1
|
de Wet JR, Wood KV, DeLuca M, Helinski DR, Subramani S. Firefly luciferase gene: structure and expression in mammalian cells. Mol Cell Biol 1987; 7:725-37. [PMID: 3821727 PMCID: PMC365129 DOI: 10.1128/mcb.7.2.725-737.1987] [Citation(s) in RCA: 855] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The nucleotide sequence of the luciferase gene from the firefly Photinus pyralis was determined from the analysis of cDNA and genomic clones. The gene contains six introns, all less than 60 bases in length. The 5' end of the luciferase mRNA was determined by both S1 nuclease analysis and primer extension. Although the luciferase cDNA clone lacked the six N-terminal codons of the open reading frame, we were able to reconstruct the equivalent of a full-length cDNA using the genomic clone as a source of the missing 5' sequence. The full-length, intronless luciferase gene was inserted into mammalian expression vectors and introduced into monkey (CV-1) cells in which enzymatically active firefly luciferase was transiently expressed. In addition, cell lines stably expressing firefly luciferase were isolated. Deleting a portion of the 5'-untranslated region of the luciferase gene removed an upstream initiation (AUG) codon and resulted in a twofold increase in the level of luciferase expression. The ability of the full-length luciferase gene to activate cryptic or enhancerless promoters was also greatly reduced or eliminated by this 5' deletion. Assaying the expression of luciferase provides a rapid and inexpensive method for monitoring promoter activity. Depending on the instrumentation employed to detect luciferase activity, we estimate this assay to be from 30- to 1,000-fold more sensitive than assaying chloramphenicol acetyltransferase expression.
Collapse
|
research-article |
38 |
855 |
2
|
Gould SJ, Keller GA, Hosken N, Wilkinson J, Subramani S. A conserved tripeptide sorts proteins to peroxisomes. J Biophys Biochem Cytol 1989; 108:1657-64. [PMID: 2654139 PMCID: PMC2115556 DOI: 10.1083/jcb.108.5.1657] [Citation(s) in RCA: 854] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The firefly luciferase protein contains a peroxisomal targeting signal at its extreme COOH terminus (Gould et al., 1987). Site-directed mutagenesis of the luciferase gene reveals that this peroxisomal targeting signal consists of the COOH-terminal three amino acids of the protein, serine-lysine-leucine. When this tripeptide is appended to the COOH terminus of a cytosolic protein (chloramphenicol acetyltransferase), it is sufficient to direct the fusion protein into peroxisomes. Additional mutagenesis experiments reveal that only a limited number of conservative changes can be made in this tripeptide targeting signal without abolishing its activity. These results indicate that peroxisomal protein import, unlike other types of transmembrane translocation, is dependent upon a conserved amino acid sequence.
Collapse
|
research-article |
36 |
854 |
3
|
Swinkels BW, Gould SJ, Bodnar AG, Rachubinski RA, Subramani S. A novel, cleavable peroxisomal targeting signal at the amino-terminus of the rat 3-ketoacyl-CoA thiolase. EMBO J 1991; 10:3255-62. [PMID: 1680677 PMCID: PMC453050 DOI: 10.1002/j.1460-2075.1991.tb04889.x] [Citation(s) in RCA: 417] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Several peroxisomal proteins do not contain the previously identified tripeptide peroxisomal targeting signal (PTS) at their carboxy-termini. One such protein is the peroxisomal 3-ketoacyl CoA thiolase, of which two types exist in rat [Hijikata et al. (1990) J. Biol. Chem., 265, 4600-4606]. Both rat peroxisomal thiolases are synthesized as larger precursors with an amino-terminal prepiece of either 36 (type A) or 26 (type B) amino acids, that is cleaved upon translocation of the enzyme into the peroxisome. The prepieces are necessary for import of the thiolases into peroxisomes because expression of an altered cDNA encoding only the mature thiolase, which lacks any prepiece, results in synthesis of a cytosolic enzyme. When appended to an otherwise cytosolic passenger protein, the bacterial chloramphenicol acetyltransferase (CAT), the prepieces direct the fusion proteins into peroxisomes, demonstrating that they encode sufficient information to act as peroxisomal targeting signals. Deletion analysis of the thiolase B prepiece shows that the first 11 amino acids are sufficient for peroxisomal targeting. We conclude that we have identified a novel PTS that functions at amino-terminal or internal locations and is distinct from the C-terminal PTS. These results imply the existence of two different routes for targeting proteins into the peroxisomal matrix.
Collapse
|
|
34 |
417 |
4
|
Gould SG, Keller GA, Subramani S. Identification of a peroxisomal targeting signal at the carboxy terminus of firefly luciferase. J Cell Biol 1987; 105:2923-31. [PMID: 3480287 PMCID: PMC2114716 DOI: 10.1083/jcb.105.6.2923] [Citation(s) in RCA: 382] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Translocation of proteins across membranes of the endoplasmic reticulum, mitochondrion, and chloroplast has been shown to be mediated by targeting signals present in the transported proteins. To test whether the transport of proteins into peroxisomes is also mediated by a peptide targeting signal, we have studied the firefly luciferase gene that encodes a protein transported to peroxisomes in both insect and mammalian cells. We have identified two regions of luciferase which are necessary for transport of this protein into peroxisomes. We demonstrate that one of these, region II, represents a peroxisomal targeting signal because it is both necessary and sufficient for directing cytosolic proteins to peroxisomes. The signal is no more than twelve amino acids long and is located at the extreme carboxy-terminus of luciferase. The location of the targeting signal for translocation across the peroxisomal membrane therefore differs from the predominantly amino-terminal location of signals responsible for transport across the membranes of the endoplasmic reticulum, chloroplast, or mitochondrion.
Collapse
|
research-article |
38 |
382 |
5
|
Subramani S. Protein import into peroxisomes and biogenesis of the organelle. ANNUAL REVIEW OF CELL BIOLOGY 1993; 9:445-78. [PMID: 8280468 DOI: 10.1146/annurev.cb.09.110193.002305] [Citation(s) in RCA: 300] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
Review |
32 |
300 |
6
|
Distel B, Erdmann R, Gould SJ, Blobel G, Crane DI, Cregg JM, Dodt G, Fujiki Y, Goodman JM, Just WW, Kiel JA, Kunau WH, Lazarow PB, Mannaerts GP, Moser HW, Osumi T, Rachubinski RA, Roscher A, Subramani S, Tabak HF, Tsukamoto T, Valle D, van der Klei I, van Veldhoven PP, Veenhuis M. A unified nomenclature for peroxisome biogenesis factors. J Cell Biol 1996; 135:1-3. [PMID: 8858157 PMCID: PMC2121017 DOI: 10.1083/jcb.135.1.1] [Citation(s) in RCA: 279] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
research-article |
29 |
279 |
7
|
Gould SJ, Keller GA, Subramani S. Identification of peroxisomal targeting signals located at the carboxy terminus of four peroxisomal proteins. J Cell Biol 1988; 107:897-905. [PMID: 2901422 PMCID: PMC2115268 DOI: 10.1083/jcb.107.3.897] [Citation(s) in RCA: 265] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
As part of an effort to understand how proteins are imported into the peroxisome, we have sought to identify the peroxisomal targeting signals in four unrelated peroxisomal proteins: human catalase, rat hydratase:dehydrogenase, pig D-amino acid oxidase, and rat acyl-CoA oxidase. Using gene fusion experiments, we have identified a region of each protein that can direct heterologous proteins to peroxisomes. In each case, the peroxisomal targeting signal is contained at or near the carboxy terminus of the protein. For catalase, the peroxisomal targeting signal is located within the COOH-terminal 27 amino acids of the protein. For hydratase:dehydrogenase, D-amino acid oxidase, and acyl-CoA oxidase, the targeting signals are located within the carboxy-terminal 15, 14, and 15 amino acids, respectively. A tripeptide of the sequence Ser-Lys/His-Leu is present in each of these targeting signals as well as in the peroxisomal targeting signal identified in firefly luciferase (Gould, S.J., G.-A. Keller, and S. Subramani. 1987. J. Cell Biol. 105:2923-2931). When the peroxisomal targeting signal of the hydratase:dehydrogenase is mutated so that the Ser-Lys-Leu tripeptide is converted to Ser-Asn-Leu, it can no longer direct proteins to peroxisomes. We suggest that this tripeptide is an essential element of at least one class of peroxisomal targeting signals.
Collapse
|
research-article |
37 |
265 |
8
|
Zijlstra M, Li E, Sajjadi F, Subramani S, Jaenisch R. Germ-line transmission of a disrupted beta 2-microglobulin gene produced by homologous recombination in embryonic stem cells. Nature 1989; 342:435-8. [PMID: 2685607 DOI: 10.1038/342435a0] [Citation(s) in RCA: 264] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Major histocompatibility complex (MHC) class I molecules are integral membrane proteins present on virtually all vertebrate cells and consist of a heterodimer between the highly polymorphic alpha-chain and the beta 2-microglobulin (beta 2-m) protein of relative molecular mass 12,000 (ref. 1). These cell-surface molecules play a pivotal part in the recognition of antigens, the cytotoxic response of T cells, and the induction of self tolerance. It is possible, however, that the function of MHC class I molecules is not restricted to the immune system, but extends to a wide variety of biological reactions including cell-cell interactions. For example, MHC class I molecules seem to be associated with various cell-surface proteins, including the receptors for insulin, epidermal growth factor, luteinizing hormone and the beta-adrenergic receptor. In mice, class I molecules are secreted in the urine and act as highly specific olfactory cues which influence mating preference. The beta 2-m protein has also been identified as the smaller component of the Fc receptor in neonatal intestinal cells, and it has been suggested that the protein induces collagenase in fibroblasts. Cells lacking beta 2-m are deficient in the expression of MHC class I molecules, indicating that the association with beta 2-m is crucial for the transport of MHC class I molecules to the cell surface. The most direct means of unravelling the many biological functions of beta 2-m is to create a mutant mouse with a defective beta 2-m gene. We have now used the technique of homologous recombination to disrupt the beta 2-m gene. We report here that introduction of a targeting vector into embryonic stem cells resulted in beta 2-m gene disruption with high frequency. Chimaeric mice derived from blastocysts injected with mutant embryonic stem cell clones transmit the mutant allele to their offspring.
Collapse
|
|
36 |
264 |
9
|
Fraley R, Subramani S, Berg P, Papahadjopoulos D. Introduction of liposome-encapsulated SV40 DNA into cells. J Biol Chem 1980. [DOI: 10.1016/s0021-9258(19)70482-7] [Citation(s) in RCA: 257] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
|
45 |
257 |
10
|
Subramani S. Components involved in peroxisome import, biogenesis, proliferation, turnover, and movement. Physiol Rev 1998; 78:171-88. [PMID: 9457172 DOI: 10.1152/physrev.1998.78.1.171] [Citation(s) in RCA: 240] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the decade that has elapsed since the discovery of the first peroxisomal targeting signal (PTS), considerable information has been obtained regarding the mechanism of protein import into peroxisomes. The PTSs responsible for the import of matrix and membrane proteins to peroxisomes, the receptors for several of these PTSs, and docking proteins for the PTS1 and PTS2 receptors are known. Many peroxins involved in peroxisomal protein import and biogenesis have been characterized genetically and biochemically. These studies have revealed important new insights regarding the mechanism of protein translocation across the peroxisomal membrane, the conservation of PEX genes through evolution, the role of peroxins in fatal human peroxisomal disorders, and the biogenesis of the organelle. It is clear that peroxisomal protein import and biogenesis have many features unique to this organelle alone. More recent studies on peroxisome degradation, division, and movement highlight newer aspects of the biology of this organelle that promise to be just as exciting and interesting as import and biogenesis.
Collapse
|
Review |
27 |
240 |
11
|
Abstract
The unique properties of firefly luciferase and the cloning of the gene for this enzyme have spawned a number of novel applications of this protein. We summarize a few of these applications including its use as a reporter gene, as a model for the study of protein import into peroxisomes, and as a component of a heterologous gene expression system.
Collapse
|
Review |
37 |
236 |
12
|
Birkenbihl RP, Subramani S. Cloning and characterization of rad21 an essential gene of Schizosaccharomyces pombe involved in DNA double-strand-break repair. Nucleic Acids Res 1992; 20:6605-11. [PMID: 1480481 PMCID: PMC334577 DOI: 10.1093/nar/20.24.6605] [Citation(s) in RCA: 204] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Analysis of the Schizosaccharomyces pombe chromosomes by pulsed field gel electrophoresis showed that the fission yeast has a very efficient DNA double-strand-break (dsb) repair system, which properly restores the three chromosomes after they are degraded by gamma-irradiation. The radiation-sensitive mutant rad21-45 is deficient in this repair pathway but is capable of cell-cycle arrest in G2 following DNA damage. We cloned the rad21 gene by complementing the radiation sensitivity of the rad21-45 mutant. The plasmid-borne gene completely reestablished the DNA dsb repair pathway. The rad21 gene was localized to chromosome III by hybridization. The transcript is 2.5 kb long and expressed at a moderate level. The 1884-bp open reading frame encodes a 628 amino acid, very acidic peptide with a calculated molecular mass of 67,854 D. The rad21 gene shows no significant homology to other known nucleotide or peptide sequences. The inability of the mutant to perform efficient DNA repair is caused by a single base substitution, which changes wild-type isoleucine67 into threonine in the mutant. Deletion of the genomic rad21 gene showed that it is essential for mitotic growth of S.pombe.
Collapse
|
research-article |
33 |
204 |
13
|
Abstract
By virtue of their synthesis in the cytoplasm, proteins destined for import into peroxisomes are obliged to traverse the single membrane of this organelle. Because the targeting signal for most peroxisomal matrix proteins is a carboxy-terminal tripeptide sequence (SKL or its variants), these proteins must remain import competent until their translation is complete. We sought to determine whether stably folded proteins were substrates for peroxisomal import. Prefolded proteins stabilized with disulfide bonds and chemical cross-linkers were shown to be substrates for peroxisomal import, as were mature folded and disulfide-bonded IgG molecules containing the peroxisomal targeting signal. In addition, colloidal gold particles conjugated to proteins bearing the peroxisomal targeting signal were translocated into the peroxisomal matrix. These results support the concept that proteins may fold in the mammalian cytosol, before their import into the peroxisome, and that protein unfolding is not a prerequisite for peroxisomal import.
Collapse
|
research-article |
30 |
203 |
14
|
Abstract
This review summarizes the progress made in our understanding of peroxisome biogenesis in the last few years, during which the functional roles of many of the 23 peroxins (proteins involved in peroxisomal protein import and peroxisome biogenesis) have become clearer. Previous reviews in the field have focussed on the metabolic functions of peroxisomes, aspects of import/biogenesis the role of peroxins in human disease, and involvement of the endoplasmic reticulum in peroxisome membrane biogenesis as well as the degradation of this organelle. This review refers to some of the earlier work for the sake of introduction and continuity but deals primarily with the more recent progress. The principal areas of progress are the identification of new peroxins, definition of protein-protein interactions among peroxins leading to the recognition of complexes involved in peroxisomal protein import, insight into the biogenesis of peroxisomal membrane proteins, and, of most importance, the elucidation of the role of many conserved peroxins in human disease. Given the rapid progress in the field, this review also highlights some of the unanswered questions that remain to be tackled.
Collapse
|
Review |
24 |
201 |
15
|
McCollum D, Monosov E, Subramani S. The pas8 mutant of Pichia pastoris exhibits the peroxisomal protein import deficiencies of Zellweger syndrome cells--the PAS8 protein binds to the COOH-terminal tripeptide peroxisomal targeting signal, and is a member of the TPR protein family. J Cell Biol 1993; 121:761-74. [PMID: 8098333 PMCID: PMC2119792 DOI: 10.1083/jcb.121.4.761] [Citation(s) in RCA: 196] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We previously described the isolation of mutants of the yeast Pichia pastoris that are deficient in peroxisome assembly (pas mutants). We describe the characterization of one of these mutants, pas8, and the cloning of the PAS8 gene. The pas8 mutant is deficient for growth, but not for division or segregation of peroxisomes, or for induction of peroxisomal proteins. Two distinct peroxisomal targeting signals, PTS1 and PTS2, have been identified that are sufficient to direct proteins to the peroxisomal matrix. We show that the pas8 mutant is deficient in the import of proteins with the PTS1, but not the PTS2, targeting signal. This is the same import deficiency as that found in cells from patients with the lethal human peroxisomal disorder Zellweger syndrome. Cloning and sequencing of the PAS8 gene reveals that it is a novel member of the tetratricopeptide repeat gene family. Antibodies raised against bacterially expressed PAS8 are used to show that PAS8 is a peroxisomal, membrane-associated protein. Also, we have found that in vitro translated PAS8 protein is capable of binding the PTS1 targeting signal specifically, raising the possibility that PAS8 is a PTS1 receptor.
Collapse
|
research-article |
32 |
196 |
16
|
Gould SJ, Keller GA, Schneider M, Howell SH, Garrard LJ, Goodman JM, Distel B, Tabak H, Subramani S. Peroxisomal protein import is conserved between yeast, plants, insects and mammals. EMBO J 1990; 9:85-90. [PMID: 2104803 PMCID: PMC551633 DOI: 10.1002/j.1460-2075.1990.tb08083.x] [Citation(s) in RCA: 192] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We have previously demonstrated that firefly luciferase can be imported into peroxisomes of both insect and mammalian cells. To determine whether the process of protein transport into the peroxisome is functionally similar in more widely divergent eukaryotes, the cDNA encoding firefly luciferase was expressed in both yeast and plant cells. Luciferase was translocated into peroxisomes in each type of organism. Experiments were also performed to determine whether a yeast peroxisomal protein could be transported to peroxisomes in mammalian cells. We observed that a C-terminal segment of the yeast (Candida boidinii) peroxisomal protein PMP20 could act as a peroxisomal targeting signal in mammalian cells. These results suggest that at least one mechanism of protein translocation into peroxisomes has been conserved throughout eukaryotic evolution.
Collapse
|
|
35 |
192 |
17
|
Dammai V, Subramani S. The human peroxisomal targeting signal receptor, Pex5p, is translocated into the peroxisomal matrix and recycled to the cytosol. Cell 2001; 105:187-96. [PMID: 11336669 DOI: 10.1016/s0092-8674(01)00310-5] [Citation(s) in RCA: 190] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Peroxisomal targeting signals (PTSs) are recognized by predominantly cytosolic receptors, Pex5p and Pex7p. The fate of these PTS receptors following their interactions on the peroxisomal membrane with components of docking and putative translocation complexes is unknown. Using both novel and multiple experimental approaches, we show that human Pex5p does not just bind cargo and deliver it to the peroxisome membrane, but participates in multiple rounds of entry into the peroxisome matrix and export to the cytosol independent of the PTS2 import pathway. This unusual shuttling mechanism for the PTS1 receptor distinguishes protein import into peroxisomes from that into most other organelles, with the exception of the nucleus.
Collapse
|
|
24 |
190 |
18
|
Sakai Y, Koller A, Rangell LK, Keller GA, Subramani S. Peroxisome degradation by microautophagy in Pichia pastoris: identification of specific steps and morphological intermediates. J Cell Biol 1998; 141:625-36. [PMID: 9566964 PMCID: PMC2132739 DOI: 10.1083/jcb.141.3.625] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/1998] [Revised: 03/11/1998] [Indexed: 02/07/2023] Open
Abstract
We used the dye N-(3-triethylammoniumpropyl)-4-(p-diethylaminophenylhexatrienyl ) pyridinium dibromide (FM4-64) and a fusion protein, consisting of the green fluorescent protein appended to the peroxisomal targeting signal, Ser-Lys-Leu (SKL), to label the vacuolar membrane and the peroxisomal matrix, respectively, in living Pichia pastoris cells and followed by fluorescence microscopy the morphological and kinetic intermediates in the vacuolar degradation of peroxisomes by microautophagy and macroautophagy. Structures corresponding to the intermediates were also identified by electron microscopy. The kinetics of appearance and disappearance of these intermediates is consistent with a precursor-product relationship between intermediates, which form the basis of a model for microautophagy. Inhibitors affecting different steps of microautophagy did not impair peroxisome delivery to the vacuole via macroautophagy, although inhibition of vacuolar proteases affected the final vacuolar degradation of green fluorescent protein (S65T mutant version [GFP])-SKL via both autophagic pathways. P. pastoris mutants defective in peroxisome microautophagy (pag mutants) were isolated and characterized for the presence or absence of the intermediates. These mutants, comprising 6 complementation groups, support the model for microautophagy. Our studies indicate that the microautophagic degradation of peroxisomes proceeds via specific intermediates, whose generation and/or processing is controlled by PAG gene products, and shed light on the poorly understood phenomenon of peroxisome homeostasis.
Collapse
|
research-article |
27 |
188 |
19
|
Elgersma Y, Kwast L, van den Berg M, Snyder WB, Distel B, Subramani S, Tabak HF. Overexpression of Pex15p, a phosphorylated peroxisomal integral membrane protein required for peroxisome assembly in S.cerevisiae, causes proliferation of the endoplasmic reticulum membrane. EMBO J 1997; 16:7326-41. [PMID: 9405362 PMCID: PMC1170333 DOI: 10.1093/emboj/16.24.7326] [Citation(s) in RCA: 172] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have cloned PEX15 which is required for peroxisome biogenesis in Saccharomyces cerevisiae. pex15Delta cells are characterized by the cytosolic accumulation of peroxisomal matrix proteins containing a PTS1 or PTS2 import signal, whereas peroxisomal membrane proteins are present in peroxisomal remnants. PEX15 encodes a phosphorylated, integral peroxisomal membrane protein (Pex15p). Using multiple in vivo methods to determine the topology, Pex15p was found to be a tail-anchored type II (Ncyt-Clumen) peroxisomal membrane protein with a single transmembrane domain near its carboxy-terminus. Overexpression of Pex15p resulted in impaired peroxisome assembly, and caused profound proliferation of the endoplasmic reticulum (ER) membrane. The lumenal carboxy-terminal tail of Pex15p protrudes into the lumen of these ER membranes, as demonstrated by its O-glycosylation. Accumulation in the ER was also observed at an endogenous expression level when Pex15p was fused to the N-terminus of mature invertase. This resulted in core N-glycosylation of the hybrid protein. The lumenal C-terminal tail of Pex15p is essential for targeting to the peroxisomal membrane. Furthermore, the peroxisomal membrane targeting signal of Pex15p overlaps with an ER targeting signal on this protein. These results indicate that Pex15p may be targeted to peroxisomes via the ER, or to both organelles.
Collapse
|
research-article |
28 |
172 |
20
|
Gould SJ, McCollum D, Spong AP, Heyman JA, Subramani S. Development of the yeast Pichia pastoris as a model organism for a genetic and molecular analysis of peroxisome assembly. Yeast 1992; 8:613-28. [PMID: 1441741 DOI: 10.1002/yea.320080805] [Citation(s) in RCA: 172] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We describe the isolation of mutants of the yeast Pichia pastoris that are deficient in peroxisome assembly (pas). These mutants of P. pastoris can be identified solely by their inability to grow on methanol and oleic acid, the utilization of which requires peroxisomal enzymes, and are defined by the absence of normal peroxisomes as judged by electron microscopy and biochemical fractionation experiments. These mutants are the result of genetic defects at single loci and represent at least eight different complementation groups. The isolation of pas mutants of P. pastoris by a simple screen for mutants unable to use methanol and oleic acid represents a significantly more efficient method for identification of pas mutants than is possible in other organisms. To exploit this advantage fully we also developed new reagents for the genetic and molecular manipulation of P. pastoris. These include a set of auxotrophic strains with an essentially wild-type genetic background, plasmids that act as Escherichia coli-P. pastoris shuttle vectors, and genomic DNA libraries for isolation of P. pastoris genes by functional complementation of mutants or by nucleic acid hybridization. The availability of numerous pas mutants and the reagents necessary for their molecular analysis should lead to the isolation and characterization of genes involved in peroxisome assembly.
Collapse
|
|
33 |
172 |
21
|
Zhang B, Marcus SL, Sajjadi FG, Alvares K, Reddy JK, Subramani S, Rachubinski RA, Capone JP. Identification of a peroxisome proliferator-responsive element upstream of the gene encoding rat peroxisomal enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase. Proc Natl Acad Sci U S A 1992; 89:7541-5. [PMID: 1502166 PMCID: PMC49746 DOI: 10.1073/pnas.89.16.7541] [Citation(s) in RCA: 165] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Ciprofibrate, a hypolipidemic drug that acts as a peroxisome proliferator, induces the transcription of genes encoding peroxisomal beta-oxidation enzymes. To identify cis-acting promoter elements involved in this induction, 5.8 kilobase pairs of promoter sequence from the gene encoding rat peroxisomal enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase (EC 4.2.1.17/EC 1.1.1.35) was inserted upstream of a luciferase reporter gene. Transfection of this expression vector into rat hepatoma H4IIEC3 cells in the presence of ciprofibrate resulted in a 5- to 10-fold, cell type-specific increase in luciferase activity as compared to cells transfected in the absence of drug. A peroxisome proliferator-responsive element (PPRE) was localized to a 196-nucleotide region centered at position -2943 from the transcription start site. This PPRE conferred ciprofibrate responsiveness on a heterologous promoter and functioned independently of orientation or position. Gel retardation analysis with nuclear extracts demonstrated that ciprofibrate-treated or untreated H4IIEC3 cells, but not HeLa cells or monkey kidney cells, contained sequence-specific DNA binding factors that interact with the PPRE. These results have implications for understanding the mechanisms of coordinated transcriptional induction of genes encoding peroxisomal proteins by hypolipidemic agents and other peroxisome proliferators.
Collapse
|
research-article |
33 |
165 |
22
|
|
Review |
30 |
151 |
23
|
Wiemer EA, Nuttley WM, Bertolaet BL, Li X, Francke U, Wheelock MJ, Anné UK, Johnson KR, Subramani S. Human peroxisomal targeting signal-1 receptor restores peroxisomal protein import in cells from patients with fatal peroxisomal disorders. J Cell Biol 1995; 130:51-65. [PMID: 7790377 PMCID: PMC2120514 DOI: 10.1083/jcb.130.1.51] [Citation(s) in RCA: 148] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Two peroxisomal targeting signals, PTS1 and PTS2, are involved in the import of proteins into the peroxisome matrix. Human patients with fatal generalized peroxisomal deficiency disorders fall into at least nine genetic complementation groups. Cells from many of these patients are deficient in the import of PTS1-containing proteins, but the causes of the protein-import defect in these patients are unknown. We have cloned and sequenced the human cDNA homologue (PTS1R) of the Pichia pastoris PAS8 gene, the PTS1 receptor (McCollum, D., E. Monosov, and S. Subramani. 1993. J. Cell Biol. 121:761-774). The PTS1R mRNA is expressed in all human tissues examined. Antibodies to the human PTS1R recognize this protein in human, monkey, rat, and hamster cells. The protein is localized mainly in the cytosol but is also found to be associated with peroxisomes. Part of the peroxisomal PTS1R protein is tightly bound to the peroxisomal membrane. Antibodies to PTS1R inhibit peroxisomal protein-import of PTS1-containing proteins in a permeabilized CHO cell system. In vitro-translated PTS1R protein specifically binds a serine-lysine-leucine-peptide. A PAS8-PTS1R fusion protein complements the P. pastoris pas8 mutant. The PTS1R cDNA also complements the PTS1 protein-import defect in skin fibroblasts from patients--belonging to complementation group two--diagnosed as having neonatal adrenoleukodystrophy or Zellweger syndrome. The PTS1R gene has been localized to a chromosomal location where no other peroxisomal disorder genes are known to map. Our findings represent the only case in which the molecular basis of the protein-import deficiency in human peroxisomal disorders is understood.
Collapse
|
research-article |
30 |
148 |
24
|
Abstract
'Checkpoint' controls ensure that the events of the cell cycle are completed in an orderly fashion. For example, such controls delay mitosis until DNA synthesis and repair of radiation-induced DNA damage are complete. The rad series of radiosensitive fission yeast mutants was examined to identify strains deficient for the DNA damage-responsive checkpoint control. Five were identified. A characterization of one (rad1-1) and the wild-type is presented. The rad1-1 mutant does not arrest after irradiation, is sensitive to killing by radiation and is not arrested by hydroxyurea, and thus is also deficient for the DNA synthesis-responsive checkpoint control. The radiosensitivity of the rad1-1 mutant was greatly reduced when irradiated and maintained for 6 h in a non-dividing (density inhibited) state, demonstrating that rad1-1 is repair proficient and radiosensitive only through failure to delay. The checkpoint controls for which rad1 is required appear to regulate G2-M progression through the activity of cdc2, here implicated in this role by the coincidence of the radiation transition point and the cdc2 execution point.
Collapse
|
|
33 |
143 |
25
|
Wiemer EA, Wenzel T, Deerinck TJ, Ellisman MH, Subramani S. Visualization of the peroxisomal compartment in living mammalian cells: dynamic behavior and association with microtubules. J Cell Biol 1997; 136:71-80. [PMID: 9008704 PMCID: PMC2132450 DOI: 10.1083/jcb.136.1.71] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/1996] [Revised: 10/15/1996] [Indexed: 02/03/2023] Open
Abstract
Peroxisomes in living CV1 cells were visualized by targeting the green fluorescent protein (GFP) to this subcellular compartment through the addition of a COOH-terminal peroxisomal targeting signal 1 (GFP-PTS1). The organelle dynamics were examined and analyzed using time-lapse confocal laser scanning microscopy. Two types of movement could be distinguished: a relatively slow, random, vibration-like movement displayed by the majority (approximately 95%) of the peroxisomes, and a saltatory, fast directional movement displayed by a small subset (approximately 5%) of the peroxisomes. In the latter instance, peak velocities up to 0.75 micron/s and sustained directional velocities up to 0.45 micron/s over 11.5 microns were recorded. Only the directional type of motion appeared to be energy dependent, whereas the vibrational movement continued even after the cells were depleted of energy. Treatment of cells, transiently expressing GFP-PTS1, with microtubule-destabilizing agents such as nocodazole, vinblastine, and demecolcine clearly altered peroxisome morphology and subcellular distribution and blocked the directional movement. In contrast, the microtubule-stabilizing compound paclitaxel, or the microfilament-destabilizing drugs cytochalasin B or D, did not exert these effects. High resolution confocal analysis of cells expressing GFP-PTS1 and stained with anti-tubulin antibodies revealed that many peroxisomes were associated with microtubules. The GFP-PTS1-labeled peroxisomes were found to distribute themselves in a stochastic, rather than ordered, manner to daughter cells at the time of mitosis.
Collapse
|
research-article |
28 |
141 |