1
|
Turner JJ, Ivanova GD, Verbeure B, Williams D, Arzumanov AA, Abes S, Lebleu B, Gait MJ. Cell-penetrating peptide conjugates of peptide nucleic acids (PNA) as inhibitors of HIV-1 Tat-dependent trans-activation in cells. Nucleic Acids Res 2005; 33:6837-49. [PMID: 16321967 PMCID: PMC1301599 DOI: 10.1093/nar/gki991] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The trans-activation response (TAR) RNA stem–loop that occurs at the 5′ end of HIV RNA transcripts is an important antiviral target and is the site of interaction of the HIV-1 Tat protein together with host cellular factors. Oligonucleotides and their analogues targeted to TAR are potential antiviral candidates. We have investigated a range of cell penetrating peptide (CPP) conjugates of a 16mer peptide nucleic acid (PNA) analogue targeted to the apical stem–loop of TAR and show that disulfide-linked PNA conjugates of two types of CPP (Transportan or a novel chimeric peptide R6-Penetratin) exhibit dose-dependent inhibition of Tat-dependent trans-activation in a HeLa cell assay when incubated for 24 h. Activity is reached within 6 h if the lysosomotropic reagent chloroquine is co-administered. Fluorescein-labelled stably-linked conjugates of Tat, Transportan or Transportan TP10 with PNA were inactive when delivered alone, but attained trans-activation inhibition in the presence of chloroquine. Confocal microscopy showed that such fluorescently labelled CPP–PNA conjugates were sequestered in endosomal or membrane-bound compartments of HeLa cells, which varied in appearance depending on the CPP type. Co-administration of chloroquine was seen in some cases to release fluorescence from such compartments into the nucleus, but with different patterns depending on the CPP. The results show that CPP–PNA conjugates of different types can inhibit Tat-dependent trans-activation in HeLa cells and have potential for development as antiviral agents. Endosomal or membrane release is a major factor limiting nuclear delivery and trans-activation inhibition.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
186 |
2
|
Abes S, Moulton HM, Clair P, Prevot P, Youngblood DS, Wu RP, Iversen PL, Lebleu B. Vectorization of morpholino oligomers by the (R-Ahx-R)4 peptide allows efficient splicing correction in the absence of endosomolytic agents. J Control Release 2006; 116:304-13. [PMID: 17097177 DOI: 10.1016/j.jconrel.2006.09.011] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Revised: 09/07/2006] [Accepted: 09/14/2006] [Indexed: 10/24/2022]
Abstract
The efficient and non-toxic nuclear delivery of steric-block oligonucleotides (ON) is a prerequisite for therapeutic strategies involving splice correction or exon skipping. Cationic cell penetrating peptides (CPPs) have given rise to much interest for the intracellular delivery of biomolecules, but their efficiency in promoting cytoplasmic or nuclear delivery of oligonucleotides has been hampered by endocytic sequestration and subsequent degradation of most internalized material in endocytic compartments. In the present study, we compared the splice correction activity of three different CPPs conjugated to PMO(705), a steric-block ON targeted against the mutated splicing site of human beta-globin pre-mRNA in the HeLa pLuc705 splice correction model. In contrast to Tat48-60 (Tat) and oligoarginine (R(9)F(2)) PMO(705) conjugates, the 6-aminohexanoic-spaced oligoarginine (R-Ahx-R)(4)-PMO(705) conjugate was able to promote an efficient splice correction in the absence of endosomolytic agents. Our mechanistic investigations about its uptake mechanisms lead to the conclusion that these three vectors are internalized using the same endocytic route involving proteoglycans, but that the (R-Ahx-R)(4)-PMO(705) conjugate has the unique ability to escape from lysosomial fate and to access to the nuclear compartment. This vector, which has displays an extremely low cytotoxicity, the ability to function without chloroquine adjunction and in the presence of serum proteins. It thus offers a promising lead for the development of vectors able to enhance the delivery of therapeutic steric-block ON in clinically relevant models.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
157 |
3
|
Abes S, Williams D, Prevot P, Thierry A, Gait MJ, Lebleu B. Endosome trapping limits the efficiency of splicing correction by PNA-oligolysine conjugates. J Control Release 2005; 110:595-604. [PMID: 16377019 DOI: 10.1016/j.jconrel.2005.10.026] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Accepted: 10/17/2005] [Indexed: 11/26/2022]
Abstract
Splicing correction by steric-blocking oligonucleotides (ON) might lead to important clinical applications but requires efficient delivery to cell nuclei. The conjugation of short oligolysine tails has been used to deliver a correcting peptide nucleic acid (PNA) sequence in a positive readout assay in which ON hybridization to the cryptic splice site is strictly required for the expression of a luciferase reporter gene. We have investigated the mechanism of cellular uptake and the efficiency of a (Lys)(8)-PNA-Lys construction in this model system. Cell uptake is temperature-dependent and leads to sequestration of the conjugate in cytoplasmic vesicles in keeping with an endocytic mechanism of internalization. Accordingly a significant and sequence-specific splicing correction is achieved only in the presence of endosome-disrupting agents as chloroquine or 0.5 M sucrose. These endosome-disrupting agents do not affect the activity of free PNA, and do not increase (Lys)(8)-PNA-Lys uptake.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
124 |
4
|
Abes S, Turner JJ, Ivanova GD, Owen D, Williams D, Arzumanov A, Clair P, Gait MJ, Lebleu B. Efficient splicing correction by PNA conjugation to an R6-Penetratin delivery peptide. Nucleic Acids Res 2007; 35:4495-502. [PMID: 17584792 PMCID: PMC1934994 DOI: 10.1093/nar/gkm418] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 04/20/2007] [Accepted: 05/07/2007] [Indexed: 12/02/2022] Open
Abstract
Sequence-specific interference with the nuclear pre-mRNA splicing machinery has received increased attention as an analytical tool and for development of therapeutics. It requires sequence-specific and high affinity binding of RNaseH-incompetent DNA mimics to pre-mRNA. Peptide nucleic acids (PNA) or phosphoramidate morpholino oligonucleotides (PMO) are particularly suited as steric block oligonucleotides in this respect. However, splicing correction by PNA or PMO conjugated to cell penetrating peptides (CPP), such as Tat or Penetratin, has required high concentrations (5-10 microM) of such conjugates, unless an endosomolytic agent was added to increase escape from endocytic vesicles. We have focused on the modification of existing CPPs to search for peptides able to deliver more efficiently splice correcting PNA or PMO to the nucleus in the absence of endosomolytic agents. We describe here R6-Penetratin (in which arginine-residues were added to the N-terminus of Penetratin) as the most active of all CPPs tested so far in a splicing correction assay in which masking of a cryptic splice site allows expression of a luciferase reporter gene. Efficient and sequence-specific correction occurs at 1 muM concentration of the R6Pen-PNA705 conjugate as monitored by luciferase luminescence and by RT-PCR. Some aspects of the R6Pen-PNA705 structure-function relationship have also been evaluated.
Collapse
|
research-article |
18 |
108 |
5
|
Berrier C, Park KH, Abes S, Bibonne A, Betton JM, Ghazi A. Cell-free synthesis of a functional ion channel in the absence of a membrane and in the presence of detergent. Biochemistry 2004; 43:12585-91. [PMID: 15449948 DOI: 10.1021/bi049049y] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have investigated the possibility of cell-fee synthesis of membrane proteins in the absence of a membrane and in the presence of detergent. We used the bacterial mechanosensitive channel MscL, a homopentamer, as a model protein. A wide range of nonionic or zwitterionic detergents, Triton X-100, Tween 20, Brij 58p, n-dodecyl beta-D-maltoside, and CHAPS, were compatible with cell-free synthesis, while n-octyl beta-D-glucoside and deoxycholate had an inhibitory effect. In vitro synthesis in the presence of Triton X-100 yielded milligram amounts of MscL per milliliter of lysate. Cross-linking experiments showed that the protein was able to oligomerize in detergents. When the purified protein was reconstituted in liposomes and studied by the patch-clamp technique, its activity at the single-molecule level was similar to that of the recombinant protein produced in Escherichia coli. Cell-free synthesis of membrane proteins should prove a valuable tool for the production of membrane proteins whose overexpression in heterologous systems is difficult.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
95 |
6
|
Abes R, Arzumanov AA, Moulton HM, Abes S, Ivanova GD, Iversen PL, Gait MJ, Lebleu B. Cell-penetrating-peptide-based delivery of oligonucleotides: an overview. Biochem Soc Trans 2007; 35:775-9. [PMID: 17635146 DOI: 10.1042/bst0350775] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cationic CPPs (cell-penetrating peptides) have been used largely for intracellular delivery of low-molecular-mass drugs, biomolecules and particles. Most cationic CPPs bind to cell-associated glycosaminoglycans and are internalized by endocytosis, although the detailed mechanisms involved remain controversial. Sequestration and degradation in endocytic vesicles severely limits the efficiency of cytoplasmic and/or nuclear delivery of CPP-conjugated material. Re-routing the splicing machinery by using steric-block ON (oligonucleotide) analogues, such as PNAs (peptide nucleic acids) or PMOs (phosphorodiamidate morpholino oligomers), has consequently been inefficient when ONs are conjugated with standard CPPs such as Tat (transactivator of transcription), R(9) (nona-arginine), K(8) (octalysine) or penetratin in the absence of endosomolytic agents. New arginine-rich CPPs such as (R-Ahx-R)(4) (6-aminohexanoic acid-spaced oligo-arginine) or R(6) (hexa-arginine)-penetratin conjugated to PMO or PNA resulted in efficient splicing correction at non-cytotoxic doses in the absence of chloroquine. SAR (structure-activity relationship) analyses are underway to optimize these peptide delivery vectors and to understand their mechanisms of cellular internalization.
Collapse
|
Review |
18 |
86 |
7
|
Wolf Y, Pritz S, Abes S, Bienert M, Lebleu B, Oehlke J. Structural requirements for cellular uptake and antisense activity of peptide nucleic acids conjugated with various peptides. Biochemistry 2007; 45:14944-54. [PMID: 17154532 DOI: 10.1021/bi0606896] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Peptide nucleic acids (PNAs) have shown great promise as potential antisense drugs; however, poor cellular delivery limits their applications. Improved delivery into mammalian cells and enhanced biological activity of PNAs have been achieved by coupling to cell-penetrating peptides (CPPs). Structural requirements for the shuttling ability of these peptides as well as structural properties of the conjugates such as the linker type and peptide position remained controversial, so far. In the present study an 18mer PNA targeted to the cryptic splice site of a mutated beta-globin intron 2, which had been inserted into a luciferase reporter gene coding sequence, was coupled to various peptides. As the peptide lead we used the cell-penetrating alpha-helical amphipathic peptide KLAL KLAL KAL KAAL KLA-NH2 [model amphipathic peptide (MAP)] which was varied with respect to charge and structure-forming properties. Furthermore, the linkage and the localization of the attached peptide (C- vs N-terminal) were modified. Positive charge as well as helicity and amphipathicity of the KLA peptide was all required for efficient dose-dependent correction of aberrant splicing. The highest antisense effect was reached within 4 h without any transfection agent. Stably linked conjugates were also efficient in correction of aberrant splicing, suggesting that a cleavable disulfide bond between CPP and PNA is clearly not essential. Moreover, the placement of the attached peptide turned out to be crucial for attaining antisense activity. Coadministration of endosome disrupting agents such as chloroquine or Ca2+ significantly increased the splicing correction efficiency of some conjugates, indicating the predominant portion to be sequestered in vesicular compartments.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
62 |
8
|
Moulton HM, Fletcher S, Neuman BW, McClorey G, Stein DA, Abes S, Wilton SD, Buchmeier MJ, Lebleu B, Iversen PL. Cell-penetrating peptide-morpholino conjugates alter pre-mRNA splicing of DMD (Duchenne muscular dystrophy) and inhibit murine coronavirus replication in vivo. Biochem Soc Trans 2007; 35:826-8. [PMID: 17635157 DOI: 10.1042/bst0350826] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The cellular uptake of PMOs (phosphorodiamidate morpholino oligomers) can be enhanced by their conjugation to arginine-rich CPPs (cell-penetrating peptides). Here, we discuss our recent findings regarding (R-Ahx-R)(4)AhxB (Ahx is 6-aminohexanoic acid and B is beta-alanine) CPP-PMO conjugates in DMD (Duchenne muscular dystrophy) and murine coronavirus research. An (R-Ahx-R)(4)AhxB-PMO conjugate was the most effective compound in inducing the correction of mutant dystrophin transcripts in myoblasts derived from a canine model of DMD. Similarly, normal levels of dystrophin expression were restored in the diaphragms of mdx mice, with treatment starting at the neonatal stage, and protein was still detecTable 22 weeks after the last dose of an (R-Ahx-R)(4)AhxB-PMO conjugate. Effects of length, linkage and carbohydrate modification of this CPP on the delivery of a PMO were investigated in a coronavirus mouse model. An (R-Ahx-R)(4)AhxB-PMO conjugate effectively inhibited viral replication, in comparison with other peptides conjugated to the same PMO. Shortening the CPP length, modifying it with a mannosylated serine moiety or replacing it with the R(9)F(2) CPP significantly decreased the efficacy of the resulting PPMO (CPP-PMO conjugate). We attribute the success of this CPP to its stability in serum and its capacity to transport PMO to RNA targets in a manner superior to that of poly-arginine CPPs.
Collapse
|
Review |
18 |
60 |
9
|
Deglane G, Abes S, Michel T, Prévot P, Vives E, Debart F, Barvik I, Lebleu B, Vasseur JJ. Impact of the guanidinium group on hybridization and cellular uptake of cationic oligonucleotides. Chembiochem 2006; 7:684-92. [PMID: 16518865 DOI: 10.1002/cbic.200500433] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The grafting of cationic groups to synthetic oligonucleotides (ONs) in order to reduce the charge repulsion between the negatively charged strands of a duplex or triplex, and consequently to increase a complex's stability, has been extensively studied. Guanidinium groups, which are highly basic and positively charged over a wide pH range, could be an efficient ON modification to enhance their affinity for nucleic acid targets and to improve cellular uptake. A straightforward post-synthesis method to convert amino functions attached to ONs (on sugar, nucleobase or backbone) into guanidinium tethers has been perfected. In comparison to amino groups, such cationic groups anchored to alpha-oligonucleotide phosphoramidate backbones play important roles in duplex stability, particularly with RNA targets. This high affinity could be explained by dual recognition resulting from Watson-Crick or Hoogsteen base pairing combined with cationic/anionic backbone recognition between strands involving H-bond formation and salt bridging. Molecular-dynamics simulations corroborate interactions between the cationic backbones of the alpha-ONs and the anionic backbones of the nucleic acid targets. Moreover, ONs with guanidinium modification increased cellular uptake relative to negatively charged ONs. The cellular localization of these new cationic phosphoramidate ONs is mainly cytoplasmic. The uptake of these ON analogues might occur through endocytosis.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
50 |
10
|
Abes R, Arzumanov A, Moulton H, Abes S, Ivanova G, Gait MJ, Iversen P, Lebleu B. Arginine-rich cell penetrating peptides: design, structure-activity, and applications to alter pre-mRNA splicing by steric-block oligonucleotides. J Pept Sci 2008; 14:455-60. [PMID: 18236382 DOI: 10.1002/psc.979] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Rerouting the splicing machinery with steric-block oligonucleotides (ON) might lead to new therapeutic strategies in the treatment of diseases such as beta-thalassemia, Duchenne muscular dystrophy, or cancers. Interfering with splicing requires the sequence-specific and stable hybridization of RNase H-incompetent ON as peptide nucleic acids (PNA) or phosphorodiamidate morpholino oligomers (PMO). Unfortunately, these uncharged DNA mimics are poorly taken up by most cell types and conventional delivery strategies that rely on electrostatic interaction do not apply. Likewise, conjugation to cell penetrating peptides (CPPs) as Tat, Arg9, Lys8, or Pen leads to poor splicing correction efficiency at low concentration essentially because PNA- and PMO-CPP conjugates remain entrapped within endocytotic vesicles. Recently, we have designed an arginine-rich peptide (R-Ahx-R)4 (with Ahx for aminohexanoic acid) and an arginine-tailed Penetratin derivative which allow sequence-specific and efficient splicing correction at low concentration in the absence of endosomolytic agents. Both CPPs are undergoing structure-activity relationship studies for further optimization as steric-block ON delivery vectors.
Collapse
|
Review |
17 |
48 |
11
|
Debart F, Abes S, Deglane G, Moulton HM, Clair P, Gait MJ, Vasseur JJ, Lebleu B. Chemical modifications to improve the cellular uptake of oligonucleotides. Curr Top Med Chem 2007; 7:727-37. [PMID: 17430212 DOI: 10.2174/156802607780487704] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Specific control of gene expression by synthetic oligonucleotides (ON) is now widely used for target validation but clinical applications are limited by ON bioavailability. Moreover, most currently used strategies for physical and chemical delivery cannot be easily implemented in vivo. This article reviews new strategies which appear promising for ON delivery. The first part deals with ON chemical modifications aiming at improving cellular uptake as for instance the grafting of cationic groups on the ON backbone. The second part concerns ON conjugation to cell penetrating peptides.
Collapse
|
Review |
18 |
45 |
12
|
Abes S, Moulton H, Turner J, Clair P, Richard JP, Iversen P, Gait MJ, Lebleu B. Peptide-based delivery of nucleic acids: design, mechanism of uptake and applications to splice-correcting oligonucleotides. Biochem Soc Trans 2007; 35:53-5. [PMID: 17233600 DOI: 10.1042/bst0350053] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
CPPs (cell-penetrating peptides) have given rise to much interest for the delivery of biomolecules such as peptides, proteins or ONs (oligonucleotides). CPPs and their conjugates were initially thought to translocate through the cell membrane by a non-endocytotic mechanism which has recently been re-evaluated. Basic-amino-acid-rich CPPs first interact with cell-surface proteoglycans before being internalized by endocytosis. Sequestration and degradation in endocytotic vesicles severely limits the cytoplasmic and nuclear delivery of the conjugated biomolecules. Accordingly, splicing correction by CPP-conjugated steric-block ON analogues is inefficient in the absence of endosomolytic agents. New arginine-rich CPPs allowing efficient splicing correction by conjugated PNAs (peptide nucleic acids) or PMO (phosphorodiamidate morpholino oligomer) steric blockers in the absence of endosomolytic agents have recently been defined in our group and are currently being characterized. They offer promising leads for the development of efficient cellular delivery vectors for therapeutic steric-block ON analogues.
Collapse
|
Review |
18 |
42 |
13
|
Resina S, Abes S, Turner JJ, Prevot P, Travo A, Clair P, Gait MJ, Thierry AR, Lebleu B. Lipoplex and peptide-based strategies for the delivery of steric-block oligonucleotides. Int J Pharm 2007; 344:96-102. [PMID: 17600642 DOI: 10.1016/j.ijpharm.2007.04.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Revised: 04/20/2007] [Accepted: 04/29/2007] [Indexed: 12/29/2022]
Abstract
Synthetic oligonucleotides offer interesting prospects for the control of gene expression but clinical applications have been severely limited by their poor bioavailability. Cationic lipids have been widely used for the delivery of charged oligonucleotide (ON) analogues but most of the commercial formulations are toxic and poorly stable in the presence of serum proteins. We have developed a DOGS/DOPE liposome formulation named DLS (for delivery liposomal system), that allows for the efficient nuclear delivery of negatively charged antisense ON analogues as monitored by fluorescence microscopy and by their ability to correct deficient pre-mRNA splicing, even in serum-supplemented cell culture. Uncharged DNA mimics such as peptide nucleic acids (PNA), or phosphorodiamidate morpholino (PMO) ON are particularly interesting for their high metabolic stability and affinity for complementary RNA targets but they cannot be delivered with cationic lipids. Cell penetrating peptides (CPP), such as Tat or penetratin, have been used widely as conjugates for the delivery of various biomolecules and might be appropriate for neutral ON analogues. However, entrapment within endocytic vesicles severely limits the efficiency of PNA delivery by CPPs in the absence of endosomolytic drugs, such as chloroquine. The conjugation of new arginine-rich CPPs to PNA allows efficient nuclear delivery in the absence of chloroquine as monitored in a splicing correction assay. Both strategies have their advantages but DLS-mediated delivery remains more efficient than CPP delivery for the nuclear targeting of splice correcting ON analogues in vitro.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
21 |