Nelson JA, Gotwalt PS, Reidy SP, Webber DM. Beyond U(crit): matching swimming performance tests to the physiological ecology of the animal, including a new fish 'drag strip'.
Comp Biochem Physiol A Mol Integr Physiol 2002;
133:289-302. [PMID:
12208301 DOI:
10.1016/s1095-6433(02)00161-7]
[Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Locomotor performance of animals is of considerable interest from management, physiological, ecological and evolutionary perspectives. Yet, despite the extensive commercial exploitation of fishes and interest in the health of various fish stocks, the relationships between performance capacity, natural selection, ecology and physiology are poorly known for fishes. One reason may be the technical challenges faced when trying to measure various locomotor capacities in aquatic species, but we will argue that the slow pace of developing new species-appropriate swim tests is also hindering progress. A technique developed for anadromous salmonids (the U(crit) procedure) has dominated the fish exercise physiology field and, while accounting for major advances in the field, has often been used arbitrarily. Here we propose criteria swimming tests should adhere to and report on several attempts to match swimming tests to the physiological ecology of the animal. Sprint performance measured with a laser diode/photocell timed 'drag strip' is a new method employing new technology and is reported on in some detail. A second new test involves accelerating water past the fish at a constant rate in a traditional swim tunnel/respirometer. These two performance tests were designed to better understand the biology of a bentho-pelagic marine fish, the Atlantic cod (Gadus morhua). Finally, we report on a modified incremental velocity test that was developed to better understand the biology of the blacknose dace (Rhinichthys atratulus), a Nearctic, lotic cyprinid.
Collapse