1
|
Madiha S, Batool Z, Shahzad S, Tabassum S, Liaquat L, Afzal A, Sadir S, Sajid I, Mehdi BJ, Ahmad S, Haider S. Naringenin, a Functional Food Component, Improves Motor and Non-Motor Symptoms in Animal Model of Parkinsonism Induced by Rotenone. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023; 78:654-661. [PMID: 37796415 DOI: 10.1007/s11130-023-01103-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/26/2023] [Indexed: 10/06/2023]
Abstract
Parkinson's disease (PD) and other age-related neurodegenerative ailments have a strong link to oxidative stress. Bioflavonoid naringenin has antioxidant properties. The effects of pre- and post-naringenin supplementation on a rotenone-induced PD model were examined in this work. Naringenin (50 mg/kg, p.o.) was administered to rats for two weeks before the administration of rotenone in the pre-treatment phase. In contrast, rotenone (1.5 mg/kg, s.c.) was administered for eight days before naringenin (50 mg/kg, p.o.) was supplemented for two weeks in the post-treatment phase. During behavioral investigation, the motor and non-motor signs of PD were observed. Additionally, estimation of neurochemical and biochemical parameters was also carried out. Compared to controls, rotenone treatment substantially increased oxidative stress, altered neurotransmitters, and caused motor and non-motor impairments. Rotenone-induced motor and non-motor impairments were considerably reduced by naringenin supplementation. The supplementation also increased antioxidant enzyme activities and restored the changes in neurotransmitter levels. The findings of this work strongly imply that daily consumption of flavonoids such as naringenin may have a therapeutic potential to combat PD.
Collapse
|
2
|
Haider S, Shahzad S, Batool Z, Sadir S, Liaquat L, Tabassum S, Perveen T. Spirulina platensis reduces the schizophrenic-like symptoms in rat model by restoring altered APO-E and RTN-4 protein expression in prefrontal cortex. Life Sci 2021; 277:119417. [PMID: 33794248 DOI: 10.1016/j.lfs.2021.119417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/13/2021] [Accepted: 03/13/2021] [Indexed: 01/27/2023]
Abstract
AIMS Schizophrenia (SZ) is recognized as a neuropsychiatric disorder in humans with accelerated mortality and profound morbidity followed with impairments in social as well as vocational functioning. Though various antipsychotics are being considered as approved treatment therapy for the psychotic symptoms of SZ but they also exert adverse effects and also lack efficacy in treating full spectrum of the disorder. Spirulina platensis (blue-green algae), a nutritional supplement, constitutes a variety of multi-nutrients and possesses a large number of neuroprotective activities. Therefore, present experimental work was designed to evaluate the neuroprotective effects of spirulina in ameliorating the psychosis-like symptoms in dizocilpine-induced rat model of SZ. MATERIALS AND METHODS The spirulina was tested as preventive and therapeutic regimen at the dose of 180 mg/kg. After pre- and post-treatment with spirulina, rats were subjected to behavioral assessments followed by biochemical and neurochemical estimations. Biomarkers including APO-E, RTN-4, TNF-α, and IL-6 were also estimated using ELISA. KEY FINDINGS Present results showed that administration of spirulina not only improved behavioral deficits induced by dizocilpine but it also regulates neurotransmission, oligodendrocyte dysfunction and APO-E over expression. Moreover, it also restores the immune response dysfunction by reducing inflammatory cytokines. SIGNIFICANCE Thus, from present findings it may be suggested that spirulina aids in ameliorating the psychosis-like symptoms induced by dizocilpine in animal model possibly via regulation of neurotransmission and other biomarkers that are extensively used to uncover the etiopathology of SZ. Hence, blue-green algae can be used as an effective therapy for preventive or therapeutic measures in SZ.
Collapse
|
3
|
Haider S, Sajid I, Batool Z, Madiha S, Sadir S, Kamil N, Liaquat L, Ahmad S, Tabassum S, Khaliq S. Supplementation of Taurine Insulates Against Oxidative Stress, Confers Neuroprotection and Attenuates Memory Impairment in Noise Stress Exposed Male Wistar Rats. Neurochem Res 2020; 45:2762-2774. [PMID: 32918662 DOI: 10.1007/s11064-020-03127-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/07/2020] [Accepted: 09/05/2020] [Indexed: 12/30/2022]
Abstract
Noise has always been an important environmental factor that induces health problems in the general population. Due to ever increasing noise pollution, humans are facing multiple auditory and non-auditory problems including neuropsychiatric disorders. In modern day life it is impossible to avoid noise due to the rapid industrialization of society. Continuous exposure to noise stress creates a disturbance in brain function which may lead to memory disorder. Therefore, it is necessary to find preventive measures to reduce the deleterious effects of noise exposure. Supplementation of taurine, a semi essential amino acid, is reported to alleviate psychiatric disorders. In this study noise-exposed (100 db; 3 h daily for 15 days) rats were supplemented with taurine at a dose of 100 mg/kg for 15 days. Spatial and recognition memory was assessed using the Morris water maze and novel object recognition task, respectively. Results of this study showed a reversal of noise-induced memory impairment in rats. The derangements of catecholaminergic and serotonergic levels in the hippocampus and altered brain antioxidant enzyme activity due to noise exposure were also restored by taurine administration. This study highlights the importance of taurine supplementation to mitigate noise-induced impaired memory via normalizing the neurochemical functions and reducing oxidative stress in rat brain.
Collapse
|
4
|
Tabassum S, Ahmad S, Madiha S, Shahzad S, Batool Z, Sadir S, Haider S. Free L-glutamate-induced modulation in oxidative and neurochemical profile contributes to enhancement in locomotor and memory performance in male rats. Sci Rep 2020; 10:11206. [PMID: 32641780 PMCID: PMC7343824 DOI: 10.1038/s41598-020-68041-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 05/04/2020] [Indexed: 12/30/2022] Open
Abstract
Glutamate (Glu), the key excitatory neurotransmitter in the central nervous system, is considered essential for brain functioning and has a vital role in learning and memory formation. Earlier it was considered as a harmful agent but later found to be useful for many body functions. However, studies regarding the effects of free l-Glu administration on CNS function are limited. Therefore, current experiment is aimed to monitor the neurobiological effects of free l-Glu in male rats. l-Glu was orally administered to rats for 5-weeks and changes in behavioral performance were monitored. Thereafter, brain and hippocampus were collected for oxidative and neurochemical analysis. Results showed that chronic supplementation of free l-Glu enhanced locomotor performance and cognitive function of animals which may be attributed to the improved antioxidant status and cholinergic, monoaminergic and glutamatergic neurotransmission in brain and hippocampus. Current results showed that chronic supplementation of l-Glu affects the animal behaviour and brain functioning via improving the neurochemical and redox system of brain. Free l-Glu could be a useful therapeutic agent to combat neurological disturbances however this requires further targeted studies.
Collapse
|
5
|
Naqvi F, Saleem S, Naqvi F, Batool Z, Sadir S, Tabassum S, Ahmed S, Liaquat L, Haider S. Curcumin lessens unpredictable chronic mild stress-induced depression and memory deficits by modulating oxidative stress and cholinergic activity. PAKISTAN JOURNAL OF PHARMACEUTICAL SCIENCES 2019; 32:1893-1900. [PMID: 31680089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Unpredictable chronic mild stress (UCMS) model is the most established method to study neurobiological mechanisms of depression. This work was intended to explore the efficacy of curcumin to revert the UCMS-induced oxidative burden and associated depression as well as potential of curcumin as an acetyl cholinesterase (AchE) inhibitor. Animals were initially grouped into control and curcumin (200mg/kg, p.o) and further subdivided into unstressed and stressed groups. Depression and anxiety were evaluated by forced swim test (FST) and light/dark transition (LDT) while memory function was assessed by passive avoidance test (PAT). Effect of curcumin on oxidative stress following UCMS was determined by measuring peroxidation of lipid (LPO) and antioxidant enzyme activities. AchE activity was also determined. Findings showed that curcumin supplementation significantly attenuated the UCMS-induced depression and anxiety like symptoms, decreased the load of UCMS propagated oxidative stress by improving antioxidant enzymes activities. Curcumin also improved the memory function and exhibited inhibitory effect on AchE activity. In conclusion it can be suggested that supplementation of curcumin in daily life can help in combating the stress-induced depression and ever increasing load of oxidative stress. Study also highlights the anti-acetylcholinesterase potential of curcumin which may be responsible for improved memory function following UCMS.
Collapse
|
6
|
Sadir S, Tabassum S, Emad S, Liaquat L, Batool Z, Madiha S, Shehzad S, Sajid I, Haider S. Neurobehavioral and biochemical effects of magnesium chloride (MgCl2), magnesium sulphate (MgSO4) and magnesium-L-threonate (MgT) supplementation in rats: A dose dependent comparative study. PAKISTAN JOURNAL OF PHARMACEUTICAL SCIENCES 2019; 32:277-283. [PMID: 30829204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Magnesium (Mg) is an essential biomineral that acts as an intracellular cofactor for more than 300 enzymes. It is an important modulator of the N-methyl-D-aspartate (NMDA) receptor which is involved in memory function and depression. The purpose of this study was to compare the dose dependent effect of oral supplementation of Magnesium chloride (MgCl2), Magnesium sulphate (MgSO4) and Magnesium-L-threonate (MgT) on memory and depression-related behaviors in rats. Rats were orally administered with different doses (50 mg/kg, 100 mg/kg and 150 mg/kg) of each Mg salt. Following 28 days of oral supplementation, animals were subjected to behavioral tests. After completion of behavioral test, rats were decapitated. Brain and plasma samples were used for neurochemical and biochemical analysis. Assessment of behaviors in elevated plus maze (EPM) test and forced swim test (FST) showed that MgT more significantly improved memory of rats and decreased depression-like symptoms in healthy rats as compared to controls. Biochemical analysis indicated significant increase in plasma Mg levels dose dependently following MgT administration. This increase might be related to observe enhanced cholinergic functions and decline in oxidative stress in rats in the present study. This comparative study highlights that MgT (100mg/kg) is the most appropriate Mg salt and dose for oral treatment that strengthens cholinergic system and improves brain related functions through attenuation of oxidative burden in adult healthy rats.
Collapse
|
7
|
Afzal A, Ahmad S, Agha F, Batool Z, Tabassum S, Liaquat L, Sadir S, Nawaz A, Haider S. Administration of 5-HT-1B agonist ameliorates pseudodementia induced by depression in rats. PAKISTAN JOURNAL OF PHARMACEUTICAL SCIENCES 2018; 31:2179-2184. [PMID: 30393230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Major depressive disorder (MDD) is the leading cause of memory impairment in general population. The serotonin hypothesis provides a target model for the treatment of depression and depression-associated memory loss. 5-HT-1B receptor is suggested as a potential candidate in the pathophysiology of depressive illness. Dysfunction of 5-HT-1B receptors has been observed previously in depressive patients. Zolmitriptan, 5-HT-1B agonist is clinically recommended for the treatment of migraine. However, in present study this drug was tested as a potential treatment for depression and associated memory loss by altering the serotonergic function at receptor level. Rats (n=24) were equally divided into unstressed and stressed groups. Depression was induced by 19 days of restraint stress for 4 h which was followed by forced swim test and pattern separation test to assess depressive symptoms and memory impairment, respectively. The initial sign of depression-associated memory loss involves impaired pattern separation which is regarded as pseudodementia. In this study stressed rats showed depression- and pseudodementia-like symptoms. After the induction of depression, rats were treated with zolmitriptan at a dose of 0.3 mg/kg which resulted in a significant attenuation of depression and depression-associated memory impairment. Results are discussed with reference to the modulation of function of 5-HT-1B receptor following the administration of exogenous agonist.
Collapse
|
8
|
Ahmad S, Rehman R, Haider S, Batool Z, Ahmed F, Ahmed SB, Perveen T, Rafiq S, Sadir S, Shahzad S. Quantitative and qualitative assessment of additives present in broiler chicken feed and meat and their implications for human health. J PAK MED ASSOC 2018; 68:876-881. [PMID: 30325904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
OBJECTIVE To determine the various constituents of commercial, broiler chicken feed and the presence of these constituents in their meat. METHODS The experimental study was conducted at the Pakistan Council of Scientific and Industrial Research laboratory, Karachi. Samples of commercial broiler chicken feed and meat were collected in 2015 from a large poultry farm that supplies chicken meat to various suburban areas of the city. Another set of organic chickens were bred in an animal house. The samples of feed, meat and droppings were then analysed for the estimation of basic constituents and additives in the laboratory. Data was analysed using SPSS 20.0. RESULTS The constituents were measured in 26 samples of chicken meat from each group. Calories (p<0.01), amount of protein (p<0.01), total fats (p<0.05), cholesterol (p<0.01), saturated fats (p<0.01), monounsaturated (p<0.05) and polyunsaturated fats (p<0.01) were significantly increased in commercial broiler chicken compared to that of organic chicken meat. The commercial chicken feed was found to contain crude carbohydrate, crude protein, crude fat, crude fibre, vitamins, amino acids, premixes of vitamins and toxicities of roxarsone, melamine and pesticides. Additive constituents were also present in the commercial chicken meat. These components were absent in organic chicken meat and droppings which suggests that they were absent in their feeding contents. CONCLUSIONS Organic chickens were found to be safer for consumption than commercial chickens.
Collapse
|
9
|
Madiha S, Batool Z, Tabassum S, Liaquat L, Sadir S, Perveen T, Haider S. Therapeutic Effects of Curcuma longa against Rotenone-Induced Gross Motor Skill Deficits in Rats. PAK J ZOOL 2018. [DOI: 10.17582/journal.pjz/2018.50.4.1245.1256] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Liaquat L, Batool Z, Sadir S, Rafiq S, Shahzad S, Perveen T, Haider S. Naringenin-induced enhanced antioxidant defence system meliorates cholinergic neurotransmission and consolidates memory in male rats. Life Sci 2018; 194:213-223. [DOI: 10.1016/j.lfs.2017.12.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 12/15/2017] [Accepted: 12/24/2017] [Indexed: 12/18/2022]
|
11
|
Shahzad S, Ahmad S, Madiha S, Khaliq S, Liaquat L, Sadir S, Rafiq S, Tabassum S, Batool Z, Haider S. Dizocilpine induced psychosis-like behavior in rats: A possible animal model with full spectrum of schizophrenia. PAKISTAN JOURNAL OF PHARMACEUTICAL SCIENCES 2017; 30:2423-2427. [PMID: 29188780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Schizophrenia (SZ) is categorized as neuropsychiatric disorder with reduced lifespan and significant impairments in social and vocational functioning. One of the best proposed pharmacological animal models is dizocilpine, as it can mimic the full spectrum of schizophrenic disorder including positive and negative symptoms along with cognitive deficits. Dizocilpine is N-methyl-D-aspartate (NMDA) receptor antagonist known to induce hyper-locomotion and stereotyped behavior in rodents. Present study was designed to develop an animal model of SZ via intraperitoneal administration of dizocilpine in rats (100-150g) at a dose of 0.3 mg/kg for eight days. For the evaluation of positive symptoms, hyperlocomotor behavior was monitored. Negative symptoms were assessed by sucrose preference test (SPT) and social interaction test (SIT). Moreover, Cognitive deficits were evaluated by novel object recognition test (NORT). After behavioral assessments animals were decapitated for further evaluation of biochemical and neurochemical estimations. Present findings revealed that dizocilpine injected rats exhibited significant hyperlocomotor behavior, depressive symptoms and cognitive deficits. Results are further strengthened with a marked increase in lipid per oxidation (LPO) in brain and a decline in reduced glutathione (GSH) levels. Biogenic amine levels (Dopamine, DA; 5-hydroxytryptamine, 5-HT) were also significantly increased and decreased respectively. Thus, present findings suggest that dizocilpine can be used as one of the best drug to develop psychosis-like symptoms in rats and to develop an animal model following a short-term study.
Collapse
|
12
|
Sajid I, Ahmad S, Emad S, Batool Z, Khaliq S, Anis L, Tabassum S, Madiha S, Liaquat L, Sadir S, Perveen T, Haider S. Enhanced physical endurance and improved memory performance following taurine administration in rats. PAKISTAN JOURNAL OF PHARMACEUTICAL SCIENCES 2017; 30:1957-1963. [PMID: 29105628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Energy drinks enhance physical endurance and cognitive ability. The ingredients present in these drinks are considered as ergogenic and have memory boosting effects. In the present study effects of taurine administration for one week was monitored on physical exercise and memory performance in rats. Animals were divided into two groups namely control and test. Taurine was injected intraperitoneally to the test group at the dose of 100mg/kg. After one week of treatment rats were subjected to physical exercise and memory task. Results of this study revealed that rats injected with taurine for one week exhibited improved muscular strength as well as enhanced memory performance in Morris water maze and elevated plus maze. Biomarker of lipid peroxidation was significantly reduced in brain and plasma of test animals. Taurine administration also resulted in higher levels of corticosterone in this study. The results highlight the significance of taurine ingestion in energy demanding and challenging situations in athletes and young subjects.
Collapse
|
13
|
Madiha S, Tabassum S, Batool Z, Liaquat L, Sadir S, Shahzad S, Perveen T, Haider S. Assessment of gait dynamics in rotenone-induced rat model of Parkinson's disease by footprint method. PAKISTAN JOURNAL OF PHARMACEUTICAL SCIENCES 2017; 30:943-948. [PMID: 28655689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Rotenone (organic pesticide and inhibitor of mitochondrial complex I) is used to generate an experimental model of Parkinson's disease (PD). In the present study, we investigated rotenone-induced locomotor deficits, gait dynamics and muscular weakness in rats. The study also determined dopamine (DA) and dihydroxyphenylacetic acid (DOPAC) levels following rotenone administration. In the study, adult male rats were administered subcutaneously (s.c.) with rotenone (1.5 mg/kg/day) for 8 days. Motor activities were monitored by the Kondziela's inverted screen test, beam walking test and footprint test. Animals were decapitated after behavioral analysis and brains were dissected out for neurochemical estimation. Results showed that the levels of DA and DOPAC were significantly decreased, which further supported by significant impaired motor coordination in rotenone treated rats. In conclusion, the behavioral and neurochemical findings of our study further strengthen the previous report and emphasizes on short term administration of rotenone producing PD-like symptoms in rats.
Collapse
|
14
|
Haider S, Sadir S, Naqvi F, Batool Z, Tabassum S, Khaliq S, Anis L, Sajid I, Haleem DJ. Magnesium treatment palliates noise-induced behavioral deficits by normalizing DAergic and 5-HTergic metabolism in adult male rats. Metab Brain Dis 2016; 31:815-25. [PMID: 26928203 DOI: 10.1007/s11011-016-9811-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 02/17/2016] [Indexed: 12/19/2022]
Abstract
Magnesium (Mg) is the fourth most abundant biological mineral essential for good health. Neuroprotective, anxiolytic and antidepressant effects of magnesium following stress and brain injuries are well established. In present study, we analyzed the protective effects of magnesium in rats exposed to sub-chronic noise stress. Magnesium Chloride (MgCl2, 100 mg/kg) was administered intraperitoneally once daily for 15 days prior exposure to noise stress. Rats were exposed to noise stress for 4 h after administration of magnesium for 15 days. At the end of treatment behavioral alterations were assessed. Animals were decapitated following behavioral testing and the brains were dissected out for neurochemical estimations by HPLC-EC. Improvement in noise-induced memory deficits as assessed by novel object recognition (NOR) test and elevated plus maze (EPM) test was found in magnesium treated rats. This improvement in noise-induced behavioral deficits following treatment with magnesium may be attributed to a significant decrease (p < 0.01) in dopamine (DA) and serotonin (5-hydroxytryptamine; 5-HT) turnover as compared to control rats observed in present work. These results suggest that treatment with magnesium can attenuate the noise-induced deficits and may be used as a therapy against noise-induced neurodegeneration. Moreover an adequate amount of magnesium in daily diet may help to develop the ability to resist against or cope up with stressful conditions encountered in daily life.
Collapse
|
15
|
Erkenekli K, Keskin U, Uysal B, Kurt YG, Sadir S, Çayci T, Ergün A, Erkaya S, Danişman N, Uygur D. Levels of neopterin and C-reactive protein in pregnant women with fetal growth restriction. J OBSTET GYNAECOL 2014; 35:225-8. [DOI: 10.3109/01443615.2014.948818] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
Haider S, Saleem S, Perveen T, Tabassum S, Batool Z, Sadir S, Liaquat L, Madiha S. Age-related learning and memory deficits in rats: role of altered brain neurotransmitters, acetylcholinesterase activity and changes in antioxidant defense system. AGE (DORDRECHT, NETHERLANDS) 2014; 36:9653. [PMID: 24771014 PMCID: PMC4082587 DOI: 10.1007/s11357-014-9653-0] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 03/27/2014] [Indexed: 05/19/2023]
Abstract
Oxidative stress from generation of increased reactive oxygen species or free radicals of oxygen has been reported to play an important role in the aging. To investigate the relationship between the oxidative stress and memory decline during aging, we have determined the level of lipid peroxidation, activities of antioxidant enzymes, and activity of acetylcholine esterase (AChE) in brain and plasma as well as biogenic amine levels in brain from Albino-Wistar rats at age of 4 and 24 months. The results showed that the level of lipid peroxidation in the brain and plasma was significantly higher in older than that in the young rats. The activities of antioxidant enzymes displayed an age-dependent decline in both brain and plasma. Glutathione peroxidase and catalase activities were found to be significantly decreased in brain and plasma of aged rats. Superoxide dismutase (SOD) was also significantly decreased in plasma of aged rats; however, a decreased tendency (non-significant) of SOD in brain was also observed. AChE activity in brain and plasma was significantly decreased in aged rats. Learning and memory of rats in the present study was assessed by Morris Water Maze (MWM) and Elevated plus Maze (EPM) test. Short-term memory and long-term memory was impaired significantly in older rats, which was evident by a significant increase in the latency time in MWM and increase in transfer latency in EPM. Moreover, a marked decrease in biogenic amines (NA, DA, and 5-HT) was also found in the brain of aged rats. In conclusion, our data suggest that increased oxidative stress, decline of antioxidant enzyme activities, altered AChE activity, and decreased biogenic amines level in the brain of aged rats may potentially be involved in diminished memory function.
Collapse
|
17
|
Haider S, Naqvi F, Tabassum S, Saleem S, Batool Z, Sadir S, Rasheed S, Saleem D, Nawaz A, Ahmad S. Preventive effects of curcumin against drug- and starvation-induced gastric erosions in rats. Sci Pharm 2013; 81:549-58. [PMID: 23833720 PMCID: PMC3700082 DOI: 10.3797/scipharm.1207-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 01/07/2013] [Indexed: 12/26/2022] Open
Abstract
The present study was designed to investigate the gastroprotective, analgesic, and antipyretic effects of curcumin (Cur), the major constituent of turmeric. Acetylsalicylic acid (ASA) was used in this study as a standard drug for comparison. The analgesic activity was measured using the Hot-Plate Test. The antipyretic and antiulcer effects were assessed using yeast-induced pyrexia and gastric ulceration, respectively. Curcumin (100 mg/kg) injected intra-peritoneally 1 hr prior to the Hot-Plate Test showed significant analgesic activity expressed by both parameters: an increase in latency time and a reduction in paw licking as compared to the controls. In the animal model of pyrexia, curcumin (100 mg/kg injected intra-peritoneally) exhibited a significant reduction in the rectal temperature after 1 hr, 2 hrs, 4 hrs, and 5 hrs of treatment, indicating the antipyretic effect of curcumin. Rats with orally administered curcumin (200 mg/kg) did not show any lesions on the inner lining of the stomach after a 16 hr fast, indicating the gastroprotective effects of curcumin as compared to saline- and acetylsalicylic acid-administered rats. The significantly low ulcer index in curcumin-treated rats following starvation highlights the gastroprotective characteristics of curcumin.
Collapse
|