1
|
Boling M, Padua D, Marshall S, Guskiewicz K, Pyne S, Beutler A. Gender differences in the incidence and prevalence of patellofemoral pain syndrome. Scand J Med Sci Sports 2011; 20:725-30. [PMID: 19765240 DOI: 10.1111/j.1600-0838.2009.00996.x] [Citation(s) in RCA: 406] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The purpose of this investigation was to determine the association between gender and the prevalence and incidence of patellofemoral pain syndrome (PFPS). One thousand five hundred and twenty-five participants from the United States Naval Academy (USNA) were followed for up to 2.5 years for the development of PFPS. Physicians and certified athletic trainers documented the cases of PFPS. PFPS was defined as retropatellar pain during at least two of the following activities: ascending/descending stairs, hopping/jogging, prolonged sitting, kneeling, and squatting, negative findings on examination of knee ligament, menisci, bursa, and synovial plica, and pain on palpation of either the patellar facets or femoral condyles. Poisson and logistic regressions were performed to determine the association between gender and the incidence and prevalence of PFPS, respectively. The incidence rate for PFPS was 22/1000 person-years. Females were 2.23 times (95% CI: 1.19, 4.20) more likely to develop PFPS compared with males. While not statistically significant, the prevalence of PFPS at study enrollment tended to be higher in females (15%) than in males (12%) (P=0.09). Females at the USNA are significantly more likely to develop PFPS than males. Additionally, at the time of admission to the academy, the prevalence of PFPS was not significantly different between genders.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
406 |
2
|
Abstract
Sphingosine 1-phosphate is formed in cells in response to diverse stimuli, including growth factors, cytokines, G-protein-coupled receptor agonists, antigen, etc. Its production is catalysed by sphingosine kinase, while degradation is either via cleavage to produce palmitaldehyde and phosphoethanolamine or by dephosphorylation. In this review we discuss the most recent advances in our understanding of the role of the enzymes involved in metabolism of this lysolipid. Sphingosine 1-phosphate can also bind to members of the endothelial differentiation gene (EDG) G-protein-coupled receptor family [namely EDG1, EDG3, EDG5 (also known as H218 or AGR16), EDG6 and EDG8] to elicit biological responses. These receptors are coupled differentially via G(i), G(q), G(12/13) and Rho to multiple effector systems, including adenylate cyclase, phospholipases C and D, extracellular-signal-regulated kinase, c-Jun N-terminal kinase, p38 mitogen-activated protein kinase and non-receptor tyrosine kinases. These signalling pathways are linked to transcription factor activation, cytoskeletal proteins, adhesion molecule expression, caspase activities, etc. Therefore sphingosine 1-phosphate can affect diverse biological responses, including mitogenesis, differentiation, migration and apoptosis, via receptor-dependent mechanisms. Additionally, sphingosine 1-phosphate has been proposed to play an intracellular role, for example in Ca(2+) mobilization, activation of non-receptor tyrosine kinases, inhibition of caspases, etc. We review the evidence for both intracellular and extracellular actions, and extensively discuss future approaches that will ultimately resolve the question of dual action. Certainly, sphingosine 1-phosphate will prove to be unique if it elicits both extra- and intra-cellular actions. Finally, we review the evidence that implicates sphingosine 1-phosphate in pathophysiological disease states, such as cancer, angiogenesis and inflammation. Thus there is a need for the development of new therapeutic compounds, such as receptor antagonists. However, identification of the most suitable targets for drug intervention requires a full understanding of the signalling and action profile of this lysosphingolipid. This article describes where the research field is in relation to achieving this aim.
Collapse
|
research-article |
25 |
323 |
3
|
Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, McGrath JC, Catterall WA, Spedding M, Peters JA, Harmar AJ, Abul-Hasn N, Anderson CM, Anderson CMH, Araiksinen MS, Arita M, Arthofer E, Barker EL, Barratt C, Barnes NM, Bathgate R, Beart PM, Belelli D, Bennett AJ, Birdsall NJM, Boison D, Bonner TI, Brailsford L, Bröer S, Brown P, Calo G, Carter WG, Catterall WA, Chan SLF, Chao MV, Chiang N, Christopoulos A, Chun JJ, Cidlowski J, Clapham DE, Cockcroft S, Connor MA, Cox HM, Cuthbert A, Dautzenberg FM, Davenport AP, Dawson PA, Dent G, Dijksterhuis JP, Dollery CT, Dolphin AC, Donowitz M, Dubocovich ML, Eiden L, Eidne K, Evans BA, Fabbro D, Fahlke C, Farndale R, Fitzgerald GA, Fong TM, Fowler CJ, Fry JR, Funk CD, Futerman AH, Ganapathy V, Gaisnier B, Gershengorn MA, Goldin A, Goldman ID, Gundlach AL, Hagenbuch B, Hales TG, Hammond JR, Hamon M, Hancox JC, Hauger RL, Hay DL, Hobbs AJ, Hollenberg MD, Holliday ND, Hoyer D, Hynes NA, Inui KI, Ishii S, Jacobson KA, Jarvis GE, Jarvis MF, Jensen R, Jones CE, Jones RL, Kaibuchi K, Kanai Y, Kennedy C, Kerr ID, Khan AA, Klienz MJ, Kukkonen JP, Lapoint JY, Leurs R, et alAlexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, McGrath JC, Catterall WA, Spedding M, Peters JA, Harmar AJ, Abul-Hasn N, Anderson CM, Anderson CMH, Araiksinen MS, Arita M, Arthofer E, Barker EL, Barratt C, Barnes NM, Bathgate R, Beart PM, Belelli D, Bennett AJ, Birdsall NJM, Boison D, Bonner TI, Brailsford L, Bröer S, Brown P, Calo G, Carter WG, Catterall WA, Chan SLF, Chao MV, Chiang N, Christopoulos A, Chun JJ, Cidlowski J, Clapham DE, Cockcroft S, Connor MA, Cox HM, Cuthbert A, Dautzenberg FM, Davenport AP, Dawson PA, Dent G, Dijksterhuis JP, Dollery CT, Dolphin AC, Donowitz M, Dubocovich ML, Eiden L, Eidne K, Evans BA, Fabbro D, Fahlke C, Farndale R, Fitzgerald GA, Fong TM, Fowler CJ, Fry JR, Funk CD, Futerman AH, Ganapathy V, Gaisnier B, Gershengorn MA, Goldin A, Goldman ID, Gundlach AL, Hagenbuch B, Hales TG, Hammond JR, Hamon M, Hancox JC, Hauger RL, Hay DL, Hobbs AJ, Hollenberg MD, Holliday ND, Hoyer D, Hynes NA, Inui KI, Ishii S, Jacobson KA, Jarvis GE, Jarvis MF, Jensen R, Jones CE, Jones RL, Kaibuchi K, Kanai Y, Kennedy C, Kerr ID, Khan AA, Klienz MJ, Kukkonen JP, Lapoint JY, Leurs R, Lingueglia E, Lippiat J, Lolait SJ, Lummis SCR, Lynch JW, MacEwan D, Maguire JJ, Marshall IL, May JM, McArdle CA, McGrath JC, Michel MC, Millar NS, Miller LJ, Mitolo V, Monk PN, Moore PK, Moorhouse AJ, Mouillac B, Murphy PM, Neubig RR, Neumaier J, Niesler B, Obaidat A, Offermanns S, Ohlstein E, Panaro MA, Parsons S, Pwrtwee RG, Petersen J, Pin JP, Poyner DR, Prigent S, Prossnitz ER, Pyne NJ, Pyne S, Quigley JG, Ramachandran R, Richelson EL, Roberts RE, Roskoski R, Ross RA, Roth M, Rudnick G, Ryan RM, Said SI, Schild L, Sanger GJ, Scholich K, Schousboe A, Schulte G, Schulz S, Serhan CN, Sexton PM, Sibley DR, Siegel JM, Singh G, Sitsapesan R, Smart TG, Smith DM, Soga T, Stahl A, Stewart G, Stoddart LA, Summers RJ, Thorens B, Thwaites DT, Toll L, Traynor JR, Usdin TB, Vandenberg RJ, Villalon C, Vore M, Waldman SA, Ward DT, Willars GB, Wonnacott SJ, Wright E, Ye RD, Yonezawa A, Zimmermann M. The Concise Guide to PHARMACOLOGY 2013/14: overview. Br J Pharmacol 2014; 170:1449-58. [PMID: 24528237 DOI: 10.1111/bph.12444] [Show More Authors] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties from the IUPHAR database. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. This compilation of the major pharmacological targets is divided into seven areas of focus: G protein-coupled receptors, ligand-gated ion channels, ion channels, catalytic receptors, nuclear hormone receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors & Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and GRAC and provides a permanent, citable, point-in-time record that will survive database updates.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
149 |
4
|
Pyne S, Pyne N. Sphingosine 1-phosphate signalling via the endothelial differentiation gene family of G-protein-coupled receptors. Pharmacol Ther 2000; 88:115-31. [PMID: 11150592 DOI: 10.1016/s0163-7258(00)00084-x] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Sphingosine 1-phosphate (S1P) is stored in and released from platelets in response to cell activation. However, recent studies show that it is also released from a number of cell types, where it can function as a paracrine/autocrine signal to regulate cell proliferation, differentiation, survival, and motility. This review discusses the role of S1P in cellular regulation, both at the molecular level and in terms of health and disease. The main biochemical routes for S1P synthesis (sphingosine kinase) and degradation (S1P lyase and S1P phosphatase) are described. The major focus is on the ability of S1P to bind to a novel family of G-protein-coupled receptors (endothelial differentiation gene [EDG]-1, -3, -5, -6, and -8) to elicit signal transduction (via G(q)-, G(i)-, G(12)-, G(13)-, and Rho-dependent routes). Effector pathways regulated by S1P are divergent, such as extracellular signal-regulated kinase, p38 mitogen-activated protein kinase, phospholipases C and D, adenylyl cyclase, and focal adhesion kinase, and occur in multiple cell types, such as immune cells, neurones, smooth muscle, etc. This provides a molecular basis for the ability of S1P to act as a pleiotropic bioactive lipid with an important role in cellular regulation. We also give an account of the expanding role for S1P in health and disease; in particular, with regard to its role in atherosclerosis, angiogenesis, cancer, and inflammation. Finally, we describe future directions for S1P research and novel approaches whereby S1P signalling can be manipulated for therapeutic intervention in disease.
Collapse
|
Review |
25 |
140 |
5
|
Alderton F, Rakhit S, Kong KC, Palmer T, Sambi B, Pyne S, Pyne NJ. Tethering of the Platelet-derived Growth Factor β Receptor to G-protein-coupled Receptors. J Biol Chem 2001; 276:28578-85. [PMID: 11359779 DOI: 10.1074/jbc.m102771200] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Here we provide evidence to show that the platelet-derived growth factor beta receptor is tethered to endogenous G-protein-coupled receptor(s) in human embryonic kidney 293 cells. The tethered receptor complex provides a platform on which receptor tyrosine kinase and G-protein-coupled receptor signals can be integrated to produce more efficient stimulation of the p42/p44 mitogen-activated protein kinase pathway. This was based on several lines of evidence. First, we have shown that pertussis toxin (which uncouples G-protein-coupled receptors from inhibitory G-proteins) reduced the platelet-derived growth factor stimulation of p42/p44 mitogen-activated protein kinase. Second, transfection of cells with inhibitory G-protein alpha subunit increased the activation of p42/p44 mitogen-activated protein kinase by platelet-derived growth factor. Third, platelet-derived growth factor stimulated the tyrosine phosphorylation of the inhibitory G-protein alpha subunit, which was blocked by the platelet-derived growth factor kinase inhibitor, tyrphostin AG 1296. We have also shown that the platelet-derived growth factor beta receptor forms a tethered complex with Myc-tagged endothelial differentiation gene 1 (a G-protein-coupled receptor whose agonist is sphingosine 1-phosphate) in cells co-transfected with these receptors. This facilitates platelet-derived growth factor-stimulated tyrosine phosphorylation of the inhibitory G-protein alpha subunit and increases p42/p44 mitogen-activated protein kinase activation. In addition, we found that G-protein-coupled receptor kinase 2 and beta-arrestin I can associate with the platelet-derived growth factor beta receptor. These proteins play an important role in regulating endocytosis of G-protein-coupled receptor signal complexes, which is required for activation of p42/p44 mitogen-activated protein kinase. Thus, platelet-derived growth factor beta receptor signaling may be initiated by G-protein-coupled receptor kinase 2/beta-arrestin I that has been recruited to the platelet-derived growth factor beta receptor by its tethering to a G-protein-coupled receptor(s). These results provide a model that may account for the co-mitogenic effect of certain G-protein-coupled receptor agonists with platelet-derived growth factor on DNA synthesis.
Collapse
|
|
24 |
117 |
6
|
Pyne S, Chapman J, Steele L, Pyne NJ. Sphingomyelin-derived lipids differentially regulate the extracellular signal-regulated kinase 2 (ERK-2) and c-Jun N-terminal kinase (JNK) signal cascades in airway smooth muscle. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 237:819-26. [PMID: 8647130 DOI: 10.1111/j.1432-1033.1996.0819p.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In ASM cells platelet-derived growth factor stimulates rapid transient sphingosine phosphate formation, the activation of extracellular signal-regulated kinase 2 (ERK-2), the phosphorylation of p70(56K), and a ninefold increase in DNA synthesis. In contrast, this growth factor fails to activate c-Jun N-terminal kinase (JNK). Based upon these findings, we have tested whether the sphingomyelin-derived sphingolipids play a role in growth factor signalling by assessing their effect on ERK-2, JNK, and p70(56K). We demonstrate that sphingosine phosphate induces the activation of ERK-2, is ineffective against JNK, and fails to induce the phosphorylation of p70(56K). The latter may explain why it is a poor mitogen when added directly to ASM cells. In contrast, sphingosine and cell-permeable ceramides elicit the prominent tyrosyl phosphorylation and activation of JNK, are poor stimulators of ERK-2, and do not induce the phosphorylation of p70(56K). Therefore, the specificity of signalling through either ERK-2 or JNK cascades may be determined by the rapid agonist-dependent interconversion of these sphingomyelin-derived lipids. This may also provide a dynamic mechanism that enables growth factors and cytokines to elicit pleiotropic cell responses, such as proliferation and cell survival. For instance, both ceramide and sphingosine will elicit growth arrest via activation of JNK, whereas sphingosine phosphate will potentiate growth-factor-stimulated DNA synthesis, a consequence of the activation of ERK-2, Furthermore, under certain conditions, sphingosine and ceramide stimulate cAMP formation, a negative modulator of cell growth, whereas sphingosine phosphate depresses cAMP, thereby enhancing its own growth-promoting properties. From these studies, it is evident that sphingosine phosphate displays a signalling profile that is consistent with it mediating part of the action of platelet-derived growth factor.
Collapse
|
|
29 |
108 |
7
|
Rutherford C, Childs S, Ohotski J, McGlynn L, Riddick M, MacFarlane S, Tasker D, Pyne S, Pyne NJ, Edwards J, Palmer TM. Regulation of cell survival by sphingosine-1-phosphate receptor S1P1 via reciprocal ERK-dependent suppression of Bim and PI-3-kinase/protein kinase C-mediated upregulation of Mcl-1. Cell Death Dis 2013; 4:e927. [PMID: 24263101 PMCID: PMC3847331 DOI: 10.1038/cddis.2013.455] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 10/16/2013] [Accepted: 10/16/2013] [Indexed: 01/10/2023]
Abstract
Although the ability of bioactive lipid sphingosine-1-phosphate (S1P) to positively regulate anti-apoptotic/pro-survival responses by binding to S1P1 is well known, the molecular mechanisms remain unclear. Here we demonstrate that expression of S1P1 renders CCL39 lung fibroblasts resistant to apoptosis following growth factor withdrawal. Resistance to apoptosis was associated with attenuated accumulation of pro-apoptotic BH3-only protein Bim. However, although blockade of extracellular signal-regulated kinase (ERK) activation could reverse S1P1-mediated suppression of Bim accumulation, inhibition of caspase-3 cleavage was unaffected. Instead S1P1-mediated inhibition of caspase-3 cleavage was reversed by inhibition of phosphatidylinositol-3-kinase (PI3K) and protein kinase C (PKC), which had no effect on S1P1 regulation of Bim. However, S1P1 suppression of caspase-3 was associated with increased expression of anti-apoptotic protein Mcl-1, the expression of which was also reduced by inhibition of PI3K and PKC. A role for the induction of Mcl-1 in regulating endogenous S1P receptor-dependent pro-survival responses in human umbilical vein endothelial cells was confirmed using S1P receptor agonist FTY720-phosphate (FTY720P). FTY720P induced a transient accumulation of Mcl-1 that was associated with a delayed onset of caspase-3 cleavage following growth factor withdrawal, whereas Mcl-1 knockdown was sufficient to enhance caspase-3 cleavage even in the presence of FTY720P. Consistent with a pro-survival role of S1P1 in disease, analysis of tissue microarrays from ER(+) breast cancer patients revealed a significant correlation between S1P1 expression and tumour cell survival. In these tumours, S1P1 expression and cancer cell survival were correlated with increased activation of ERK, but not the PI3K/PKB pathway. In summary, pro-survival/anti-apoptotic signalling from S1P1 is intimately linked to its ability to promote the accumulation of pro-survival protein Mcl-1 and downregulation of pro-apoptotic BH3-only protein Bim via distinct signalling pathways. However, the functional importance of each pathway is dependent on the specific cellular context.
Collapse
|
research-article |
12 |
77 |
8
|
Rakhit S, Pyne S, Pyne NJ. Nerve growth factor stimulation of p42/p44 mitogen-activated protein kinase in PC12 cells: role of G(i/o), G protein-coupled receptor kinase 2, beta-arrestin I, and endocytic processing. Mol Pharmacol 2001; 60:63-70. [PMID: 11408601 DOI: 10.1124/mol.60.1.63] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this study, we have shown that nerve growth factor (NGF)-dependent activation of the p42/p44 mitogen-activated protein kinase (p42/p44 MAPK) pathway in PC12 cells can be partially blocked by pertussis toxin (which inactivates the G proteins G(i/o)). This suggests that the Trk A receptor may use a G protein-coupled receptor pathway to signal to p42/p44 MAPK. This was supported by data showing that the NGF-dependent activation of p42/p44 MAPK is potentiated in cells transfected with G protein-coupled receptor kinase 2 (GRK2) or beta-arrestin I. Moreover, GRK2 is constitutively bound with the Trk A receptor, whereas NGF stimulates the pertussis toxin-sensitive binding of beta-arrestin I to the TrkA receptor-GRK2 complex. Both GRK2 and beta-arrestin I are involved in clathrin-mediated endocytic signaling to p42/p44 MAPK. Indeed, inhibitors of clathrin-mediated endocytosis (e.g., monodansylcadaverine, concanavalin A, and hyperosmolar sucrose) reduced the NGF-dependent activation of p42/p44 MAPK. Finally, we have found that the G protein-coupled receptor-dependent component regulating p42/p44 MAPK is required for NGF-induced differentiation of PC12 cells. Thus, NGF-dependent inhibition of DNA synthesis was partially blocked by PD098059 (inhibitor of MAPK kinase-1 activation) and pertussis toxin. Our findings are the first to show that the Trk A receptor uses a classic G protein-coupled receptor-signaling pathway to promote differentiation of PC12 cells.
Collapse
|
|
24 |
69 |
9
|
Alderton F, Darroch P, Sambi B, McKie A, Ahmed IS, Pyne N, Pyne S. G-protein-coupled receptor stimulation of the p42/p44 mitogen-activated protein kinase pathway is attenuated by lipid phosphate phosphatases 1, 1a, and 2 in human embryonic kidney 293 cells. J Biol Chem 2001; 276:13452-60. [PMID: 11278307 DOI: 10.1074/jbc.m006582200] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sphingosine 1-phosphate, lysophosphatidic acid, and phosphatidic acid bind to G-protein-coupled receptors to stimulate intracellular signaling in mammalian cells. Lipid phosphate phosphatases (1, 1a, 2, and 3) are a group of enzymes that catalyze de-phosphorylation of these lipid agonists. It has been proposed that the lipid phosphate phosphatases exhibit ecto activity that may function to limit bioavailability of these lipid agonists at their receptors. In this study, we show that the stimulation of the p42/p44 mitogen-activated protein kinase pathway by sphingosine 1-phosphate, lysophosphatidic acid, and phosphatidic acid, all of which bind to G(i/o)-coupled receptors, is substantially reduced in human embyronic kidney 293 cells transfected with lipid phosphate phosphatases 1, 1a, and 2 but not 3. This was correlated with reduced basal intracellular phosphatidic acid and not ecto lipid phosphate phosphatase activity. These findings were supported by results showing that lipid phosphate phosphatases 1, 1a, and 2 also abrogate the stimulation of p42/p44 mitogen-activated protein kinase by thrombin, a peptide G(i/o)-coupled receptor agonist whose bioavailability at its receptor is not subject to regulation by the phosphatases. Furthermore, the lipid phosphate phosphatases have no effect on the stimulation of p42/p44 mitogen-activated protein kinase by other agents that do not use G-proteins to signal, such as serum factors and phorbol ester. Therefore, these findings show that the lipid phosphate phosphatases 1, 1a, and 2 may function to perturb G-protein-coupled receptor signaling per se rather than limiting bioavailability of lipid agonists at their respective receptors.
Collapse
|
|
24 |
66 |
10
|
Pyne S, Long JS, Ktistakis NT, Pyne NJ. Lipid phosphate phosphatases and lipid phosphate signalling. Biochem Soc Trans 2006; 33:1370-4. [PMID: 16246121 DOI: 10.1042/bst20051370] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mammalian LPPs (lipid phosphate phosphatases) are integral membrane proteins that belong to a superfamily of lipid phosphatases/phosphotransferases. They have broad substrate specificity in vitro, dephosphorylating PA (phosphatidic acid), S1P (sphingosine 1-phosphate), LPA (lysophosphatidic acid) etc. Their physiological role may include the attenuation of S1P- and LPA-stimulated signalling by virtue of an ecto-activity (i.e. dephosphorylation of extracellular S1P and LPA), thereby limiting the activation of LPA- and S1P-specific G-protein-coupled receptors at the cell surface. However, our recent work suggests that an intracellular action of LPP2 and LPP3 may account for the reduced agonist-stimulated p42/p44 mitogen-activated protein kinase activation of HEK-293 (human embryonic kidney 293) cells. This may involve a reduction in the basal levels of PA and S1P respectively and the presence of an early apoptotic phenotype under conditions of stress (serum deprivation). Additionally, we describe a model whereby LPP2, but not LPP3, may be functionally linked to the phospholipase D1-derived PA-dependent recruitment of sphingosine kinase 1 to the perinuclear compartment. We also consider the potential regulatory mechanisms for LPPs, which may involve oligomerization. Lastly, we highlight many aspects of the LPP biology that remain to be fully defined.
Collapse
|
Review |
19 |
59 |
11
|
Pyne NJ, Waters C, Moughal NA, Sambi BS, Pyne S. Receptor tyrosine kinase-GPCR signal complexes. Biochem Soc Trans 2004; 31:1220-5. [PMID: 14641030 DOI: 10.1042/bst0311220] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The formation of complexes between growth factor receptors and members of a family of G-protein-coupled receptors whose natural ligands are S1P (sphingosine 1-phosphate) and LPA (lysophosphatidic acid) represents a new signalling entity. This receptor complex allows for integrated signalling in response to growth factor and/or S1P/LPA and provides a mechanism for more efficient activation (due to integrated close-proximity signalling from both receptor classes) of the p42/p44 MAPK (mitogen-activated protein kinase) pathway. This article provides information on the molecular events at the interface between receptor tyrosine kinases and S1P/LPA receptors. Examples include the PDGF (platelet-derived growth factor)-induced tyrosine phosphorylation of G(i)alpha, released upon S1P(1) receptor activation, which is required for initiation of the p42/p44 MAPK pathway. Critical to this event is the formation of endocytic vesicles containing functionally active PDGFbeta receptor-S1P(1) receptor complexes, which are internalized and relocated with components of the p42/p44 MAPK pathway. We also report examples of cross-talk signal integration between the Trk A (tropomyosin receptor kinase A) receptor and the LPA(1) receptor in terms of the NGF (nerve growth factor)-dependent regulation of the p42/p44 MAPK pathway. NGF induces recruitment of the LPA(1) receptor to the nucleus (delivery might be Trk A-dependent), whereupon the LPA(1) receptor may govern gene expression via novel nuclear signalling processes.
Collapse
|
Review |
21 |
45 |
12
|
Pyne NJ, Tolan D, Pyne S. Bradykinin stimulates cAMP synthesis via mitogen-activated protein kinase-dependent regulation of cytosolic phospholipase A2 and prostaglandin E2 release in airway smooth muscle. Biochem J 1997; 328 ( Pt 2):689-94. [PMID: 9371732 PMCID: PMC1218972 DOI: 10.1042/bj3280689] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Bradykinin stimulates cAMP synthesis in cultured airway smooth muscle (ASM) cells. This occurs via a pathway that involves: (1) the protein kinase C (PKC)-dependent activation of mitogen-activated protein kinase (MAPK); (2) the MAPK-dependent phosphorylation and activation of cytosolic phospholipase A2 (cPLA2) and (3) the utilization of cPLA2-derived arachidonate by the cyclo-oxygenase pathway to produce prostaglandin E2 (PGE2). PGE2 is released and binds to cell surface receptors to stimulate intracellular cAMP synthesis. The signalling pathway was confirmed by the use of PD098059 [the inhibitor of MAPK kinase-1 (MEK-1) activation], AACOCF3 (an inhibitor of cPLA2) and indomethacin (an inhibitor of cyclo-oxygenase), which all reduced bradykinin-stimulated cAMP synthesis. Bradykinin also elicits the inhibition of approx. 60% of the total cAMP phosphodiesterase activity in the cell [Stevens, Pyne, Grady and Pyne (1994) Biochem. J. 297, 233-239]. This is likely to decrease the rate of cAMP degradation markedly and therefore to potentiate PGE2-stimulated cAMP synthesis. Acute treatment of ASM cells with PMA (a direct activator of PKC) also stimulated the MAPK-dependent phosphorylation of cPLA2. However, in contrast with bradykinin, PMA did not stimulate arachidonate release, suggesting that additional signals (e.g. Ca2+ ions) are required for phosphorylation by MAPK to activate cPLA2. PMA was also without effect on PGE2 release and cAMP synthesis. Evidence that PKC can also directly regulate adenylate cyclase was obtained by using cells pretreated with cholera toxin. Under these conditions, PMA stimulated cAMP synthesis independently of arachidonate metabolites. Furthermore the combined treatment of cells with PMA (to activate PKC) and PGE2 (to activate Gs) stimulated synergistic cAMP synthesis. This might be due to the presence of the type 2 adenylate cyclase, which is synergistically activated by Gs and PKC.
Collapse
|
research-article |
28 |
44 |
13
|
Pyne S, Pyne NJ. Bradykinin stimulates phospholipase D in primary cultures of guinea-pig tracheal smooth muscle. Biochem Pharmacol 1993; 45:593-603. [PMID: 8442759 DOI: 10.1016/0006-2952(93)90132-g] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Conditions were established for the primary culture of guinea-pig tracheal smooth muscle cells, the identity of which was confirmed by the presence of smooth muscle alpha-actin by western blotting. Cells were preincubated with [3H]palmitate which was incorporated, almost exclusively, into phosphatidylcholine. When these cells were stimulated by either bradykinin or phorbol 12-myristate 13-acetate (PMA), in the presence of butan-1-ol, the non-metabolizable product [3H]phosphatidylbutanol ([3H]PtdBut) accumulated by virtue of the phosphatidyltransferase activity of phospholipase D. The activation of phospholipase D by bradykinin was inhibited by 86 +/- 11% (N = 3 experiments) in the presence of the protein kinase C inhibitor, staurosporine (1 microM) and by 88 +/- 11% (N = 3 experiments) in cells that had been chronically treated with PMA to down-regulate their protein kinase C. PMA-stimulated phospholipase D was similarly affected (92 +/- 2% inhibited by staurosporine, 87 +/- 6% inhibited by protein kinase C down-regulation). Removal of extracellular Ca2+ markedly reduced the bradykinin-stimulated phospholipase D response (by 73 +/- 10%, N = 3 experiments) but had only a limited effect upon PMA-stimulated phospholipase D activity (by 23 +/- 6%, N = 3 experiments). [AIF4](-)-stimulation of the cells also resulted in the activation of phospholipase D, indicating the involvement of a G-protein. However, this was not Gi since pertussis-toxin pretreatment of the cells failed to abolish either bradykinin-stimulated inositol (1,4,5)trisphosphate formation or [3H]PtdBut accumulation. Western blotting revealed the presence of Gq/G11 which couples to the inositol lipid-directed phospholipase C. Indomethacin (10 microM) was without effect upon bradykinin-stimulated phospholipase D activity, suggesting that the bradykinin effects were not mediated indirectly by cyclooxygenase products. The role of phospholipase D activation in tracheal smooth muscle may be to, indirectly, produce diacylglycerol for the activation of protein kinase C which has been implicated in sustained contraction. However, the immediate product of phospholipase D, phosphatidate, has been proposed to have a number of second messenger roles and may itself, by an undefined mechanism, be involved in the sustained contraction of airway smooth muscle.
Collapse
|
|
32 |
43 |
14
|
Pyne S, Pyne NJ. The differential regulation of cyclic AMP by sphingomyelin-derived lipids and the modulation of sphingolipid-stimulated extracellular signal regulated kinase-2 in airway smooth muscle. Biochem J 1996; 315 ( Pt 3):917-23. [PMID: 8645177 PMCID: PMC1217294 DOI: 10.1042/bj3150917] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We report that sphingosine and short-chain ceramides activate adenylate cyclase and stimulate intracellular cyclic AMP formation in airway-smooth-muscle (ASM) cells. In each case, there is a conditional requirement for GTP-Gs alpha. Sphingosine utilizes a protein kinase C-dependent pathway to elicit activation of adenylate cyclase, whereas for short-chain ceramides the mechanism remains unidentified. In contrast, sphingosine phosphate inhibits Gs-stimulated cyclic AMP formation via a Gi-dependent mechanism. Therefore, the potential interconversion of sphingosine and sphingosine phosphate is a switch that can elicit reciprocal changes in cyclic AMP levels. This may have a significant impact upon the regulation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal specific kinase (JNK) by sphingolipids and may help to explain how growth factors that utilize these second messengers evoke pleiotropic responses such as proliferation and cell survival. In this context, short-chain ceramides are poor stimulators of ERKs in ASM cells, and sphingosine is inactive, whereas both sphingolipids are powerful activators of the JNK module. Activated JNK catalyses N-terminal phosphorylation of c-Jun, a kinase cascade that programmes growth arrest. Therefore, in blocking ceramide-stimulated ERK-2 activity, cyclic AMP may allow the ceramide-dependent activation of JNK to programme cells to opt out of the cell cycle. In contrast, sphingosine phosphate activates ERK-2, potentiates growth-factor-stimulated DNA synthesis and fails to activate JNK, indicating that its sequential formation from ceramide and sphingosine may commit cells to DNA synthesis. ERK-2 can be activated by both cyclic AMP-sensitive c-Raf-1 kinase-dependent and cyclic AMP-insensitive c-Raf-1 kinase-independent pathways in ASM cells. In this context, sphingosine phosphate activates ERK-2 exclusively via c-Raf-1 kinase. Sphingosine phosphate-stimulated ERK-2 activity is also abolished by pertussis toxin, indicating that c-Raf-1 kinase is activated via a Gi-dependent mechanism.
Collapse
|
research-article |
29 |
42 |
15
|
Rakhit S, Pyne S, Pyne NJ. The platelet-derived growth factor receptor stimulation of p42/p44 mitogen-activated protein kinase in airway smooth muscle involves a G-protein-mediated tyrosine phosphorylation of Gab1. Mol Pharmacol 2000; 58:413-20. [PMID: 10908310 DOI: 10.1124/mol.58.2.413] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Using cultured airway smooth muscle cells, we showed previously that the platelet-derived growth factor (PDGF) receptor uses the G-protein, G(i), to stimulate Grb-2-associated phosphoinositide 3-kinase (PI3K) activity. We also showed that this was an intermediate step in the activation of p42/p44 mitogen-activated protein kinase (p42/p44 MAPK) by PDGF. We now present two lines of evidence that provide further support for this model. First, we report that PDGF stimulates the G(i)-mediated tyrosine phosphorylation of the Grb-2 adaptor protein, Gab1. This phosphorylation appears to be necessary for association of PI3K1a with the Gab1-Grb-2 complex. Second, PI3K appears to promote the subsequent association of dynamin II (which is involved in clathrin-mediated endocytic processing) with the complex. Furthermore, inhibitors of PI3K and clathrin-mediated endocytosis reduced the PDGF-dependent activation of p42/p44 MAPK, suggesting a role for PI3K in the endocytic signaling process leading to stimulation of p42/p44 MAPK. Together, these results begin to define a common signaling model for certain growth factor receptors (e.g., PDGF, insulin, insulin-like growth factor-1, and fibroblast growth factor) which use G(i) to transmit signals to p42/p44 MAPK.
Collapse
|
|
25 |
37 |
16
|
Pyne NJ, Grady MW, Shehnaz D, Stevens PA, Pyne S, Rodger IW. Muscarinic blockade of beta-adrenoceptor-stimulated adenylyl cyclase: the role of stimulatory and inhibitory guanine-nucleotide binding regulatory proteins (Gs and Gi). Br J Pharmacol 1993; 107:881-7. [PMID: 1361873 PMCID: PMC1907775 DOI: 10.1111/j.1476-5381.1992.tb14541.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
1. The functional antagonism that exists between muscarinic and beta-adrenoceptor function in guinea-pig tracheal smooth muscle was investigated by assessing Gs and Gi regulated adenylyl cyclase activity in isolated membranes. 2. Membranes from guinea-pig tracheal smooth muscle contain both Gi alpha and Gs alpha as assessed by Western blots with anti-G-protein antibodies. 3. GppNHp, a non-hydrolysable analogue of guanosine 5'-triphosphate (GTP), was shown to stimulate adenylyl cyclase activity at high concentrations (10(-6)-10(-4) M). GppNHp also produced a concentration-dependent reduction in pertussis toxin-catalysed adenosine diphosphate (ADP)-ribosylation of Gi alpha. 4. Pretreatment of tracheal smooth muscle slices with methacholine (10(-6) M) provoked a blockade of isoprenaline plus GTP, GppNHp- and GTP-stimulated adenylyl cyclase. 5. Addition of methacholine to membranes did not trigger inhibition of GTP-stimulated adenylyl cyclase activity but did block the isoprenaline-mediated augmentation of GTP-stimulated adenylyl cyclase activity. 6. Pretreatment of tracheal smooth muscle with methacholine (10(-6) M) provoked a blockade of cholera toxin-catalysed NAD(+)-dependent ADP-ribosylation of Gs alpha. 7. Phorbol-12-myristate 13-acetate (PMA)-treatment of tracheal smooth muscle slices actually enhanced GppNHp-stimulated adenylyl cyclase activity in subsequently prepared membranes. 8. We suggest that methacholine in addition to inhibiting adenylyl cyclase via a Gi-dependent mechanism induces a functional inactivation of Gs activity. These results together may explain the functional antagonism that exists between increased muscarinic tone and the ability of beta-adrenoceptor agonists to provoke excitation-contraction uncoupling.
Collapse
|
Research Support, Non-U.S. Gov't |
32 |
36 |
17
|
Work LM, McPhaden AR, Pyne NJ, Pyne S, Wadsworth RM, Wainwright CL. Short-term local delivery of an inhibitor of Ras farnesyltransferase prevents neointima formation in vivo after porcine coronary balloon angioplasty. Circulation 2001; 104:1538-43. [PMID: 11571249 DOI: 10.1161/hc3801.095661] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Mitogenic stimuli present at the site of coronary arterial balloon injury contribute to the progression and development of a restenotic lesion, many signaling through a common pathway involving the small G protein p21(ras). Our aim was to demonstrate in biochemical studies that farnesyl protein transferase inhibitor III (FPTIII) is an inhibitor of p21(ras) processing and that when it is given locally in vivo at the site of coronary balloon injury in a porcine model, it can inhibit neointima formation. METHODS AND RESULTS FPTIII (1 to 25 micromol/L) concentration-dependently reduced p21(ras) levels in porcine coronary artery smooth muscle cell membranes. FPTIII also prevented p42/p44 MAPK activation and DNA synthesis in response to platelet-derived growth factor in these cells at a concentration of 25 micromol/L. Application of 25 micromol/L FPTIII locally for 15 minutes to balloon-injured porcine coronary arteries in vivo prevented neointima formation assessed at 4 weeks, reduced proteoglycan deposition, and inhibited adventitial hypertrophy. Coronary arteries from FPTIII-treated pigs had no deterioration in contraction or in endothelium-dependent relaxation. CONCLUSIONS The study demonstrates in the pig that short-term local delivery of inhibitors of p21(ras)-dependent mitogenic signal transduction prevents restenosis after balloon angioplasty.
Collapse
|
|
24 |
35 |
18
|
Tolan D, Conway AM, Pyne NJ, Pyne S. Sphingosine prevents diacylglycerol signaling to mitogen-activated protein kinase in airway smooth muscle. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:C928-36. [PMID: 9316414 DOI: 10.1152/ajpcell.1997.273.3.c928] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Because many agonists utilize diacylglycerol (DAG) to initiate nuclear transcriptional activity via protein kinase C (PKC), we have investigated whether sphingosine might counter DAG. Sphingosine inhibited PKC activity in an isolated airway smooth muscle cell lysate and prevented the activation of mitogen-activated protein kinase (MAPK) by platelet-derived growth factor, bradykinin, and phorbol 12-myristate 13-acetate in intact cells. MAPK activation in response to all the agonists involves PKC. The stimulation of [3H]palmitate-labeled cells with sphingosine, in the presence of butan-1-ol (0.3%, vol/vol), induced an increase in [3H]phosphatidate (PtdOH) but was without effect on [3H]DAG. [3H]PtdOH synthesis was inhibited, whereas [3H]DAG levels were increased in the presence of the DAG kinase inhibitor R-59949, indicating that sphingosine stimulates phospholipase C/DAG kinase. Recycling of DAG from PtdOH was prevented by a sphingosine-dependent inhibition of PtdOH phosphohydrolase-2 activity. In conclusion, the sphingosine-induced conversion of DAG to PtdOH may serve to optimize the effect of sphingosine on MAPK. This may account for the antiproliferative action of sphingosine.
Collapse
|
|
28 |
34 |
19
|
Pyne NJ, Moughal N, Stevens PA, Tolan D, Pyne S. Protein kinase C-dependent cyclic AMP formation in airway smooth muscle: the role of type II adenylate cyclase and the blockade of extracellular-signal-regulated kinase-2 (ERK-2) activation. Biochem J 1994; 304 ( Pt 2):611-6. [PMID: 7998998 PMCID: PMC1137535 DOI: 10.1042/bj3040611] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Bradykinin activates adenylate cyclase via a pathway that involves the 'up-stream' regulation of phospholipase D (PLD)-catalysed hydrolysis of phosphatidylcholine and activation of protein kinase C (PKC) in airway smooth muscle [Stevens, Pyne, Grady and Pyne (1994) Biochem. J. 297, 233-239]. Coincident signal (Gs alpha and PKC) amplification of the cyclic AMP response can be completely attenuated either by diverting PLD-derived phosphatidate or by inhibiting PKC. In this regard, the coincident signal detector type II adenylate cyclase is expressed as a 110/112 kDa polypeptide in these cells. PKC alpha is not involved in the activation of adenylate cyclase, since a B2-receptor antagonist (NPC567, 10 microM) blocked its bradykinin-stimulated translocation to the membrane and was without effect against both bradykinin-stimulated PLD activity and cyclic AMP formation. Cyclic AMP formation can also be activated by platelet-derived growth factor (PDGF), via a PKC-dependent pathway, although the magnitude of the response is less than that elicited by bradykinin. Nevertheless, these results indicate that multiple receptor types employ PKC to initiate cyclic AMP signals. PDGF (10 ng/ml) elicited the marked sustained activation of extracellular-signal-regulated kinase-2 (ERK-2), whereas bradykinin (1 microM) provoked only modest transient activation of ERK-2. Deoxyadenosine (0.1 mM), a P-site inhibitor of adenylate cyclase, blocked bradykinin-stimulated cyclic AMP formation and converted the activation of ERK-2 into a sustained response. Thus the PKC-stimulated cyclic AMP response can limit the activation of ERK-2 in response to bradykinin. These studies indicate that the integration of distinct signal pathways by adenylate cyclase can determine the kinetics of ERK activation, an enzyme that appears to be important for mitogenic progression.
Collapse
|
research-article |
31 |
30 |
20
|
Stevens PA, Pyne S, Grady M, Pyne NJ. Bradykinin-dependent activation of adenylate cyclase activity and cyclic AMP accumulation in tracheal smooth muscle occurs via protein kinase C-dependent and -independent pathways. Biochem J 1994; 297 ( Pt 1):233-9. [PMID: 8280104 PMCID: PMC1137815 DOI: 10.1042/bj2970233] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Treatment of cultured tracheal smooth-muscle cells (TSM) with phorbol 12-myristate 13-acetate (PMA) (100 nM) or bradykinin (100 nM) elicited enhanced basal and guanosine 5'-[beta gamma-imido]-triphosphate-stimulated adenylate cyclase activities in subsequently isolated membranes. Combined stimulation of cells was non-additive, indicating that both agents activate adenylate cyclase via similar routes. Both PMA (100 nM) and bradykinin (100 nM) allowed the alpha subunit of Gs to act as a more favourable substrate for its cholera-toxin-catalysed ADP-ribosylation in vitro. PMA was without effect on intracellular cyclic AMP in control cells. However, constitutive activation of Gs by treatment in vivo with cholera toxin (0.5 ng/ml, 18 h) sensitized the cells to PMA stimulation, resulting in a concentration-dependent increase in intracellular cyclic AMP accumulation (EC50 = 7.3 +/- 2.5 nM, n = 5). Bradykinin also elicited a concentration-dependent increase in intracellular cyclic AMP (EC50 = 63.3 +/- 14.5 nM, n = 3). Constitutive activation of Gs resulted in an increased maximal response (10-fold) and potency (EC50 = 6.17 +/- 1.6 nM, n = 3) to bradykinin. This response was not affected by the B2-receptor antagonist, NPC567 [which selectively blocks bradykinin-stimulated phospholipase C (PLC), with minor activity against phospholipase D (PLD) activity]. Des-Arg9-bradykinin (a B1-receptor agonist) was without activity. These results suggest that the receptor sub-type capable of activating PLD may also be stimulatory for cyclic AMP accumulation. Furthermore, pre-treatment of the cells with butan-l-ol (0.3%, v/v), which traps phosphatidate derived from PLD reactions, blocked the bradykinin-stimulated increase in intracellular cyclic AMP. These studies suggest that there may be a causal link between PLD-derived phosphatidate and the positive modulation of adenylate cyclase activity. In support of this, the concentration-dependence for bradykinin-stimulated adenylate cyclase activity was identical with that of bradykinin-stimulated phospholipase D activity (EC50 = 5 nM). Bradykinin, but not PMA, was also capable of eliciting the inhibition of cyclic AMP phosphodiesterase activity in TSM cells (EC50 > 100 nM) via an unidentified mechanism. These studies indicate that cross-regulation between the cyclic AMP pathway and phospholipid-derived second messengers in TSM cells does not occur as a consequence of PLC-catalysed PtdIns(4,5)P2 hydrolysis, but may involve, in part, PLD-catalysed phosphatidylcholine hydrolysis.
Collapse
|
research-article |
31 |
30 |
21
|
Pyne S, Pyne NJ. Differential effects of B2 receptor antagonists upon bradykinin-stimulated phospholipase C and D in guinea-pig cultured tracheal smooth muscle. Br J Pharmacol 1993; 110:477-81. [PMID: 8220910 PMCID: PMC2175983 DOI: 10.1111/j.1476-5381.1993.tb13835.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
1. Guinea-pig tracheal smooth muscle cells were isolated and maintained in culture for 14-21 days prior to the study of the effect of a selective bradykinin B1 agonist and B2 antagonists upon bradykinin-stimulated phospholipase C and D activities. 2. Bradykinin-stimulated phospholipase C activity was determined by mass measurement of inositol (1,4,5)trisphosphate (Ins(1,4,5)P3) in unlabelled cells, whereas phospholipase D activity was assayed by the accumulation of [3H]-phosphatidylbutanol ([3H]-PtdBut) in [3H]-palmitate-labelled cells, which were stimulated in the presence of butan-1-o1 (0.3%, v/v). 3. Bradykinin elicited the rapid and transient formation of Ins(1,4,5)P3, in a concentration-dependent manner (log EC50 = -7.55 +/- 0.1 M, N = 3). Bradykinin also rapidly activated the concentration-dependent (log EC50 = -8.3 +/- 0.4 M, n = 3) phospholipase D-catalysed accumulation of [3H]-PtdBut; the accumulation of [3H]-PtdBut was sustained. These effects were not inhibited by pretreatment of the cells with indomethacin (1 microM). 4. The bradykinin B1 agonist, desArg9-bradykinin (1 microM) was without effect upon phospholipase C or phospholipase D activity. Bradykinin-stimulated (10 nM, EC40) Ins(1,4,5)P3 formation was inhibited by B2 receptor antagonists, D-Arg-[Hyp3,D-Phe7]-bradykinin (NPC 567) and D-Arg-[Hyp3,Thi5,8,D-Phe7]-bradykinin (NPC 349), with log IC50 values of -6.3 +/- 0.5 M and -6.3 +/- 0.4 M, respectively. However, bradykinin-stimulated (10 nM, EC100) [3H]-PtdBut accumulation was poorly inhibited and with low potency by each B2 receptor antagonist and bradykinin-stimulated phospholipase D activity persisted at concentrations of antagonist that completely blocked bradykinin-stimulated Ins(1,4,5)P3 formation (30 microM). 5. These observations suggest that the activation of phospholipase C by bradykinin may be mediated through a bradykinin B2 receptor population, whereas bradykinin-stimulated phospholipase D may be activated via a distinct population of bradykinin receptors that do not appear to be either B1 or B2 receptor types, based upon pharmacological specificity. The mechanism of the activation of phospholipase D by bradykinin and the role of the putative B3 bradykinin receptor are discussed.
Collapse
|
research-article |
32 |
29 |
22
|
Mair KM, Robinson E, Kane KA, Pyne S, Brett RR, Pyne NJ, Kennedy S. Interaction between anandamide and sphingosine-1-phosphate in mediating vasorelaxation in rat coronary artery. Br J Pharmacol 2010; 161:176-92. [PMID: 20718749 PMCID: PMC2962826 DOI: 10.1111/j.1476-5381.2010.00878.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 04/07/2010] [Accepted: 04/13/2010] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Anandamide and sphingosine-1-phosphate (S1P) both regulate vascular tone in a variety of vessels. This study aimed to examine the mechanisms involved in the regulation of coronary vascular tone by anandamide and S1P, and to determine whether any functional interaction occurs between these receptor systems. EXPERIMENTAL APPROACH Mechanisms used by anandamide and S1P to regulate rat coronary artery (CA) reactivity were investigated using wire myography. Interactions between S1P and the cannabinoid (CB)(2) receptor were determined using human embryonic kidney 293 (HEK293) cells that stably over-express recombinant CB(2) receptor. KEY RESULTS Anandamide and S1P induced relaxation of the rat CA. CB(2) receptor antagonists attenuated anandamide-induced relaxation, while S1P-mediated relaxation was dependent on the vascular endothelium and S1P(3). Anandamide treatment resulted in an increase in the phosphorylation of sphingosine kinase-1 within the CA. Conversely, anandamide-mediated relaxation was attenuated by inhibition of sphingosine kinase. Moreover, S1P(3), specifically within the vascular endothelium, was required for anandamide-mediated vasorelaxation. In addition to this, S1P-mediated relaxation was also reduced by CB(2) receptor antagonists and sphingosine kinase inhibition. Further evidence that S1P functionally interacts with the CB(2) receptor was also observed in HEK293 cells over-expressing the CB(2) receptor. CONCLUSIONS AND IMPLICATIONS In the vascular endothelium of rat CA, anandamide induces relaxation via a mechanism requiring sphingosine kinase-1 and S1P/S1P(3). In addition, we report that S1P may exert some of its effects via a CB(2) receptor- and sphingosine kinase-dependent mechanism, where subsequently formed S1P may have privileged access to S1P(3) to induce vascular relaxation.
Collapse
|
research-article |
15 |
27 |
23
|
Tolan D, Conway AM, Rakhit S, Pyne N, Pyne S. Assessment of the extracellular and intracellular actions of sphingosine 1-phosphate by using the p42/p44 mitogen-activated protein kinase cascade as a model. Cell Signal 1999; 11:349-54. [PMID: 10376808 DOI: 10.1016/s0898-6568(99)00005-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We have investigated the extracellular and intracellular actions of sphingosine 1-phosphate (S1P) by using cultured airway smooth muscle cells. We have demonstrated that exogenous S1P elicited an activation of mitogen-activated protein kinase (p42/p44 MAPK) that was abolished by pertussis toxin (0.1 microg/mL, 24 h), which was used to inactivate Gi. The effect of exogenous S1P might therefore be attributed to an action at a putative Gi-coupled receptor. The regulation of the p42/p44 MAPK cascade by S1P was also shown to include a protein kinase C (PKC)-dependent intermediate step. Platelet-derived growth factor (PDGF) stimulates intracellular S1P formation and was therefore used to evaluate the intracellular action of S1P. This has previously been investigated by others using the sphingosine kinase inhibitors D,L-threo-dihydrosphingosine and N,N-dimethylsphingosine. We have demonstrated here that both inhibitors block the PDGF-dependent activation of p42/p44 MAPK. However, both are also PKC inhibitors, which might account for their effect because PDGF utilises PKC as an intermediate in the regulation of the p42/p44 MAPK cascade. Significantly, sphingosine, which is the substrate of sphingosine kinase and a PKC inhibitor, blocked the activation of p42/p44 MAPK by PDGF with an almost identical concentration dependence compared with D,L-threo-dihydrosphingosine and N,N-dimethylsphingosine. Therefore, the use of so-called sphingosine kinase inhibitors might lead to misleading interpretations because of their additional effect on PKC. Other approaches, such as oligodeoxynucleotide anti-sense against sphingosine kinase, are required to address the intracellular role of S1P.
Collapse
|
|
26 |
24 |
24
|
Pyne NJ, Freissmuth M, Pyne S. Phosphorylation of the recombinant spliced variants of the alpha-sub-unit of the stimulatory guanine-nucleotide binding regulatory protein (Gs) by the catalytic sub-unit of protein kinase A. Biochem Biophys Res Commun 1992; 186:1081-6. [PMID: 1497643 DOI: 10.1016/0006-291x(92)90857-h] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Both GS alpha-1 and GS alpha-4 were phosphorylated by the purified catalytic sub-unit of protein kinase A. Phosphate incorporation into 220 pmol and 190 pmol of GS alpha-4 and GS alpha-1 after a 1 hour incubation with kinase was 14 pmol and 10 pmol, respectively. These low levels of phosphorylation are due to the thermal lability of purified recombinant GS alpha. However, the phosphorylation was inhibited by guanine nucleotides (GDP-beta-S, GppNHp and GTP) and is, therefore, a specific event. We suggest that, as for GS alpha phosphorylation by protein kinase C (Pyne et al., 1992), the guanine nucleotide-free form of GS alpha is the most likely substrate. Guanine-nucleotides reduce the lifetime and, therefore availability for phosphorylation, of guanine-nucleotide free GS alpha. GS alpha phosphorylation by protein kinase A in vitro provides preliminary evidence that a similar phosphorylation of GS alpha may be an important regulatory event in cells.
Collapse
|
|
33 |
24 |
25
|
Conway A, Pyne NJ, Pyne S. Ceramide-dependent regulation of p42/p44 mitogen-activated protein kinase and c-Jun N-terminal-directed protein kinase in cultured airway smooth muscle cells. Cell Signal 2000; 12:737-43. [PMID: 11152959 DOI: 10.1016/s0898-6568(00)00119-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Previous studies have demonstrated that a number of biochemical actions of ceramide are mediated through protein kinase signalling pathways, such as p42/p44 mitogen-activated protein kinase (p42/p44 MAPK) and c-Jun N-terminal directed protein kinase (JNK). Ceramide-activated protein kinases, such as the kinase suppressor of Ras (KSR) and protein kinase Czeta (PKCzeta), are involved in the regulation of c-Raf, which promotes sequential activation of MEK-1 and p42/p44 MAPK in mammalian cells. However, in cultured airway smooth muscle (ASM) cells, neither KSR nor PKCzeta are involved in the C2-ceramide (C2-Cer)-dependent activation of this kinase cascade. Instead, we found that C2-Cer utilises a novel pathway involving tyrosine kinases, phosphoinositide 3-kinase (PI3K) and conventional PKC isoform(s). We also found that despite its ability to stimulate p42/p44 MAPK, C2-Cer inhibited platelet-derived growth factor (PDGF)-stimulated DNA synthesis. The possibility that growth arrest could be mediated by JNK was discounted on the basis that PDGF, as well as ceramide, stimulated JNK in these cells. Therefore, growth arrest in response to ceramide is mediated by an alternative mechanism.
Collapse
|
|
25 |
21 |