1
|
Pedroso de Lima MC, Simões S, Pires P, Faneca H, Düzgüneş N. Cationic lipid-DNA complexes in gene delivery: from biophysics to biological applications. Adv Drug Deliv Rev 2001; 47:277-94. [PMID: 11311996 DOI: 10.1016/s0169-409x(01)00110-7] [Citation(s) in RCA: 244] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Great expectations from the application of gene therapy approaches to human disease have been impaired by the unsatisfactory clinical progress observed. Among others, the use of an efficient carrier for nucleic acid-based medicines is considered to be a determinant factor for the successful application of this promising therapeutic strategy. The drawbacks associated with the use of viral vectors, namely those related with safety problems, have prompted investigators to develop alternative methods for gene delivery, cationic lipid-based systems being the most representative. This review focuses on the various parameters that are considered to be crucial to optimize the use of cationic lipid-DNA complexes for gene therapy purposes. Particular emphasis is devoted to the analysis of the different stages involved in the transfection process, from the biophysical aspects underlying the formation of the complexes to the different biological barriers that need to be surpassed for gene expression to occur.
Collapse
|
Review |
24 |
244 |
2
|
Slepushkin VA, Simões S, Dazin P, Newman MS, Guo LS, Pedroso de Lima MC, Düzgüneş N. Sterically stabilized pH-sensitive liposomes. Intracellular delivery of aqueous contents and prolonged circulation in vivo. J Biol Chem 1997; 272:2382-8. [PMID: 8999949 DOI: 10.1074/jbc.272.4.2382] [Citation(s) in RCA: 188] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Liposomes that destabilize at mildly acidic pH are efficient tools for delivering water-soluble drugs into the cell cytoplasm. However, their use in vivo is limited because of their rapid uptake from circulation by the reticuloendothelial system. Lipid-anchored polyethylene glycol (PEG-PE) prolongs the circulation time of liposomes by steric stabilization. We have found that addition of PEG-PE to the membrane of pH-sensitive liposomes composed of cholesteryl hemisuccinate (CHEMS) and dioleoylphosphatidylethanolamine (DOPE) confers steric stability to these vesicles. This modification significantly decreases the pH-dependent release of a charged water-soluble fluorophore, calcein, from liposomes suspended in buffer or cell culture medium. However, the ability of such liposomes to release calcein intracellularly, measured by a novel flow cytometry technique involving dual fluorescence labeling, remains unaltered. As expected, the release of calcein from liposomes endocytosed by cells is inhibited upon pretreatment of the cells with NH4Cl, an inhibitor of endosome acidification. The unique properties of these liposomes were also demonstrated in vivo. The distribution kinetics of 111In-containing CHEMS/DOPE/PEG-PE liposomes injected intravenously into rats has pharmacokinetic parameters similar to control, non-pH-sensitive, sterically stabilized CHEMS/distearoylphosphatidylcholine/PEG-PE liposomes. In contrast, regular pH-sensitive liposomes lacking the PEG-PE component are cleared rapidly. Sterically stabilized pH-sensitive liposomes may therefore be useful for the intracellular delivery in vivo of highly negatively charged molecules such as genes, antisense oligonucleotides, and ribozymes for the treatment of various diseases.
Collapse
|
|
28 |
188 |
3
|
Simões S, Slepushkin V, Gaspar R, de Lima MC, Düzgüneş N. Gene delivery by negatively charged ternary complexes of DNA, cationic liposomes and transferrin or fusigenic peptides. Gene Ther 1998; 5:955-64. [PMID: 9813667 DOI: 10.1038/sj.gt.3300674] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Potential problems with the use of viral vectors for gene therapy necessitate the development of efficient nonviral vectors. The association of transferrin, or the pH-sensitive peptide GALA, with cationic liposomes composed of 1,2-dioleoyl-3-(trimethylammonium) propane and its equimolar mixture with dioleoylphosphatidylethanolamine, under conditions where the liposome/DNA complex is negatively charged, drastically increased luciferase expression from pCMVluc. The percentage of cells transfected, measured by beta-galactosidase expression, was also increased by about 10-fold. The zeta potential of the ternary complexes was lower than that of the liposome/DNA complexes. Transfection activity of positively charged complexes was also enhanced by association with transferrin, GALA or the influenza hemagglutinin N terminal peptide HA-2, but to a smaller extent compared with the negatively charged complexes. The enhancement of gene delivery by transferrin or GALA was not affected significantly by the presence of serum and did not cause significant cytotoxicity. Our results indicate that negatively charged ternary complexes of cationic liposomes, DNA and transferrin, or fusigenic peptides, can facilitate efficient transfection of cultured cells, and that they may alleviate the drawbacks of the use of highly positively charged complexes for gene delivery in vivo.
Collapse
|
|
27 |
148 |
4
|
Simões S, Slepushkin V, Pires P, Gaspar R, de Lima MP, Düzgüneş N. Mechanisms of gene transfer mediated by lipoplexes associated with targeting ligands or pH-sensitive peptides. Gene Ther 1999; 6:1798-807. [PMID: 10602375 DOI: 10.1038/sj.gt.3301015] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Association of a targeting ligand such as transferrin, or an endosome disrupting peptide such as GALA, with cationic liposome-DNA complexes ('lipoplexes') results in a significant enhancement of transfection of several cell types (Simões S et al, Gene Therapy 1998; 5: 955-964). Although these strategies can overcome some of the barriers to gene delivery by lipoplexes, the mechanisms by which they actually enhance tranfection is not known. In studies designed to establish the targeting specificity of transferrin, we found that apo-transferrin enhances transfection to the same extent as transferrin, indicating that internalization of the lipoplexes is mostly independent of transferrin receptors. These observations were reinforced by results obtained from competitive inhibition studies either by preincubating the cells with an excess of free ligand or with various 'receptor-blocking' lipoplexes. Transfection of cells in the presence of drugs that interfere with the endocytotic pathway provided additional insights into the mechanisms of gene delivery by transferrin- or GALA-lipoplexes. Our results indicate that transferrin-lipoplexes deliver transgenes by endocytosis primarily via a non-receptor-mediated mechanism, and that acidification of the endosomes is partially involved in this process.
Collapse
|
|
26 |
136 |
5
|
Pedroso de Lima MC, Neves S, Filipe A, Düzgüneş N, Simões S. Cationic liposomes for gene delivery: from biophysics to biological applications. Curr Med Chem 2003; 10:1221-31. [PMID: 12678796 DOI: 10.2174/0929867033457430] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The use of an efficient carrier for nucleic acid-based medicines is considered to be a determinant factor for the successful application of gene therapy. The drawbacks associated with the use of viral vectors, namely those related with safety problems, have prompted investigators to develop alternative methods for gene delivery, cationic lipid-based systems being the most representative. Despite extensive research in the last decade on the use of cationic liposomes as gene transfer vectors and the development of elegant strategies to enhance their biological activity, these systems are still far from being viable alternatives to the use of viral vectors in gene therapy. In this review considerations are made regarding the structure-activity relationships of cationic liposome/DNA complexes and the key formulation parameters influencing the features of lipoplexes are presented and discussed in terms of their effect on biological activity. Particular emphasis is given to the interaction of the lipoplexes with serum components as well as to novel strategies developed to circumvent difficulties that may emerge upon iv administration of the complexes. Finally, since the ability of the lipoplexes to be stored while preserving their transfection activity is a crucial issue for the repeated use of such carriers, approaches reported on the improvement of their physical stability are also reviewed.
Collapse
|
Review |
22 |
121 |
6
|
Simões S, Slepushkin V, Pires P, Gaspar R, Pedroso de Lima MC, Düzgüneş N. Human serum albumin enhances DNA transfection by lipoplexes and confers resistance to inhibition by serum. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1463:459-69. [PMID: 10675522 DOI: 10.1016/s0005-2736(99)00238-2] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cationic liposome-DNA complexes ('lipoplexes') are used as gene delivery vehicles and may overcome some of the limitations of viral vectors for gene therapy applications. The interaction of highly positively charged lipoplexes with biological macromolecules in blood and tissues is one of the drawbacks of this system. We examined whether coating cationic liposomes with human serum albumin (HSA) could generate complexes that maintained transfection activity. The association of HSA with liposomes composed of 1, 2-dioleoyl-3-(trimethylammonium) propane and dioleoylphosphatidylethanolamine, and subsequent complexation with the plasmid pCMVluc greatly increased luciferase expression in epithelial and lymphocytic cell lines above that obtained with plain lipoplexes. The percentage of cells transfected also increased by an order of magnitude. The zeta potential of the ternary complexes was lower than that of the lipoplexes. Transfection activity by HSA-lipoplexes was not inhibited by up to 30% serum. The combined use of HSA and a pH-sensitive peptide resulted in significant gene expression in human primary macrophages. HSA-lipoplexes mediated significantly higher gene expression than plain lipoplexes or naked DNA in the lungs and spleen of mice. Our results indicate that negatively charged HSA-lipoplexes can facilitate efficient transfection of cultured cells, and that they may overcome some of the problems associated with the use of highly positively charged complexes for gene delivery in vivo.
Collapse
|
|
25 |
119 |
7
|
Simões S, Slepushkin V, Düzgünes N, Pedroso de Lima MC. On the mechanisms of internalization and intracellular delivery mediated by pH-sensitive liposomes. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1515:23-37. [PMID: 11597349 DOI: 10.1016/s0005-2736(01)00389-3] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We investigated the molecular mechanisms by which pH-sensitive liposomes surpass the cytoplasmic and endosomal membranes to deliver their aqueous contents into the cytoplasm. Various liposome formulations were evaluated for their efficacy to mediate intracellular delivery of encapsulated material, including a novel sterically stabilized pH-sensitive formulation ((DOPE:CHEMS:DSPE-PEG(2000) (6:4:0.3)) that was previously developed in our laboratories. In an attempt to fully characterize the nature of liposome-cell interactions different approaches based on a dual-labeling fluorescence assay were used. Our results indicate that the efficacy of interaction of pH-sensitive liposomes, both plain and sterically stabilized, with cells is strongly determined by the inclusion of DOPE in their composition, independently of the type of the amphiphilic stabilizer used. In fact, DOPE-containing liposomes shown to be non-pH sensitive by biophysical assays, mediated cytoplasmic delivery of their contents as efficiently as well known pH-sensitive formulations (e.g. DOPE:CHEMS). However, among the different formulations studied, DOPE:CHEMS liposomes were those exhibiting the highest extent of cell association. Moreover, our results with cells pretreated with metabolic inhibitors or lysosomotropic agents clearly indicate that DOPE-containing liposomes are internalized essentially by endocytosis and that acidification of the endosomes is not the only mechanism involved in the destabilization of the liposomes inside the cell.
Collapse
|
|
24 |
108 |
8
|
Moreira C, Oliveira H, Pires LR, Simões S, Barbosa MA, Pêgo AP. Improving chitosan-mediated gene transfer by the introduction of intracellular buffering moieties into the chitosan backbone. Acta Biomater 2009; 5:2995-3006. [PMID: 19427930 DOI: 10.1016/j.actbio.2009.04.021] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 04/01/2009] [Accepted: 04/17/2009] [Indexed: 11/28/2022]
Abstract
Chitosan was functionalized with imidazole moieties (CHimi) with the aim of improving its buffering capacity and promoting the endosomal escape ability of chitosan-DNA complexes, ultimately increasing their transfection efficiency. 5.6%, 12.9% and 22.1% of the glucosamine residues of chitosan were substituted. Complexes with different molar ratios of primary amines to DNA phosphate anion (N/P) were prepared by a coacervation method. For an N/P>3, CHimi polymers are able to complex electrostatically with DNA and condense it into positively charged nanostructures (average size 260 nm and zeta potential +16 mV at pH 5.5). In the concentration range 2.5-100 microg ml(-1), the modified polymers had no cytotoxic effect on 293T cells. CHimi polymers with the highest degree of substitution were found to enhance beta-gal expression in 293T and HepG2 cells. Bafilomycin A1 inhibited transfection, indicating that the protonation of the imidazole groups in the endolysosome pathway favors the escape of the complexes from the endosomes, increasing the amount of transgene that can reach the cell nucleus.
Collapse
|
|
16 |
107 |
9
|
Pires P, Simões S, Nir S, Gaspar R, Düzgünes N, Pedroso de Lima MC. Interaction of cationic liposomes and their DNA complexes with monocytic leukemia cells. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1418:71-84. [PMID: 10209212 DOI: 10.1016/s0005-2736(99)00023-1] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cationic liposomes complexed with DNA have been used extensively as non-viral vectors for the intracellular delivery of reporter or therapeutic genes in culture and in vivo. We examined the relationship between the characteristics of the lipoplexes, their mode of interaction with monocytic THP-1 cells and their ability to transfect these cells. We determined the size and zeta potential of cationic liposomes (composed of 1,2-dioleoyl-3-(trimethylammonium) propane (DOTAP) and its mixtures with neutral lipids), and lipoplexes at different (+/-) charge ratios. As the (+/-) charge ratio of the lipoplexes decreased to (1/1), a significant reduction in zeta potential and an increase in size was observed. The increase in size resulted from fusion between liposomes promoted by DNA, as demonstrated by a lipid mixing assay, and from aggregation of the complexes. Interaction of liposomes and lipoplexes with THP-1 cells was assessed by monitoring lipid mixing ('fusion') as well as binding and cell association. While no lipid mixing was observed with the 1/2 (+/-) lipid/DNA complexes, lipoplexes with higher (+/-) charge ratios underwent significant fusion in conjunction with extensive cell binding. Liposome binding to cells was dependent on the positive charge of the liposomes, and their fusion could be modulated by the co-lipid. DOTAP/phosphatidylethanolamine (1:1) liposomes fused with THP-1 cells, unlike DOTAP/phosphatidylcholine (1:1) liposomes, although both liposome types bound to the cells to a similar extent. The use of inhibitors of endocytosis indicated that fusion of the cationic liposomes with cells occurred mainly at the plasma membrane level. The presence of serum increased the size of the cationic liposomes, but not that of the lipoplexes. Low concentrations of serum (3%) completely inhibited the fusion of cationic liposomes with cells, while inhibiting binding by only 20%. Our results suggest that binding of cationic liposomes and lipoplexes to cells is governed primarily by electrostatic interactions, whereas their fusion is regulated by the lipid composition and sterically favorable interactions with cell surface molecules. In addition our results indicate no correlation between fusion of the lipoplexes with the plasma membrane and the levels of transfection.
Collapse
|
|
26 |
104 |
10
|
Cardoso ALC, Simões S, de Almeida LP, Pelisek J, Culmsee C, Wagner E, Pedroso de Lima MC. siRNA delivery by a transferrin-associated lipid-based vector: a non-viral strategy to mediate gene silencing. J Gene Med 2007; 9:170-83. [PMID: 17351968 DOI: 10.1002/jgm.1006] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND RNA interference provides a powerful technology for specific gene silencing. Therapeutic applications of small interfering RNA (siRNA) however require efficient vehicles for stable complexation, protection, and extra- and intracellular delivery of these nucleic acids. Here, we evaluated the potential of transferrin (Tf)-associated liposomes for siRNA complexation and gene silencing. METHODS Cationic liposomes composed of DOTAP : Cholesterol associated with or without transferrin (Tf) were complexed with siRNA at different lipid/siRNA charge ratios. Complexation and protection of siRNA from enzymatic degradation was assessed with the PicoGreen intercalation assay and gel electrophoresis. Cellular internalization of these siRNA Tf-lipoplexes was detected by confocal microscopy. Luciferase assay, immunoblot and fluorescence-activated cell sorting (FACS) analysis were used to evaluate reporter gene silencing in Huh-7 hepatocarcinoma and U-373 glioma cells. c-Jun knockdown in HT-22 cells was evaluated by quantitative real-time polymerase chain reaction (RT-PCR). Cytotoxicity of the siRNA complexes was assessed by Alamar blue, lactate dehydrogenase and MTT assays. RESULTS Complexation of siRNA with the cationic liposomes in the presence of Tf results in the formation of stable particles and prevents serum-mediated degradation. Confocal microscopy showed fast cellular internalization of the Tf-lipoplexes via endocytosis. In the GFP glioma cells Tf-lipoplexes showed enhanced gene silencing at minimum toxicity in comparison to Tf-free lipoplexes. Targeting luciferase in the hepatocarcinoma cell line resulted in more than 70% reduction of luciferase activity, while in HT-22 cells 50% knockdown of endogenous c-Jun resulted in a significant protection from glutamate-mediated toxicity. CONCLUSIONS Cationic liposomes associated with Tf form stable siRNA lipoplexes with reduced toxicity and enhanced specific gene knockdown activity compared to conventional lipoplexes. Thus, such formulations may constitute efficient delivery systems for therapeutic siRNA applications.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
71 |
11
|
Faneca H, Simões S, de Lima MCP. Evaluation of lipid-based reagents to mediate intracellular gene delivery. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1567:23-33. [PMID: 12488034 DOI: 10.1016/s0005-2736(02)00545-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We characterized different cationic lipid-based gene delivery systems consisting of both liposomes and nonliposomal structures, in terms of their in vitro transfection activity, resistance to the presence of serum, protective effect against nuclease degradation and stability under different storage conditions. The effect of lipid/DNA charge ratio of the resulting complexes on these properties was also evaluated. Our results indicate that the highest levels of transfection activity were observed for complexes prepared from nonliposomal structures composed of FuGENE 6. However, their DNA protective effect was shown to be lower than that observed for cationic liposome formulations when prepared at the optimal (+/-) charge ratio. Our results suggest that lipoplexes are resistant to serum up to 30% when prepared at a 2:1 lipid/DNA charge ratio. However, when they were prepared at higher (+/-) charge ratios, they become sensitive to serum for even lower concentrations (10%). Replacement of dioleoyl-phosphatidylethanolamine (DOPE) by cholesterol enhanced the resistance of the complexes to the inhibitory effect of serum. This different biological activity in the presence of serum was attributed to different extents of binding of serum proteins to the complexes, as evaluated by the immunoblotting assay. Studies on the stability under storage show that lipoplexes maintain most of their biological activity when stored at -80 degrees C, following their fast freezing in liquid nitrogen.
Collapse
|
Evaluation Study |
23 |
66 |
12
|
Simões S, Slepushkin V, Pretzer E, Dazin P, Gaspar R, Pedroso de Lima MC, Düzgüneş N. Transfection of human macrophages by lipoplexes via the combined use of transferrin and pH-sensitive peptides. J Leukoc Biol 1999; 65:270-9. [PMID: 10088611 DOI: 10.1002/jlb.65.2.270] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The crucial function of macrophages in a variety of biological processes and pathologies render these cells important targets for gene therapeutic interventions. Commonly used synthetic gene delivery vectors have not been successful in transfecting these non-dividing cells. A combination strategy involving cationic liposomes to condense and carry DNA, transferrin to facilitate cellular uptake, and the pH-sensitive peptide GALA to promote endosome destabilization, resulted in significant expression of a luciferase gene. Transfection of macrophages was dependent on the degree of differentiation of the cells. The quaternary complexes of cationic liposomes, DNA, transferrin, and GALA exhibited a net negative charge, which may obviate a limitation of cationic synthetic vectors in vivo. The lack of cytotoxicity and the expected lack of immunogenicity of these complexes may render them useful for gene delivery to macrophages in vivo.
Collapse
|
|
26 |
63 |
13
|
de Lima MC, Simões S, Pires P, Gaspar R, Slepushkin V, Düzgüneş N. Gene delivery mediated by cationic liposomes: from biophysical aspects to enhancement of transfection. Mol Membr Biol 1999; 16:103-9. [PMID: 10332744 DOI: 10.1080/096876899294823] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Cationic liposomes complexed with DNA have been used extensively as non-viral vectors for the intracellular delivery of reporter or therapeutic genes in culture and in vivo. However, the relationship between the features of the lipid-DNA complexes ('lipoplexes') and their mode of interaction with cells, the efficiency of gene transfer and gene expression remain to be clarified. To gain insights into these aspects, the size and zeta potential of cationic liposomes (composed of 1,2-dioleoyl-3- (trimethylammonium) propane (DOTAP) and its mixture with phosphatidylethanolamine (PE)), and their complexes with DNA at different (+/-) charge ratios were determined. A lipid mixing assay was used to assess the interaction of liposomes and lipoplexes with monocytic leukaemia cells. The use of inhibitors of endocytosis indicated that fusion of the cationic liposomes with cells occurred mainly at the plasma membrane level. However, very limited transfection of these cells was achieved using the above complexes. It is possible that the topology of the cationic liposome-DNA complexes does not allow the entry of DNA into cells through a fusion process at the plasma membrane. In an attempt to enhance transfection mediated by lipoplexes composed of DOTAP and its equimolar mixture with dioleoylphosphatidylethanolamine (DOPE) two different strategies were explored: (i) association of a targeting ligand (transferrin) to the complexes to promote their internalization, presumably by receptor-mediated endocytosis; and (ii) association of synthetic fusogenic peptides (GALA or the influenza haemagglutinin N-terminal peptide HA-2) to the complexes to promote endosomal destabilization and release of the genetic material into the cytoplasm. These strategies were effective in enhancing transfection in a large variety of cells, including epithelial and lymphoid cell lines, as well as human macrophages, especially with the use of optimized lipid/DNA (+/-) charge ratios. Besides leading to high levels of transfection, the ternary complexes of cationic liposomes, DNA, and protein or peptide, have the advantages of being active in the presence of serum and being non-toxic. Moreover, such ternary complexes present a net negative charge and, thus, are likely to alleviate the problems associated with the use of highly positively charged complexes in vivo, such as avid complexation with serum proteins. Overall, the results indicate that these complexes, and their future derivatives, may constitute viable alternatives to viral vectors for gene delivery in vivo.
Collapse
|
|
26 |
60 |
14
|
Faneca H, Simões S, Pedroso de Lima MC. Association of albumin or protamine to lipoplexes: enhancement of transfection and resistance to serum. J Gene Med 2005; 6:681-92. [PMID: 15170739 DOI: 10.1002/jgm.550] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The successful application of gene therapy depends on the availability of carriers to efficiently deliver genetic material into target cells. Such efficacy is strongly related to key parameters including serum resistance and protection of DNA. METHODS The complexes were tested in terms of their biological activity, in the absence or presence of serum, by following transfection activity. Interaction with plasma proteins was evaluated by immunoblotting, while cytotoxicity was assessed by the Alamar Blue assay. Extent of DNA protection was determined both by using ethidium bromide intercalation and DNase I digestion assays. RESULTS Our results show that, depending on the charge ratio and on the lipid composition, albumin and protamine can be used (either individually or co-associated) to generate cationic liposome/DNA complexes fulfilling in vivo requirements, while exhibiting high levels of transfection activity. In the present work a novel cationic lipid was tested. It was demonstrated that 1-palmitoyl-2-oleoyl-sn-glycero-3-ethylphosphocholine (EPOPC):cholesterol (Chol) liposomes constitute a very promising carrier for gene delivery as illustrated by their enhancing effect on transfection, as compared with DOTAP-containing liposomes. Moreover, the biological activity of EPOPC-containing complexes is significantly improved upon association of albumin, even in the presence of 60% serum (namely for the 4/1 lipid/DNA charge ratio). Nevertheless, our studies also show that transfection activity mediated by DOTAP-containing complexes can be significantly enhanced upon pre-condensation of DNA with protamine. CONCLUSIONS Co-association of HSA and protamine to lipoplexes ensures a high degree of DNA protection and results in high levels of transfection activity even in the presence of serum.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
58 |
15
|
Silva WG, Metzger JP, Simões S, Simonetti C. Relief influence on the spatial distribution of the Atlantic Forest cover on the Ibiúna Plateau, SP. BRAZ J BIOL 2008; 67:403-11. [PMID: 18094822 DOI: 10.1590/s1519-69842007000300004] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Accepted: 05/08/2007] [Indexed: 11/22/2022] Open
Abstract
Several studies suggest that, on a large scale, relief conditions influence the Atlantic Forest cover. The aim of this work was to explore these relationships on a local scale, in Caucaia do Alto, on the Ibiúna Plateau. Within an area of about 78 km(2), the distribution of forest cover, divided into two successional stages, was associated with relief attribute data (slope, slope orientation and altitude). The mapping of the vegetation was based on the interpretation of stereoscopic pairs of aerial photographs, from April 2000, on a scale of 1:10,000, while the relief attributes were obtained by geoprocessing from digitalized topographic maps on a scale of 1:10,000. Statistical analyses, based on qui-square tests, revealed that there was a more extensive forest cover, irrespective of the successional stage, in steeper areas (>10 degrees) located at higher altitudes (>923 m), but no influence of the slope orientation. There was no sign of direct influence of relief on the forest cover through environmental gradients that might have contributed to the forest regeneration. Likewise, there was no evidence that these results could have been influenced by the distance from roads or urban areas or with respect to permanent preservation areas. Relief seems to influence the forest cover indirectly, since agricultural land use is preferably made in flatter and lower areas. These results suggest a general distribution pattern of the forest remnants, independent of the scale of study, on which relief indirectly has a strong influence, since it determines human occupation.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
56 |
16
|
da Cruz MT, Simões S, Pires PP, Nir S, de Lima MC. Kinetic analysis of the initial steps involved in lipoplex--cell interactions: effect of various factors that influence transfection activity. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1510:136-51. [PMID: 11342154 DOI: 10.1016/s0005-2736(00)00342-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We investigated the mode of interaction of lipoplexes (DOTAP:DOPE/DNA) with HeLa cells, focusing on the analysis of the initial steps involved in the process of gene delivery. We evaluated the effect of different factors, namely the stoichiometry of cationic lipids and DNA, the presence of serum in the cell culture medium, and the incorporation of the ligand transferrin into the lipoplexes, on the extent of binding, association and fusion (lipid mixing) of the lipoplexes with the cells. Parallel experiments were performed upon cell treatment with inhibitors of endocytosis. Our results indicate that a decrease of the net charge of the complexes (upon addition of DNA) generally leads to a decrease in the extent of binding, cell association and fusion, except for the neutral complexes. Association of transferrin to the lipoplexes resulted in a significant enhancement of the interaction processes referred to above, which correlates well with the promotion of transfection observed under the same conditions. Besides triggering internalization of the complexes, transferrin was also shown to mediate fusion with the endosomal membrane. The extent of fusion of this type of complexes was reduced upon their incubation with cells in the presence of serum, suggesting that serum components limit the transferrin fusogenic properties. Results were analyzed by using a theoretical model which allowed to estimate the kinetic parameters involved in lipoplex--cell interactions. The deduced fusion and endocytosis rate constants are discussed and compared with those obtained for other biological systems. From the kinetic studies we found a twofold enhancement of the fusion rate constant (f) for the ternary lipoplexes. We also concluded that HeLa cells yield a relatively low rate of endocytosis. Overall, our results estimate the relative contribution of fusion of lipoplexes with the plasma membrane, endocytosis and fusion with the endosomal membrane to their interactions with cells, this information being of crucial importance for the development of gene therapy strategies.
Collapse
|
|
24 |
56 |
17
|
da Cruz MTG, Cardoso ALC, de Almeida LP, Simões S, de Lima MCP. Tf-lipoplex-mediated NGF gene transfer to the CNS: neuronal protection and recovery in an excitotoxic model of brain injury. Gene Ther 2006; 12:1242-52. [PMID: 15815700 DOI: 10.1038/sj.gt.3302516] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The development of efficient systems for in vivo gene transfer to the central nervous system (CNS) may provide a useful therapeutic strategy for the alleviation of several neurological disorders. In this study, we evaluated the feasibility of nonviral gene therapy to the CNS mediated by cationic liposomes. We present evidence of the successful delivery and expression of both a reporter and a therapeutic gene in the rodent brain, as evaluated by immunohistochemical assays. Our results indicate that transferrin-associated cationic liposome/DNA complexes (Tf-lipoplexes) allow a significant enhancement of transfection activity as compared to plain complexes, and that 8/1 (+/-) Tf-lipoplexes constitute the best formulation to mediate in vivo gene transfer. We demonstrated that Tf-lipoplex-mediated nerve growth factor transgene expression attenuates the morphological damages of the kainic acid-induced lesion as assessed by 2,3,5-triphenyltetrazolium chloride (TTC) vital staining. These findings suggest the usefulness of these lipid-based vectors in mediating the delivery of therapeutic genes to the CNS.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
53 |
18
|
Simões SI, Delgado TC, Lopes RM, Jesus S, Ferreira AA, Morais JA, Cruz MEM, Corvo ML, Martins MBF. Developments in the rat adjuvant arthritis model and its use in therapeutic evaluation of novel non-invasive treatment by SOD in Transfersomes. J Control Release 2005; 103:419-34. [PMID: 15763624 DOI: 10.1016/j.jconrel.2004.12.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Revised: 12/03/2004] [Accepted: 12/13/2004] [Indexed: 01/22/2023]
Abstract
The aim of this study was firstly to refine a rat model of arthritis, the adjuvant arthritis (AA) model, by studying the time course of the disease, introducing new evaluation methods such as haematological and biochemical parameters in order to identify the main stages of the disease. An optimisation of treatment schedule and evaluation criteria was developed. This refinement provided novel non-invasive anti-inflammatory treatment of the AA with SOD by using mixed lipid vesicles specially developed for transdermal delivery, Transfersomes (Tfs), this being the second major aim. The time course of AA includes a first stage: 1 day after the disease induction, the induced paw volume more than doubled and the paw circumference increased by approx. 50%. Two weeks later, another stage occurred where the disease shifted from the local arthritis form towards polyarthritis: an additional increase of volume and circumference of the induced and non-induced paws, occurred. The animals also started to loose weight around day 14 after the disease induction. Radiographic observable lesions increased correspondingly. Treatment of animals, started at day 1 after induction, by epicutaneous application of SOD-Tfs showed that 1 mg SOD/kg body weight is more efficient than 0.66 mg SOD /kg body weight. As a positive control, SOD liposomes intravenously injected were used for comparison and confirmed the biological efficiency of epicutaneously applied SOD in Tfs. SOD solution and empty Tfs epicutaneously applied exerted no effect. In addition, epicutaneous application of SOD-Tfs used prophylactically was able to suppress the induced rat paw oedema. Radiographic images showed less joint lesions in SOD-Tfs treated animals in comparison with control and placebo treated rats. It was shown for the first time that SOD incorporated into Tfs and applied onto a skin area not necessarily close to the inflamed tissue is able to promote non-invasive treatment of induced arthritis.
Collapse
|
|
20 |
45 |
19
|
Simões SI, Tapadas JM, Marques CM, Cruz MEM, Martins MBF, Cevc G. Permeabilisation and solubilisation of soybean phosphatidylcholine bilayer vesicles, as membrane models, by polysorbate, Tween 80. Eur J Pharm Sci 2005; 26:307-17. [PMID: 16129587 DOI: 10.1016/j.ejps.2005.07.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2004] [Revised: 06/01/2005] [Accepted: 07/01/2005] [Indexed: 11/28/2022]
Abstract
To understand better the wide-spread pharmaceutical use of non-ionic surfactant Tween 80 (TW), the colloidal properties of the surfactant alone and in combinations with the common phospholipid, phosphatidylcholine (PC), were studied. Static and dynamic light scattering revealed that TW solubilises PC at TW/PC approximately 2.75/1 mol/mol and that TW micelle disintegration occurs on time-scale of 2.5 min, independent of amphipath concentration. This is up to nearly 300-times faster than the TW caused dissolution of PC containing unilamellar vesicles. The apparent dissolution time of TW/PC mixed aggregates, in contrast, decelerates from >700 min to <5 min upon increasing starting total amphipath concentration, with thermal activation energy > or =24 (< or =80) kJ mol(-1). The aggregate dissolution rate in highly concentrated TW/PC suspensions reflects the dissolved polysorbate-aggregate exchange rate (approximately 6.7 x 10(-3)s(-1)) rather than TW flip-flop rate across a bilayer (>0.2 min(-1)). PC solubilisation proceeds linearly with the square-root of time, and is kinetically governed by the speed of surfactant diffusion through the bulk (D approximately 2.8 x 10(-11)m2 s(-1)). Creation of small Tween-phosphatidylcholine mixed micelles is typically preceded by pre-solubilisation structures, first in the form of deformable, strongly fluctuating, bilayer vesicles and then of elongated, presumably thread-like, mixed micelles. TW/PC mixed micelles become smaller with growing surfactant/lipid molar ratio, whereas TW/PC mixed vesicles become more and more leaky with increasing surfactant concentration. Our results highlight the molecular and kinetic aspects of polysorbate-membrane interactions and provide a rationale for the popularity of Tween surfactants in pharmaceutical products: such surfactants can solubilise fatty molecules and bilayer membranes but need quite a long time for this, which is available in pharmaceutical preparations but normally not in vivo; this makes Tweens relatively efficient and safe. Furthermore, our data could help design better ultra-deformable mixed lipid-surfactant vesicles for the non-invasive transdermal drug delivery across the skin.
Collapse
|
|
20 |
45 |
20
|
Cardoso ALC, Costa P, de Almeida LP, Simões S, Plesnila N, Culmsee C, Wagner E, de Lima MCP. Tf-lipoplex-mediated c-Jun silencing improves neuronal survival following excitotoxic damage in vivo. J Control Release 2009; 142:392-403. [PMID: 19913061 DOI: 10.1016/j.jconrel.2009.11.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 10/07/2009] [Accepted: 11/03/2009] [Indexed: 10/20/2022]
Abstract
Excitotoxicity is one of the main features responsible for neuronal cell death after acute brain injury and in several neurodegenerative disorders, for which only few therapeutic options are currently available. In this work, RNA interference was employed to identify and validate a potential target for successful treatment of excitotoxic brain injury, the transcription factor c-Jun. The nuclear translocation of c-Jun and its upregulation are early events following glutamate-induced excitotoxic damage in primary neuronal cultures. We present evidence for the efficient knockdown of this transcription factor using a non-viral vector consisting of cationic liposomes associated to transferrin (Tf-lipoplexes). Tf-lipoplexes were able to deliver anti-c-Jun siRNAs to neuronal cells in culture, resulting in efficient silencing of c-Jun mRNA and protein and in a significant decrease of cell death following glutamate-induced damage or oxygen-glucose deprivation. This formulation also leads to a significant c-Jun knockdown in the mouse hippocampus in vivo, resulting in the attenuation of both neuronal death and inflammation following kainic acid-mediated lesion of this region. Furthermore, a strong reduction of seizure activity and cytokine production was observed in animals treated with anti-c-Jun siRNAs. These findings demonstrate the efficient delivery of therapeutic siRNAs to the brain by Tf-lipoplexes and validate c-Jun as a promising therapeutic target in neurodegenerative disorders involving excitotoxic lesions.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
34 |
21
|
Düzgüneş N, Pretzer E, Simões S, Slepushkin V, Konopka K, Flasher D, de Lima MC. Liposome-mediated delivery of antiviral agents to human immunodeficiency virus-infected cells. Mol Membr Biol 1999; 16:111-8. [PMID: 10332745 DOI: 10.1080/096876899294832] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Intracellular delivery of novel macromolecular drugs against human immunodeficiency virus type-1 (HIV-1), including antisense oligodeoxynucleotides, ribozymes and therapeutic genes, may be achieved by encapsulation in or association with certain types of liposomes. Liposomes may also protect these drugs against nucleases. Low-molecular-weight, charged antiviral drugs may also be delivered more efficiently via liposomes. Liposomes were targeted to HIV-1-infected cells via covalently coupled soluble CD4. An HIV-1 protease inhibitor encapsulated in conventional negatively charged multilamellar liposomes was about 10-fold more effective and had a lower EC90 than the free drug in inhibiting HIV-1 production in human monocyte-derived macrophages. The drug encapsulated in sterically stabilized liposomes was as effective as the free drug. The EC50 of the reverse transcriptase inhibitor 9-(2-phosphonylmethoxyethyl)adenine (PMEA) was reduced by an order of magnitude when delivered to HIV-1-infected macrophages in pH-sensitive liposomes. A 15-mer antisense oligodeoxynucleotide against the Rev response element was ineffective in free form against HIV-1 replication in macrophages, while delivery of the oligonucleotide in pH-sensitive liposomes inhibited virus replication. The oligodeoxynucleotide encapsulated in sterically stabilized pH-sensitive liposomes with prolonged circulation in vivo, which were recently developed in the laboratories of the authors, was also highly effective. A ribozyme complementary to HIV-1 5'-LTR delivered in pH-sensitive liposomes inhibited virus production by 90%, while the free ribozyme caused only a slight inhibition. Cationic liposome-mediated co-transfection of the HIV-regulated diphtheria toxin A fragment gene and a proviral HIV clone into HeLa cells completely inhibited virus production, while the frame-shifted mutant gene was ineffective. Co-transfection of the proviral genome and a gene encoding a Rev-binding aptamer into HeLa cells via transferrin-associated cationic liposomes inhibited virus production. These studies indicate that liposomes can be used to facilitate the intracellular delivery of certain anti-HIV agents and to enhance their therapeutic effects. These properties may be particularly advantageous in the development of novel macromolecular drugs, which may be necessary because of the emergence of virus strains resistant to the currently available drugs.
Collapse
|
Review |
26 |
33 |
22
|
Marto J, Ruivo E, Lucas SD, Gonçalves LM, Simões S, Gouveia LF, Felix R, Moreira R, Ribeiro HM, Almeida AJ. Starch nanocapsules containing a novel neutrophil elastase inhibitor with improved pharmaceutical performance. Eur J Pharm Biopharm 2018; 127:1-11. [PMID: 29409864 DOI: 10.1016/j.ejpb.2018.01.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/07/2018] [Accepted: 01/17/2018] [Indexed: 12/22/2022]
Abstract
Psoriasis and atopic dermatitis patients show an excessive amount of elastase in peripheral blood neutrophils due to an imbalance between this proteolytic enzyme and its endogenous inhibitors, the search for new human neutrophil elastase (HNE) inhibitors are required. The HNE is an attractive therapeutic target and inhibitors with new molecular architectures have been extensively investigated. In this context a promising novel synthetic human neutrophil elastase inhibitor (ER143) was associated to a starch-based nanoparticulate system (StNC) with improved pharmaceutical performance, using a quality by design approach to support product development and optimization. The resulting formulation was characterized in terms of and in vitro release, permeation and retention studies in newborn pig skin, using Franz diffusion cells revealing the StNC have the ability to control the drug release rate and contribute to a high skin retention and/or permeation profiles. The anti-inflammatory activity accessed in vivo using the croton oil-induced ear inflammation model in mice showed that erythema and edema were attenuated in 98% following local application. These observations suggest the association of ER143 to the StNC promotes a deeper skin penetration and retention, also confirming StNC as a potential topical delivery system.
Collapse
|
Journal Article |
7 |
32 |
23
|
Neves S, Faneca H, Bertin S, Konopka K, Düzgüneş N, Pierrefite-Carle V, Simões S, Pedroso de Lima MC. Transferrin lipoplex-mediated suicide gene therapy of oral squamous cell carcinoma in an immunocompetent murine model and mechanisms involved in the antitumoral response. Cancer Gene Ther 2008; 16:91-101. [DOI: 10.1038/cgt.2008.60] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
|
17 |
29 |
24
|
Düzgünes N, Simões S, Slepushkin V, Pretzer E, Rossi JJ, De Clercq E, Antao VP, Collins ML, de Lima MC. Enhanced inhibition of HIV-1 replication in macrophages by antisense oligonucleotides, ribozymes and acyclic nucleoside phosphonate analogs delivered in pH-sensitive liposomes. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2001; 20:515-23. [PMID: 11563068 DOI: 10.1081/ncn-100002327] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
An antisense oligodeoxynucleotide against the human immunodeficiency virus type 1 (HIV-1) Rev response element, a ribozyme complementary to the HIV-1 5'-LTR, and the reverse transcriptase inhibitors 9-(2-phosphonylmethoxyethyl) adenine (PMEA) and (R)-9-(2-phosphonylmethoxypropyl)-adenine (PMPA) inhibited virus replication in monocyte-derived macrophages more effectively when delivered in pH-sensitive liposomes compared to the free drugs.
Collapse
|
|
24 |
28 |
25
|
Moreira JN, Santos A, Moura V, Pedroso de Lima MC, Simões S. Non-viral lipid-based nanoparticles for targeted cancer systemic gene silencing. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2008; 8:2187-2204. [PMID: 18572631 DOI: 10.1166/jnn.2008.319] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
New molecular biology techniques have uncovered the hidden role of genes in cancer. Identification of activated oncogenes, as fundamental genetic differences relative to normal cells, has made it possible to consider such genes as targets for antitumor therapy, namely by applying gene silencing strategies. In this regard, antisense oligonucleotides or small interfering RNAs, constitute promising therapeutic tools. The widespread clinical application of such molecules as modulators of gene expression, is still dependent on several aspects that limit their bioavailability, including: enhanced biological stability, favourable pharmacokinetics, enhanced tumor cell uptake and, consequently, efficient targeted delivery. One of the most promising strategies to overcome the barriers faced by gene silencing molecules, upon systemic administration, involves the use of lipid-based nanoparticles. The first part of this review aims at providing the reader with the molecular mechanism of action of the most important gene silencing molecules used in anticancer therapy. The primary obstacle for translating gene silencing technology from an effective research tool into a feasible therapeutic strategy remains its efficient delivery to the targeted cell type in vivo. Therefore, an overview of different lipid-based strategies for nucleic acid delivery will be presented on the second part. As we learn more about the pharmacokinetics and pharmacodynamics of the carrier and/or of the gene silencing molecules, it will be possible to further improve the delivery strategy that likely in the future will lead to the ideal non-viral particle for targeted cancer systemic gene silencing.
Collapse
|
Review |
17 |
27 |