Tewari M, Hu PJ, Ahn JS, Ayivi-Guedehoussou N, Vidalain PO, Li S, Milstein S, Armstrong CM, Boxem M, Butler MD, Busiguina S, Rual JF, Ibarrola N, Chaklos ST, Bertin N, Vaglio P, Edgley ML, King KV, Albert PS, Vandenhaute J, Pandey A, Riddle DL, Ruvkun G, Vidal M. Systematic interactome mapping and genetic perturbation analysis of a C. elegans TGF-beta signaling network.
Mol Cell 2004;
13:469-82. [PMID:
14992718 DOI:
10.1016/s1097-2765(04)00033-4]
[Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2003] [Revised: 12/16/2003] [Accepted: 12/23/2003] [Indexed: 11/24/2022]
Abstract
To initiate a system-level analysis of C. elegans DAF-7/TGF-beta signaling, we combined interactome mapping with single and double genetic perturbations. Yeast two-hybrid (Y2H) screens starting with known DAF-7/TGF-beta pathway components defined a network of 71 interactions among 59 proteins. Coaffinity purification (co-AP) assays in mammalian cells confirmed the overall quality of this network. Systematic perturbations of the network using RNAi, both in wild-type and daf-7/TGF-beta pathway mutant animals, identified nine DAF-7/TGF-beta signaling modifiers, seven of which are conserved in humans. We show that one of these has functional homology to human SNO/SKI oncoproteins and that mutations at the corresponding genetic locus daf-5 confer defects in DAF-7/TGF-beta signaling. Our results reveal substantial molecular complexity in DAF-7/TGF-beta signal transduction. Integrating interactome maps with systematic genetic perturbations may be useful for developing a systems biology approach to this and other signaling modules.
Collapse