McCarthy AA, Baker HM, Shewry SC, Patchett ML, Baker EN. Crystal structure of methylmalonyl-coenzyme A epimerase from P. shermanii: a novel enzymatic function on an ancient metal binding scaffold.
Structure 2001;
9:637-46. [PMID:
11470438 DOI:
10.1016/s0969-2126(01)00622-0]
[Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND
Methylmalonyl-CoA epimerase (MMCE) is an essential enzyme in the breakdown of odd-numbered fatty acids and of the amino acids valine, isoleucine, and methionine. Present in many bacteria and in animals, it catalyzes the conversion of (2R)-methylmalonyl-CoA to (2S)-methylmalonyl-CoA, the substrate for the B12-dependent enzyme, methylmalonyl-CoA mutase. Defects in this pathway can result in severe acidosis and cause damage to the central nervous system in humans.
RESULTS
The crystal structure of MMCE from Propionibacterium shermanii has been determined at 2.0 A resolution. The MMCE monomer is folded into two tandem betaalphabetabetabeta modules that pack edge-to-edge to generate an 8-stranded beta sheet. Two monomers then pack back-to-back to create a tightly associated dimer. In each monomer, the beta sheet curves around to create a deep cleft, in the floor of which His12, Gln65, His91, and Glu141 provide a binding site for a divalent metal ion, as shown by the binding of Co2+. Modeling 2-methylmalonate into the active site identifies two glutamate residues as the likely essential bases for the epimerization reaction.
CONCLUSIONS
The betaalphabetabetabeta modules of MMCE correspond with those found in several other proteins, including bleomycin resistance protein, glyoxalase I, and a family of extradiol dioxygenases. Differences in connectivity are consistent with the evolution of these very different proteins from a common precursor by mechanisms of gene duplication and domain swapping. The metal binding residues also align precisely, and striking structural similarities between MMCE and glyoxalase I suggest common mechanisms in their respective epimerization and isomerization reactions.
Collapse