PMID: 23853114 DOI: 10.1002/jbm.a.34865] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/22/2013] [Accepted: 06/25/2013] [Indexed: 12/22/2022]
|
|
12 |
50 |
10
|
Datta A, Ghosh AK, Kundu SC. Differential expression of the fibroin gene in developmental stages of silkworm, Antheraea mylitta (Saturniidae). Comp Biochem Physiol B Biochem Mol Biol 2001; 129:197-204. [PMID: 11337263 DOI: 10.1016/s1096-4959(01)00377-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Fibroin gene expression during the larval developmental stages of the Saturniid silkworm, Antheraea mylitta, was analyzed. Northern blot analysis of larval silk gland total RNA using the fibroin gene as a probe showed that fibroin is expressed in the intermoult stages and repressed during the moulting stages. Abundance of fibroin transcripts gradually increased from the third to fifth intermoult stage, reaching a peak in the fifth intermoult. Transcripts declined during the early spinning stage. Western blot analysis of fibroin protein production with anti-fibroin antibody confirmed the differential fibroin expression, in accordance with fibroin mRNA synthesis. Dot blot hybridization of genomic DNA isolated from each larval developmental stage with the labelled fibroin gene showed that at the genomic level, the relative concentration of the fibroin gene was constant throughout the developmental stages. Our data confirm that fibroin gene expression in A. mylitta, like in B. mori, is transcriptionally controlled and shows differential temporal variations.
Collapse
|
|
24 |
49 |
11
|
Mandal BB, Ghosh B, Kundu SC. Non-mulberry silk sericin/poly (vinyl alcohol) hydrogel matrices for potential biotechnological applications. Int J Biol Macromol 2011; 49:125-33. [PMID: 21549749 DOI: 10.1016/j.ijbiomac.2011.03.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 03/22/2011] [Accepted: 03/23/2011] [Indexed: 01/27/2023]
Abstract
This study reports a novel biopolymeric matrix fabricated by chemically cross-linking poly (vinyl alcohol) with silk sericin protein obtained from cocoons of the tropical tasar silkworm Antheraea mylitta. Glutaraldehyde was used as a cross-linking agent with hydrochloric acid acting as an initiator. The matrices were biophysically characterized and the cytocompatibility of the matrices was evaluated for their suitability as biomaterials. The surface morphology was assessed using atomic force microscopy while the changes taking place after cross-linking were confirmed by Fourier transform infrared spectroscopy. The enhanced thermal stability of the constructs was assessed by thermogravimetric and differential scanning calorimetry. Fourier transform infrared spectroscopy analysis showed that sericin was chemically cross-linked with poly (vinyl alcohol) using glutaraldehyde. Silk sericin protein demonstrated a favorable effect on animal cell culture by successfully improving the adhering and spreading of cells on the poorly adhering surface of poly (vinyl alcohol). Confocal microscopy revealed cell spreading and actin filament development in sericin/poly (vinyl alcohol) hydrogel matrices. These findings prove the potential of non-mulberry silk sericin/poly (vinyl alcohol) hydrogel matrices to be used as biocompatible and biopolymeric material for tissue-engineering and biotechnological applications.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
14 |
48 |
12
|
Das SK, Dey T, Kundu SC. Fabrication of sericin nanoparticles for controlled gene delivery. RSC Adv 2014. [DOI: 10.1039/c3ra44990d] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
|
11 |
44 |
13
|
Datta A, Ghosh AK, Kundu SC. Purification and characterization of fibroin from the tropical Saturniid silkworm, Antheraea mylitta. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2001; 31:1013-1018. [PMID: 11483437 DOI: 10.1016/s0965-1748(01)00049-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The fibroin protein isolated from the posterior silkgland of the tropical Saturniid silkworm Antheraea mylitta, was solubilized in lithium dodecyl sulfate and purified by gel filtration. The major fraction from gel filtration was analyzed by SDS-PAGE under non-reducing and reducing conditions. One major protein band of ca 395 kDa was obtained under non-reducing conditions and a doublet band of approximately 197 kDa under reducing conditions. The appearance of a single spot in two-dimensional electrophoresis confirmed the purity of the protein indicating that it may be a homodimeric protein of two similar sized polypeptides. Amino acid composition analysis showed that, like other Saturniid fibroins, it is rich in glycine, alanine and serine amino acids. N-terminal amino acid sequence shows significant homology with other Antheraea species. The enzymatic deglycosylation analysis indicates that the fibroin protein is glycosylated and the oligosaccharides are O-linked to the protein backbone by N-acetylgalactoseamine moiety which conforms to a Core 1 mucin-type glycosylation pattern.
Collapse
|
|
24 |
42 |
14
|
Kundu B, Bastos ARF, Brancato V, Cerqueira MT, Oliveira JM, Correlo VM, Reis RL, Kundu SC. Mechanical Property of Hydrogels and the Presence of Adipose Stem Cells in Tumor Stroma Affect Spheroid Formation in the 3D Osteosarcoma Model. ACS APPLIED MATERIALS & INTERFACES 2019; 11:14548-14559. [PMID: 30943004 DOI: 10.1021/acsami.8b22724] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Osteosarcoma is one of the most common metastatic bone cancers, which results in significant morbidity and mortality. Unfolding of effectual therapeutic strategies against osteosarcoma is impeded because of the absence of adequate animal models, which can truly recapitulate disease biology of humans. Tissue engineering provides an opportunity to develop physiologically relevant, reproducible, and tunable in vitro platforms to investigate the interactions of osteosarcoma cells with its microenvironment. Adipose-derived stem cells (ASCs) are detected adjacent to osteosarcoma masses and are considered to have protumor effects. Hence, the present study focuses on investigating the role of reactive ASCs in formation of spheroids of osteosarcoma cells (Saos 2) within a three-dimensional (3D) niche, which is created using gellan gum (GG)-silk fibroin. By modifying the blending ratio of GG-silk, the optimum stiffness of the resultant hydrogels such as GG and GG75: S25 is obtained for cancer spheroid formation. This work indicates that the co-existence of cancer and stem cells can form a spheroid, the hallmark of cancer, only in particular microenvironment stiffness. The incorporation of fibrillar silk fibroin within the hydrophilic network of GG in GG75: S25 spongy-like hydrogels closely mimics the stiffness of commercially established cancer biomaterials (e.g., Matrigel, HyStem). The GG75: S25 hydrogel maintains the metabolically active construct for a longer time with elevated expression of osteopontin, osteocalcin, RUNX 2, and bone sialoprotein genes, the biomarkers of osteosarcoma, compared to GG. The GG75: S25 construct also exhibits intense alkaline phosphatase expression in immunohistochemistry compared to GG, indicating itspotentiality to serve as biomimetic niche to model osteosarcoma. Taken together, the GG-silk fibroin-blended spongy-like hydrogel is envisioned as an alternative low-cost platform for 3D cancer modeling.
Collapse
|
|
6 |
40 |
15
|
Rebowe R, Rogers A, Yang X, Kundu SC, Smith TL, Li Z. Nerve Repair with Nerve Conduits: Problems, Solutions, and Future Directions. J Hand Microsurg 2018; 10:61-65. [PMID: 30154617 DOI: 10.1055/s-0038-1626687] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 01/02/2018] [Indexed: 01/09/2023] Open
Abstract
Nerve conduits are becoming increasingly popular for the repair of peripheral nerve injuries. Their ease of application and lack of donor site morbidity make them an attractive option for nerve repair in many situations. Today, there are many different conduits to choose in different sizes and materials, giving the reconstructive surgeon many options for any given clinical problem. However, to properly utilize these unique reconstructive tools, the peripheral nerve surgeon must be familiar not only with their standard indications but also with their functional limitations. In this review, the authors identify the common applications of nerve conduits, expected results, and shortcomings of current techniques. Furthermore, future directions for nerve conduit use are identified.
Collapse
|
Review |
7 |
38 |
16
|
Everett SA, Kundu SC, Maddix S, Willson RL. Mechanisms of free-radical scavenging by the nutritional antioxidant beta-carotene. Biochem Soc Trans 1995; 23:230S. [PMID: 7672251 DOI: 10.1042/bst023230s] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
|
30 |
35 |
17
|
Kundu B, Kundu SC. Bio-inspired fabrication of fibroin cryogels from the muga silkworm
Antheraea assamensis
for liver tissue engineering. Biomed Mater 2013; 8:055003. [DOI: 10.1088/1748-6041/8/5/055003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
|
12 |
32 |
18
|
Kundu J, Dewan M, Ghoshal S, Kundu SC. Mulberry non-engineered silk gland protein vis-à-vis silk cocoon protein engineered by silkworms as biomaterial matrices. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2008; 19:2679-2689. [PMID: 18283532 DOI: 10.1007/s10856-008-3398-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Accepted: 01/31/2008] [Indexed: 05/25/2023]
Abstract
Silk fibroin from silk gland of Bombyx mori 5th instar larvae was utilized to fabricate films, which may find possible applications as two-dimensional matrices for tissue engineering. Bombyx mori cocoon fibroin is well characterized as potential biomaterial by virtue of its good mechanical strength, water stability, thermal properties, surface roughness and biocompatibility. The present study aims to characterize the biophysical, thermal, mechanical, rheological, swelling properties along with spectroscopic analysis, surface morphology and biocompatibility of the silk gland fibroin films compared with cocoon fibroin. Fibroin solutions showed increased turbidity and shear thinning at higher concentration. The films after methanol treatment swelled moderately and were less hydrophilic compared to the untreated. The spectroscopic analysis of the films illustrated the presence of various amide peaks and conformational transition from random coil to beta sheet on methanol treatment. X-ray diffraction studies also confirmed the secondary structure. Thermogravimetric analysis showed distinct weight loss of the films. The films were mechanically stronger and AFM studies showed surfaces were rougher on methanol treatment. The matrices were biocompatible and supported L929 mouse fibroblast cell growth and proliferation. The results substantiate the silk gland fibroin films as potential biomaterial matrices.
Collapse
|
Comparative Study |
17 |
23 |
19
|
Mahendran B, Ghosh SK, Kundu SC. Molecular phylogeny of silk-producing insects based on 16S ribosomal RNA and cytochrome oxidase subunit I genes. J Genet 2006; 85:31-8. [PMID: 16809837 DOI: 10.1007/bf02728967] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We have examined the molecular-phylogenetic relationships between nonmulberry and mulberry silkworm species that belong to the families Saturniidae, Bombycidae and Lasiocampidae using 16S ribosomal RNA (16S rRNA) and cytochrome oxidase subunit I (coxI) gene sequences. Aligned nucleotide sequences of 16S rRNA and coxI from 14 silk-producing species were used for construction of phylogenetic trees by maximum likelihood and maximum parsimony methods. The tree topology on the basis of 16S rRNA supports monophyly for members of Saturniidae and Bombycidae. Weighted parsimony analysis weighted towards transversions relative to transitions (ts, tv4) for coxI resulted in more robust bootstrap support over unweighted parsimony and favours the 16S rRNA tree topology. Combined analysis reflected clear biogeographic pattern, and agrees with morphological and cytological data.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
22 |
20
|
Kumar BNP, Puvvada N, Rajput S, Sarkar S, Mahto MK, Yallapu MM, Pathak A, Emdad L, Das SK, Reis RL, Kundu SC, Fisher PB, Mandal M. Targeting of EGFR, VEGFR2, and Akt by Engineered Dual Drug Encapsulated Mesoporous Silica-Gold Nanoclusters Sensitizes Tamoxifen-Resistant Breast Cancer. Mol Pharm 2018; 15:2698-2713. [PMID: 29787277 DOI: 10.1021/acs.molpharmaceut.8b00218] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Tamoxifen administration enhanced overall disease-free survival and diminished mortality rates in cancer patients. However, patients with breast cancer often fail to respond for tamoxifen therapy due to the development of a drug-resistant phenotype. Functional analysis and molecular studies suggest that protein mutation and dysregulation of survival signaling molecules such as epidermal growth factor receptor, vascular endothelial growth factor receptor 2, and Akt contribute to tamoxifen resistance. Various strategies, including combinatorial therapies, show chemosensitize tamoxifen-resistant cancers. Based on chemotoxicity issues, researchers are actively investigating alternative therapeutic strategies. In the current study, we fabricate a mesoporous silica gold cluster nanodrug delivery system that displays exceptional tumor-targeting capability, thus promoting accretion of drug indices at the tumor site. We employ dual drugs, ZD6474, and epigallocatechin gallate (EGCG) that inhibit EGFR2, VEGFR2, and Akt signaling pathways since changes in these signaling pathways confer tamoxifen resistance in MCF 7 and T-47D cells. Mesoporous silica gold cluster nanodrug delivery of ZD6474 and EGCG sensitize tamoxifen-resistant cells to apoptosis. Western and immune-histochemical analyses confirmed the apoptotic inducing properties of the nanoformulation. Overall, results with these silica gold nanoclusters suggest that they may be a potent nanoformulation against chemoresistant cancers.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
22 |
21
|
Mahendran B, Acharya C, Dash R, Ghosh SK, Kundu SC. Repetitive DNA in tropical tasar silkworm Antheraea mylitta. Gene 2006; 370:51-7. [PMID: 16455212 DOI: 10.1016/j.gene.2005.11.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Revised: 10/06/2005] [Accepted: 11/04/2005] [Indexed: 11/16/2022]
Abstract
Antheraea mylitta is an endemic insect species producing the world famous tasar silk. Its populations occupying different ecological and geographical regions show certain degree of phenotypic variability for which they are known as 'eco-races'. In order to understand the genetic variability and phylogenetic relationship among the different eco-races we characterized a repetitive TaqI genomic DNA fragment as a genetic marker. The sequence analysis and Southern hybridization show the repetitive nature of TaqI DNA fragment, designated as A. mylitta TaqI family repeat, AmTFR. The PCR amplification of AmTFR reveals its presence in all the tested eco-races of tasar silkworm and some other silk producing insects. The AmTFR is evenly distributed in all 31 meiotic metaphase I chromosomes as observed by fluorescent in situ hybridization. The AmTFR based phylogenetic analysis of the eco-races is not congruent with the morphological variations and their geographical distribution.
Collapse
|
|
19 |
21 |
22
|
Kundu J, Mohapatra R, Kundu SC. Silk Fibroin/Sodium Carboxymethylcellulose Blended Films for Biotechnological Applications. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 22:519-39. [DOI: 10.1163/092050610x487864] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
|
13 |
21 |
23
|
Kar S, Talukdar S, Pal S, Nayak S, Paranjape P, Kundu SC. Silk gland fibroin from indian muga silkworm Antheraea assama as potential biomaterial. Tissue Eng Regen Med 2013. [DOI: 10.1007/s13770-012-0008-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
|
12 |
20 |
24
|
Kundu B, Brancato V, Oliveira JM, Correlo VM, Reis RL, Kundu SC. Silk fibroin promotes mineralization of gellan gum hydrogels. Int J Biol Macromol 2019; 153:1328-1334. [PMID: 31730995 DOI: 10.1016/j.ijbiomac.2019.10.269] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022]
Abstract
Mineralization is a natural process leading to the formation of mineralized tissue such as bone. The chief mineral component of bone is hydroxyapatite (HAp), which is deposited using an organic template like fibrillar Collagen I under physiological condition. Fibrous silk fibroin is structurally homologous to collagen and acts as nucleation site for HAp mineralization when immersed in simulated body fluid (SBF) or fetal bovine serum (FBS), therefore, considered as popular bone regeneration biomaterial. Hence, the mineralization behavior of silk fibroin self-assembled gellan gum enriched 3D hydrogels is investigated under conditions closer to physiological ones using SBF as well as FBS, and also in presence of cells (e.g. human adipose tissue-derived stem cells, ASCs). Incorporation of silk fibroin induces the mineralization in acellular spongy-like hydrogels in composition dependent manner, confirmed by SEM-EDS analysis. In contrast, ASCs mediated mineralization is found in all hydrogel compositions of 3 weeks post-culture under osteogenic conditions as demonstrated by gene expression profile and Alizarin Red S staining. This is perhaps due to the co-existence of fibroin and FBS together induce cell-mediated mineralization. The blending of fibroin offers cheap alternative strategy to improve or guide the repair of mineralized tissue using gellan gum-based biomaterials.
Collapse
|
Journal Article |
6 |
16 |
25
|
Konar S, Guha R, Kundu B, Nandi S, Ghosh TK, Kundu SC, Konar A, Hazra S. Silk fibroin hydrogel as physical barrier for prevention of post hernia adhesion. Hernia 2016; 21:125-137. [DOI: 10.1007/s10029-016-1484-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/16/2016] [Indexed: 12/25/2022]
|
|
9 |
16 |