1
|
Tahir Ul Qamar M, Alqahtani SM, Alamri MA, Chen LL. Structural basis of SARS-CoV-2 3CL pro and anti-COVID-19 drug discovery from medicinal plants. J Pharm Anal 2020; 10:313-319. [PMID: 32296570 PMCID: PMC7156227 DOI: 10.1016/j.jpha.2020.03.009] [Citation(s) in RCA: 575] [Impact Index Per Article: 115.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/20/2020] [Accepted: 03/21/2020] [Indexed: 11/30/2022] Open
Abstract
The recent pandemic of coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 has raised global health concerns. The viral 3-chymotrypsin-like cysteine protease (3CLpro) enzyme controls coronavirus replication and is essential for its life cycle. 3CLpro is a proven drug discovery target in the case of severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV). Recent studies revealed that the genome sequence of SARS-CoV-2 is very similar to that of SARS-CoV. Therefore, herein, we analysed the 3CLpro sequence, constructed its 3D homology model, and screened it against a medicinal plant library containing 32,297 potential anti-viral phytochemicals/traditional Chinese medicinal compounds. Our analyses revealed that the top nine hits might serve as potential anti- SARS-CoV-2 lead molecules for further optimisation and drug development process to combat COVID-19.
SARS-CoV-2 3CLpro is conserved, share 99.02% sequence identity with SARS-CoV 3CLpro and together with 12 point-mutations. Mutations disrupt important hydrogen bonds and alter the receptor binding site of SARS-CoV-2 3CLpro. Medicinal plants phytochemicals were proved potential anti-COVID-19 druggable candidates.
Collapse
|
Journal Article |
5 |
575 |
2
|
Alamri MA, Tahir ul Qamar M, Mirza MU, Bhadane R, Alqahtani SM, Muneer I, Froeyen M, Salo-Ahen OMH. Pharmacoinformatics and molecular dynamics simulation studies reveal potential covalent and FDA-approved inhibitors of SARS-CoV-2 main protease 3CL pro. J Biomol Struct Dyn 2021; 39:4936-4948. [PMID: 32579061 PMCID: PMC7332866 DOI: 10.1080/07391102.2020.1782768] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/08/2020] [Indexed: 12/22/2022]
Abstract
The SARS-CoV-2 was confirmed to cause the global pandemic of coronavirus disease 2019 (COVID-19). The 3-chymotrypsin-like protease (3CLpro), an essential enzyme for viral replication, is a valid target to combat SARS-CoV and MERS-CoV. In this work, we present a structure-based study to identify potential covalent inhibitors containing a variety of chemical warheads. The targeted Asinex Focused Covalent (AFCL) library was screened based on different reaction types and potential covalent inhibitors were identified. In addition, we screened FDA-approved protease inhibitors to find candidates to be repurposed against SARS-CoV-2 3CLpro. A number of compounds with significant covalent docking scores were identified. These compounds were able to establish a covalent bond (C-S) with the reactive thiol group of Cys145 and to form favorable interactions with residues lining the substrate-binding site. Moreover, paritaprevir and simeprevir from FDA-approved protease inhibitors were identified as potential inhibitors of SARS-CoV-2 3CLpro. The mechanism and dynamic stability of binding between the identified compounds and SARS-CoV-2 3CLpro were characterized by molecular dynamics (MD) simulations. The identified compounds are potential inhibitors worthy of further development as COVID-19 drugs. Importantly, the identified FDA-approved anti-hepatitis-C virus (HCV) drugs paritaprevir and simeprevir could be ready for clinical trials to treat infected patients and help curb COVID-19. Communicated by Ramaswamy H. Sarma.
Collapse
|
research-article |
4 |
94 |
3
|
Alamri MA, Tahir ul Qamar M, Mirza MU, Alqahtani SM, Froeyen M, Chen LL. Discovery of human coronaviruses pan-papain-like protease inhibitors using computational approaches. J Pharm Anal 2020; 10:546-559. [PMID: 32874702 PMCID: PMC7453225 DOI: 10.1016/j.jpha.2020.08.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 12/22/2022] Open
Abstract
The papain-like protease (PLpro) is vital for the replication of coronaviruses (CoVs), as well as for escaping innate-immune responses of the host. Hence, it has emerged as an attractive antiviral drug-target. In this study, computational approaches were employed, mainly the structure-based virtual screening coupled with all-atom molecular dynamics (MD) simulations to computationally identify specific inhibitors of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) PLpro, which can be further developed as potential pan-PLpro based broad-spectrum antiviral drugs. The sequence, structure, and functional conserveness of most deadly human CoVs PLpro were explored, and it was revealed that functionally important catalytic triad residues are well conserved among SARS-CoV, SARS-CoV-2, and middle east respiratory syndrome coronavirus (MERS-CoV). The subsequent screening of a focused protease inhibitors database composed of ∼7,000 compounds resulted in the identification of three candidate compounds, ADM_13083841, LMG_15521745, and SYN_15517940. These three compounds established conserved interactions which were further explored through MD simulations, free energy calculations, and residual energy contribution estimated by MM-PB(GB)SA method. All these compounds showed stable conformation and interacted well with the active residues of SARS-CoV-2 PLpro, and showed consistent interaction profile with SARS-CoV PLpro and MERS-CoV PLpro as well. Conclusively, the reported SARS-CoV-2 PLpro specific compounds could serve as seeds for developing potent pan-PLpro based broad-spectrum antiviral drugs against deadly human coronaviruses. Moreover, the presented information related to binding site residual energy contribution could lead to further optimization of these compounds.
Collapse
|
research-article |
5 |
44 |
4
|
Alamri MA, Tahir Ul Qamar M, Afzal O, Alabbas AB, Riadi Y, Alqahtani SM. Discovery of anti-MERS-CoV small covalent inhibitors through pharmacophore modeling, covalent docking and molecular dynamics simulation. J Mol Liq 2021; 330:115699. [PMID: 33867606 PMCID: PMC8040153 DOI: 10.1016/j.molliq.2021.115699] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 02/07/2023]
Abstract
Middle east respiratory syndrome coronavirus (MERS-CoV) is a fatal pathogen that poses a serious health risk worldwide and especially in the middle east countries. Targeting the MERS-CoV 3-chymotrypsin-like cysteine protease (3CLpro) with small covalent inhibitors is a significant approach to inhibit replication of the virus. The present work includes generating a pharmacophore model based on the X-ray crystal structures of MERS-CoV 3CLpro in complex with two covalently bound inhibitors. In silico screening of covalent chemical database having 31,642 compounds led to the identification of 378 compounds that fulfils the pharmacophore queries. Lipinski rules of five were then applied to select only compounds with the best physiochemical properties for orally bioavailable drugs. 260 compounds were obtained and subjected to covalent docking-based virtual screening to determine their binding energy scores. The top three candidate compounds, which were shown to adapt similar binding modes as the reported covalent ligands were selected. The mechanism and stability of binding of these compounds were confirmed by 100 ns molecular dynamic simulation followed by MM/PBSA binding free energy calculation. The identified compounds can facilitate the rational design of novel covalent inhibitors of MERS-CoV 3CLpro enzyme as anti-MERS CoV drugs.
Collapse
|
research-article |
4 |
34 |
5
|
Hussain MS, Gupta G, Afzal M, Alqahtani SM, Samuel VP, Hassan Almalki W, Kazmi I, Alzarea SI, Saleem S, Dureja H, Singh SK, Dua K, Thangavelu L. Exploring the role of lncrna neat1 knockdown in regulating apoptosis across multiple cancer types: A review. Pathol Res Pract 2023; 252:154908. [PMID: 37950931 DOI: 10.1016/j.prp.2023.154908] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/13/2023]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as pivotal regulators of gene expression, contributing significantly to a diverse range of cellular processes, including apoptosis. One such lncRNA is NEAT1, which is elevated in several types of cancer and aid in cancer growth. However, recent studies have also demonstrated that the knockdown of NEAT1 can inhibit cancer cells proliferation, movement, and infiltration while enhancing apoptosis. This article explores the function of lncRNA NEAT1 knockdown in regulating apoptosis across multiple cancer types. We explore the existing understanding of NEAT1's involvement in the progression of malignant conditions, including its structure and functions. Additionally, we investigate the molecular mechanisms by which NEAT1 modulates the cell cycle, cellular proliferation, apoptosis, movement, and infiltration in diverse cancer types, including acute myeloid leukemia, breast cancer, cervical cancer, colorectal cancer, esophageal squamous cell carcinoma, glioma, non-small cell lung cancer, ovarian cancer, prostate cancer, and retinoblastoma. Furthermore, we review the recent studies investigating the therapeutic potential of NEAT1 knockdown in cancer treatment. Targeting the lncRNA NEAT1 presents a promising therapeutic approach for treating cancer. It has shown the ability to suppress cancer cell proliferation, migration, and invasion while promoting apoptosis in various cancer types.
Collapse
|
Review |
2 |
31 |
6
|
Alamri MA, Altharawi A, Alabbas AB, Alossaimi MA, Alqahtani SM. Structure-based virtual screening and molecular dynamics of phytochemicals derived from Saudi medicinal plants to identify potential COVID-19 therapeutics. ARAB J CHEM 2020; 13:7224-7234. [PMID: 34909058 PMCID: PMC7415226 DOI: 10.1016/j.arabjc.2020.08.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/02/2020] [Indexed: 01/26/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has affected almost every country in the world by causing a global pandemic with a high mortality rate. Lack of an effective vaccine and/or antiviral drugs against SARS-CoV-2, the causative agent, has severely hampered the response to this novel coronavirus. Natural products have long been used in traditional medicines to treat various diseases, and purified phytochemicals from medicinal plants provide a valuable scaffold for the discovery of new drug leads. In the present study, we performed a computational screening of an in-house database composed of ~1000 phytochemicals derived from traditional Saudi medicinal plants with recognised antiviral activity. Structure-based virtual screening was carried out against three druggable SARS-CoV-2 targets, viral RNA-dependent RNA polymerase (RdRp), 3-chymotrypsin-like cysteine protease (3CLpro) and papain like protease (PLpro) to identify putative inhibitors that could facilitate the development of potential anti-COVID-19 drug candidates. Computational analyses identified three compounds inhibiting each target, with binding affinity scores ranging from -9.9 to -6.5 kcal/mol. Among these, luteolin 7-rutinoside, chrysophanol 8-(6-galloylglucoside) and kaempferol 7-(6″-galloylglucoside) bound efficiently to RdRp, while chrysophanol 8-(6-galloylglucoside), 3,4,5-tri-O-galloylquinic acid and mulberrofuran G interacted strongly with 3CLpro, and withanolide A, isocodonocarpine and calonysterone bound tightly to PLpro. These potential drug candidates will be subjected to further in vitro and in vivo studies and may assist the development of effective anti-COVID-19 drugs.
Collapse
|
research-article |
5 |
27 |
7
|
Chadar R, Afzal O, Alqahtani SM, Kesharwani P. Carbon nanotubes as an emerging nanocarrier for the delivery of doxorubicin for improved chemotherapy. Colloids Surf B Biointerfaces 2021; 208:112044. [PMID: 34419810 DOI: 10.1016/j.colsurfb.2021.112044] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/06/2021] [Accepted: 08/12/2021] [Indexed: 12/14/2022]
Abstract
Carbon nanotubes (CNTs), a versatile nanocarrier for doxorubicin (DOX) delivery had attracted significant attention in drug delivery of pharmaceuticals. Several properties such as high surface area, high drug loading capacity, stability, ease of functionalization, ultrahigh length to diameter ratio and good cellular uptake make them preferred nanocarrier as multipurpose drug delivery system. Several surface properties of CNTs can be easily modified by covalent/noncovalent functionalization, which can make CNTs a profound nanomaterial. Hydrophobic surface of CNTs facilitated π-π stacking interactions, with several drugs and therapeutic agents having aromatic ring in their structure, for example anthracyclines. In case some drug molecules, electrostatic interaction between drug and CNTs comes into the picture. DOX, an anthracycline anticancer drug, can easily adsorb on the surface of CNTs by π-π stacking interactions. In present article, we have reviewed various CNTs based drug delivery systems for the delivery of DOX alone or in combination with genetic materials and other drug molecules. In addition, we described recent updates in CNTs based drug delivery system for the delivery of DOX, we covered adsorption and desorption, different types of functionalization, to alter the properties of CNTs in vitro and in vivo. CNT attached many targeting ligands for the targeted delivery of DOX have also been discussed.
Collapse
|
Review |
4 |
12 |
8
|
Riadi Y, Alamri MA, Geesi MH, Anouar EH, Ouerghi O, Alabbas AB, Alossaimi MA, Altharawi A, Dehbi O, Alqahtani SM. Synthesis, characterization, biological evaluation and molecular docking of a new quinazolinone-based derivative as a potent dual inhibitor for VEGFR-2 and EGFR tyrosine kinases. J Biomol Struct Dyn 2021; 40:6810-6816. [PMID: 33682611 DOI: 10.1080/07391102.2021.1890221] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
An efficient process for the preparation of a new ethyl 2-((3-(4-fluorophenyl)-6-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)thio) acetate (5) was described. The prepared derivative was synthesized using the S-arylation method. Several analytical techniques, such as NMR, Raman and infrared spectroscopy, were used to characterize this compound. The compound was screened for cytotoxic activity against three human cancer cell lines: human cervical cancer (HeLa), human lung adenocarcinoma (A549) and triple negative breast cancer (MDA-MB-231) cells using an MTT assay. It exhibited potent cytotoxic activity against the tested cell lines with IC50 values in the low micromolar range when compared to a standard drug, docetaxel. It also displayed potent inhibitory activity towards VEGFR-2 and EGFR tyrosine kinases, reflecting its potential to act as an effective anti-cancer agent.Communicated by Ramaswamy H. Sarma.
Collapse
|
|
4 |
11 |
9
|
Altamimi AS, El-Azab AS, Abdelhamid SG, Alamri MA, Bayoumi AH, Alqahtani SM, Alabbas AB, Altharawi AI, Alossaimi MA, Mohamed MA. Synthesis, Anticancer Screening of Some Novel Trimethoxy Quinazolines and VEGFR2, EGFR Tyrosine Kinase Inhibitors Assay; Molecular Docking Studies. Molecules 2021; 26:molecules26102992. [PMID: 34069962 PMCID: PMC8157871 DOI: 10.3390/molecules26102992] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 11/24/2022] Open
Abstract
A new series of 8-methoxy-2-trimethoxyphenyl-3-substituted quinazoline-4(3)-one compounds were designed, synthesized, and screened for antitumor activity against three cell lines, namely, Hela, A549, and MDA compared to docetaxel as reference drug. The molecular docking was performed using Autodock Vina program and 20 ns molecular dynamics (MD) simulation was performed using GROMACS 2018.1 software. Compound 6 was the most potent antitumor of the new synthesized compounds and was evaluated as a VEGFR2 and EGFR inhibitor with (IC50, 98.1 and 106 nM respectively) compared to docetaxel (IC50, 89.3 and 56.1 nM respectively). Compounds 2, 6, 10, and 8 showed strong cytotoxic activities against the Hela cell line with IC50 of, 2.13, 2.8, 3.98, and 4.94 µM, respectively, relative to docetaxel (IC50, 9.65 µM). Compound 11 showed strong cytotoxic activity against A549 cell line (IC50, 4.03 µM) relative to docetaxel (IC50, 10.8 µM). Whereas compounds 6 and 9 showed strong cytotoxic activity against MDA cell line (IC50, 0.79, 3.42 µM, respectively) as compared to docetaxel (IC50, 3.98 µM).
Collapse
|
Journal Article |
4 |
7 |
10
|
Alamri MA, Tariq MH, Tahir Ul Qamar M, Alabbas AB, Alqahtani SM, Ahmad S. Discovery of potential phytochemicals as inhibitors of TcdB, a major virulence factors of Clostridioides difficile. J Biomol Struct Dyn 2023; 41:12768-12776. [PMID: 36644848 DOI: 10.1080/07391102.2023.2167120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/06/2023] [Indexed: 01/17/2023]
Abstract
Clostridioides difficile is a gram-positive bacterium which is associated with different gastrointestinal related infections, and the numbers of cases related to it are continuously increasing in the past few years. Owing to high prevalence and development of resistance towards available antibiotics, it is required to develop new therapeutics to combat C. difficile infection. The current study was aimed to identify novel phytochemicals that could bind and inhibits the TcdB, an exotoxin which is required for the pathogenesis of bacteria, and hence can be considered as the future drug candidates against C. difficile. ∼2500 therapeutically important phyto-compounds were docked against the active sites of TcdB protein by using AutoDock-Vina software. The interactions between the ligands and the binding site of the top five docked complexes, based on the docking scores, were further elucidated by Molecular Dynamics Simulations of 500 ns, Molecular Mechanics Energies combined with the Poisson-Boltzmann and Surface Area (MMPBSA) or Generalized Born and Surface Area (MMGBSA), and WaterSwap Analysis. Findings of molecular docking suggested that natural compounds A183, A704, A1528, A2083, and A2129 with distinct chemical scaffolds are best docked in the binding site of TcdB and their bonding remained stable throughout the simulation studies of 500 ns. Compounds A2129 and A704 can be considered as prospective drug candidates against Clostridioides difficile, however, further wet lab experiments are needed to confirm our study.Communicated by Ramaswamy H. Sarma.
Collapse
|
|
2 |
6 |
11
|
Alamri MA, Ahmad S, Alqahtani SM, Irfan M, Alabbas AB, Tahir Ul Qamar M. Screening of marine natural products for potential inhibitors targeting biotin biosynthesis pathway in Mycobacterium tuberculosis. J Biomol Struct Dyn 2023; 41:8535-8543. [PMID: 36264105 DOI: 10.1080/07391102.2022.2135596] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 10/08/2022] [Indexed: 10/24/2022]
Abstract
Tuberculosis (TB) remains as one of the major public health concerns worldwide. A successful TB control and treatment is very challenging, due to continuing emergence of Mycobacterium tuberculosis strains resistant to known drugs. Therefore, the development of new drugs with different chemical and biological approaches is necessary to obtain more efficient anti-tubercular therapeutics. Biotin is an essential cofactor for lipid biosynthesis and gluconeogenesis in M. tuberculosis. M. tuberculosis relies on de novo biotin biosynthesis to obtain this vital cofactor since it cannot scavenge sufficient biotin from a mammalian host. In this study, comprehensive in silico methods including structure-based virtual screening, molecular docking, and molecular dynamic simulation analysis for ∼8000 marine natural products were performed against two essential enzymes involved in biotin synthesis and ligation of M. tuberculosis namely, pyridoxal 5'-phosphate-dependent transaminase (BioA) and mycobacterial biotin protein ligase (MtBPL). Two compounds; CMNPD10112 and CMNPD10113 are unveiled to bind the enzymes consistently and with high affinities. The binding pattern of compounds is further noticed in very stable binding modes as analyzed by molecular dynamics simulation and the mean RMSD of the complexes is within 4 Å. The intermolecular binding free energies validated complexes are less than -40 kcal/mol, which demonstrates strong and stable complexes formation. The identified hit compounds could be seeds for design of effective anti-mycobacterium therapeutics by inhibition of bacterial growth through blocking the biotin biosynthesis.Communicated by Ramaswamy H. Sarma.
Collapse
|
|
2 |
5 |
12
|
Altharawi A, Alanazi MM, Alossaimi MA, Alanazi AS, Alqahtani SM, Geesi MH, Riadi Y. Novel 2-Sulfanylquinazolin-4(3 H)-one Derivatives as Multi-Kinase Inhibitors and Apoptosis Inducers: A Synthesis, Biological Evaluation, and Molecular Docking Study. Molecules 2023; 28:5548. [PMID: 37513420 PMCID: PMC10383864 DOI: 10.3390/molecules28145548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The discovery of multi-targeted kinase inhibitors emerged as a potential strategy in the therapy of multi-genic diseases, such as cancer, that cannot be effectively treated by modulating a single biological function or pathway. The current work presents an extension of our effort to design and synthesize a series of new quinazolin-4-one derivatives based on their established anti-cancer activities as inhibitors of multiple protein kinases. The cytotoxicity of the new derivatives was evaluated against a normal human cell line (WI-38) and four cancer lines, including HepG2, MCF-7, MDA-231, and HeLa. The most active compound, 5d, showed broad-spectrum anti-cancer activities against all tested cell lines (IC50 = 1.94-7.1 µM) in comparison to doxorubicin (IC50 = 3.18-5.57 µM). Interestingly, compound 5d exhibited lower toxicity in the normal WI-38 cells (IC50 = 40.85 µM) than doxorubicin (IC50 = 6.72 µM), indicating a good safety profile. Additionally, the potential of compound 5d as a multi-targeted kinase inhibitor was examined against different protein kinases, including VEGFR2, EGFR, HER2, and CDK2. In comparison to the corresponding positive controls, compound 5d exhibited comparable activities in nanomolar ranges against HER2, EGFR, and VEGFR2. However, compound 5d was the least active against CDK2 (2.097 ± 0.126 µM) when compared to the positive control roscovitine (0.32 ± 0.019 µM). The apoptotic activity investigation in HepG2 cells demonstrated that compound 5d arrested the cell cycle at the S phase and induced early and late apoptosis. Furthermore, the results demonstrated that the apoptosis pathway was provoked due to an upregulation in the expression of the proapoptotic genes caspase-3, caspase-9, and Bax and the downregulation of the Bcl-2 anti-apoptotic gene. For the in silico docking studies, compound 5d showed relative binding interactions, including hydrogen, hydrophobic, and halogen bindings, with protein kinases that are similar to the reference inhibitors.
Collapse
|
|
2 |
1 |
13
|
Bhat AA, Gupta G, Afzal M, Thapa R, Ali H, Alqahtani SM, almalki WH, Kazmi I, Alzarea SI, Saleem S, Subramaniyan V. Polyphenol-Loaded Nano-carriers for Breast Cancer Therapy: A Comprehensive Review. BIONANOSCIENCE 2024; 14:4219-4237. [DOI: 10.1007/s12668-023-01288-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2023] [Indexed: 11/22/2024]
|
|
1 |
1 |
14
|
Alqahtani SM, Altharawi A, Alabbas AB, Alossaimi MA, Kamal M, Alasmary FA, Alamri MA. Evaluation of Haloxylon Persicum Leaves Ethanolic Extract for Phytochemical, Antioxidant, Anticancer, and Antimicrobial Properties. CURR TOP NUTRACEUT R 2021. [DOI: 10.37290/ctnr2641-452x.20:424-430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In the present work, we have examined the composition of phytochemicals in the ethanolic extract of Haloxylon persicum Bunge and its biological activities. The measurements of the biological activities included its antioxidant behavior; antimicrobial activities against pathogenic fungi, gram-positive, and gram-negative bacteria; and anticancerous activity against hepatocellular (HepG-2), lung (A-549), breast (MCF-7), and colon (HCT-116) cancer cells. The analysis of the chemical composition showed the highest preponderance of tannins and the lowest for flavonoids. There were wide variations in the antioxidant activities that were dependent on the measures used (scavenging of 2,2-Diphenyl-1-picrylhydrazyl free radical and superoxide radical anion, O· 2 −) compared to ascorbic acid or butylated hydroxyl anisole. The concentration of the extract needed to cause 50% growth inhibition varied about threefold among different cancer cells with HepG-2 being the most sensitive and A-549 the least. The test of the antimicrobial potential showed Candida albicans to be the most sensitive with no activity against Aspergillus fumigatus, Penicillium italicum, Streptococcus mutants, and Enterobacter cloacae. The measurement of the effect of extract on the liver and kidney markers in the rat serum revealed no change in the activities suggesting safety of the extract. Therefore, ethanolic extract of H. persicum Bunge need further investigation for its possible use in humans.
Collapse
|
|
4 |
|
15
|
Altharawi A, Alqahtani SM, Aldakhil T, Sharma P, Kumar A, Ramadan MF. A novel green and efficient heterogeneous acid catalyst for the one-pot synthesis of benzopyrazine-aminoimidazole hybrids with antiproliferative potential. RSC Adv 2024; 14:26219-26232. [PMID: 39161442 PMCID: PMC11332591 DOI: 10.1039/d4ra04725g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024] Open
Abstract
A novel, green, efficient, and stable magnetically heterogeneous nanocatalyst was developed by immobilizing butanesulfonic acid (BuSO3H) onto the surface of MFe2O4 magnetic nanoparticles (MNPs). The resulting core-shell structure of the MFe2O4@PDA@BuSO3H nanocatalyst was thoroughly characterized using various analytical techniques, including Fourier-Transform Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD), Energy-Dispersive X-ray Spectroscopy (EDS), Field Emission Scanning Electron Microscopy (FESEM), Transmission Electron Microscopy (TEM), Vibrating Sample Magnetometry (VSM), and Brunauer-Emmett-Teller (BET) analysis. A nanocatalyst was used to synthesize 2-benzopyrazine-aminoimidazole hybrid derivatives through a domino multicomponent Knoevenagel-condensation-cyclization reaction (5a-p) in an environmentally friendly manner. The resulting compounds were then tested for their anticancer activity against three types of human cancer cells (MCF-7, A549, and U87) using the MTT assay. The experiment showed that the nanocatalyst had excellent catalytic activity, and the synthesized compounds exhibited promising antiproliferative activity. Notably, compounds 5g and 5h, containing a 2-naphthyl ring, showed the highest antiproliferative effects against MCF-7 cells, with IC50 values of 0.03 and 0.32 μM, respectively. Additionally, the activity of compounds 5g and 5h in tubulin polymerization, apoptosis induction, and cell cycle arrest in MCF-7 cells were investigated. The results demonstrated that these compounds effectively induced apoptosis and cell cycle arrest. The binding of representative compounds to the colchicine binding site of tubulin was confirmed through molecular modeling studies.
Collapse
|
research-article |
1 |
|
16
|
Alqahtani SM. Discovering broad-spectrum inhibitors for SARS-CoV-2 variants: a cheminformatics and biophysical approach targeting the main protease. Front Pharmacol 2025; 16:1459581. [PMID: 39974733 PMCID: PMC11835822 DOI: 10.3389/fphar.2025.1459581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 01/10/2025] [Indexed: 02/21/2025] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 still lacks effective antiviral drugs. Therefore, a thorough receptor-based virtual screening study was conducted to screen different natural and synthetic drug libraries, such as the Asinex Antiviral, Seaweed Metabolite Database, Medicinal Fungi Secondary Metabolite and Therapeutics Library, and Comprehensive Marine Natural Products Database comprising 6,827, 1,191, 1,830, and 45,000 compounds, respectively, against the main protease enzyme of SARS-CoV-2. Accordingly, three drug molecules (BBB-26580140, BDE-32007849, and LAS-51378804) are highlighted as the best binding molecules to the main protease S1 pocket. The docking binding energy scores of BBB-26580140, BDE-32007849, and LAS-51378804 were -13.02, -13.0, and -12.56 kcal/mol, respectively. Compared to the control Z1741970824 molecule with a binding energy score of -11.59 kcal/mol, the lead structures identified herein showed robust hydrophilic and van der Waals interactions with the enzyme active site residues, such as His41 and Cys145, and achieved highly stable binding modes. The simulations showed a stable structure of the main protease enzyme with the shortlisted leads in the pocket, and the network of binding interactions remained intact during the simulations. The overall molecular mechanics with generalized Born and surface area solvation binding energies of the BBB-26580140, BDE-32007849, LAS-51378804, and control molecules are -53.02, -56.85, -55.44, and -48.91 kcal/mol, respectively. Similarly, the net molecular mechanics Poisson-Boltzmann surface area binding energies of BBB-26580140, BDE-32007849, LAS-51378804, and control are -53.6, -57.61, -54.41, and -50.09 kcal/mol, respectively. The binding entropy energies of these systems showed lower free energies, indicating their stable nature. Furthermore, the binding energies were revalidated using the water swap method that considers the role of the water molecules in bridging the ligands to the enzyme active site residues. The compounds also revealed good ADMET properties and followed all major rules of drug-likeness. Thus, these compounds are predicted as promising leads and can be subjected to further experimental studies for evaluation of their biological activities.
Collapse
|
research-article |
1 |
|
17
|
Alqahtani SM, Altharawi A, Alabbas A, Ahmad F, Ayaz H, Nawaz A, Rahman S, Alossaimi MA. System biology approach to identify the novel biomarkers in glioblastoma multiforme tumors by using computational analysis. Front Pharmacol 2024; 15:1364138. [PMID: 38841373 PMCID: PMC11150670 DOI: 10.3389/fphar.2024.1364138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 04/22/2024] [Indexed: 06/07/2024] Open
Abstract
Introduction: The most common primary brain tumor in adults is glioblastoma multiforme (GBM), accounting for 45.2% of all cases. The characteristics of GBM, a highly aggressive brain tumor, include rapid cell division and a propensity for necrosis. Regretfully, the prognosis is extremely poor, with only 5.5% of patients surviving after diagnosis. Methodology: To eradicate these kinds of complicated diseases, significant focus is placed on developing more effective drugs and pinpointing precise pharmacological targets. Finding appropriate biomarkers for drug discovery entails considering a variety of factors, including illness states, gene expression levels, and interactions between proteins. Using statistical techniques like p-values and false discovery rates, we identified differentially expressed genes (DEGs) as the first step in our research for identifying promising biomarkers in GBM. Of the 132 genes, 13 showed upregulation, and only 29 showed unique downregulation. No statistically significant changes in the expression of the remaining genes were observed. Results: Matrix metallopeptidase 9 (MMP9) had the greatest degree in the hub biomarker gene identification, followed by (periostin (POSTN) at 11 and Hes family BHLH transcription factor 5 (HES5) at 9. The significance of the identification of each hub biomarker gene in the initiation and advancement of glioblastoma multiforme was brought to light by the survival analysis. Many of these genes participate in signaling networks and function in extracellular areas, as demonstrated by the enrichment analysis.We also identified the transcription factors and kinases that control proteins in the proteinprotein interactions (PPIs) of the DEGs. Discussion: We discovered drugs connected to every hub biomarker. It is an appealing therapeutic target for inhibiting MMP9 involved in GBM. Molecular docking investigations indicated that the chosen complexes (carmustine, lomustine, marimastat, and temozolomide) had high binding affinities of -6.3, -7.4, -7.7, and -8.7 kcal/mol, respectively, the mean root-mean-square deviation (RMSD) value for the carmustine complex and marimastat complex was 4.2 Å and 4.9 Å, respectively, and the lomustine and temozolomide complex system showed an average RMSD of 1.2 Å and 1.6 Å, respectively. Additionally, high stability in root-mean-square fluctuation (RMSF) analysis was observed with no structural conformational changes among the atomic molecules. Thus, these in silico investigations develop a new way for experimentalists to target lethal diseases in future.
Collapse
|
research-article |
1 |
|
18
|
Rashid H, Ullah A, Ahmad S, Aljahdali SM, Waheed Y, Shaker B, Al-Harbi AI, Alabbas AB, Alqahtani SM, Akiel MA, Irfan M. Identification of Novel Genes and Pathways of Ovarian Cancer Using a Comprehensive Bioinformatic Framework. Appl Biochem Biotechnol 2024; 196:3056-3075. [PMID: 37615851 DOI: 10.1007/s12010-023-04702-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 08/25/2023]
Abstract
Ovarian cancer (OC) is a significant contributor to gynecological cancer-related deaths worldwide, with a high mortality rate. Despite several advances in understanding the pathogenesis of OC, the molecular mechanisms underlying its development and prognosis remain poorly understood. Therefore, the current research study aimed to identify hub genes involved in the pathogenesis of OC that could serve as selective diagnostic and therapeutic targets. To achieve this, the dataset GEO2R was used to retrieve differentially expressed genes. The study identified a total of five genes (CDKN1A, DKK1, CYP1B1, NTS, and GDF15) that were differentially expressed in OC. Subsequently, a network analysis was performed using the STRING database, followed by the construction of a network using Cytoscape. The network analyzer tool in Cytoscape predicted 276 upregulated and 269 downregulated genes. Furthermore, KEGG analysis was conducted to identify different pathways related to OC. Subsequently, survival analysis was performed to validate gene expression alterations and predict hub genes, using a p-value of 0.05 as a threshold. Four genes (CDKN1A, DKK1, CYP1B1, and NTS) were predicted as significant hub genes, while one gene (GDF15) was predicted as non-significant. The adjusted P values of said predicted genes are 2.85E - 07, 5.49E - 06, 4.28E - 07, 1.43E - 07, and 3.70E - 07 for CDKN1A, DKK1, NTS, GDF15, and CYP1B1 respectively; additionally 6.08, 5.76, 5.74, 5.01, and 4.9 LogFc values of the said genes were predicted in GEO data set. In a boxplot analysis, the expression of these genes was analyzed in normal and tumor cells. The study found that three genes were highly expressed in tumor cells, while two genes (CDKN1A and DKK1) were more elevated in normal cells. According to the boxplot analysis for CDKN1A, 50% of tumor cells ranged between approx 3.8 and 5, while 50% of normal cells ranged between approx 6.9 and 7.9, which is greater than tumor cells. This shows that in normal cells, the CYP1B1 has a high expression level according to the GEPIA boxplot; addtionally the boxplot for DKK1 indicated that 50% of tumor cells ranged between approx 0 and 0.5, which was less than that of normal cells which ranged between approx 0.3 and 0.9. It shows that DKK1 is highly expressed in normal genes. Overall, the current study provides novel insights into the molecular mechanisms underlying OC. The identified hub genes and drug candidate targets could potentially serve as alternative diagnostic and therapeutic options for OC patients. Further research is needed to investigate the clinical significance of these findings and develop effective interventions that can improve the prognosis of patients with OC.
Collapse
|
|
1 |
|
19
|
Alossaimi MA, Riadi Y, Alnuwaybit GN, Md S, Alkreathy HM, Elekhnawy E, Geesi MH, Alqahtani SM, Afzal O. Design, synthesis, molecular docking, and in vitro studies of 2-mercaptoquinazolin-4(3 H)-ones as potential anti-breast cancer agents. Saudi Pharm J 2024; 32:101971. [PMID: 38357701 PMCID: PMC10864842 DOI: 10.1016/j.jsps.2024.101971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
Triple-negative breast cancer (TNBC) comprises 10 % to 20 % of breast cancer, however, it is more dangerous than other types of breast cancer, because it lacks druggable targets, such as the estrogen receptors (ER) and the progesterone receptor (PR), and has under expressed receptor tyrosine kinase, ErbB2. Present targeted therapies are not very effective and other choices include invasive procedures like surgery or less invasive ones like radiotherapy and chemotherapy. This study investigated the potential anticancer activity of some novel quinazolinone derivatives that were designed on the structural framework of two approved anticancer drugs, Ispinesib (KSP inhibitor) and Idelalisib (PI3Kδ inhibitor), to find out solutions for TNBC. All the designed derivatives (3a-l) were subjected to extra precision molecular docking and were synthesized and spectrally characterized. In vitro enzyme inhibition assay of compounds (3a, 3b, 3e, 3 g and 3 h) revealed their nanomolar inhibitory potential against the anticancer targets, KSP and PI3Kδ. Using MTT assay, the cytotoxic potential of compounds 3a, 3b and 3e were found highest against MDA-MB-231 cells with an IC50 of 14.51 µM, 16.27 µM, and 9.97 µM, respectively. Remarkably, these compounds were recorded safe against the oral epithelial normal cells with an IC50 values of 293.60 µM, 261.43 µM, and 222 µM, respectively. The anticancer potential of these compounds against MDA-MB-231 cells was revealed to be associated with their apoptotic activity. This was established by examination with the inverted microscope that revealed the appearance of various apoptotic features like cell shrinkage, apoptotic bodies, and membrane blebbing. Using flow cytometry, the Annexin V/PI-stained cancer cells showed an increase in early and late apoptotic cells. In addition, DNA fragmentation was revealed to occur after treatment with the tested compounds by gel electrophoresis. The relative gene expression of pro-apoptotic and anti-apoptotic genes revealed an overexpression of the P53 and BAX genes and a downregulation of the BCL-2 gene by real-time PCR. So, this work proved that compounds 3a, 3b, and 3e could be developed as anticancer candidates, via their P53-dependent apoptotic activity.
Collapse
|
research-article |
1 |
|
20
|
Chouksey P, Yadav NS, Hazari P, Saxena V, Mahajan H, Narwani S, Somkuwar K, Alzahrani AH, Alqahtani SM, Robaian A, Alamoudi A, Zidane B, Albar N, Baeshen HA, Patil S. In Vitro Evaluation of marginal adaptation of polyether ether ketone and zirconia copings. Niger J Clin Pract 2023; 26:701-708. [PMID: 37470642 DOI: 10.4103/njcp.njcp_701_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Background Polyether ether ketone (PEEK) has emerged as a new thermoplastic material with potential applications as a restorative material. Aim: This study aimed to evaluate the marginal adaptation of PEEK copings compared to zirconia copings using field emission scanning electron microscopy. Materials and Methods A freshly extracted maxillary central incisor was prepared for a full-coverage restoration following standard principles of tooth preparation. The tooth was sent to a laboratory for fabrication of samples using computer-aided design and manufacturing (CAD/CAM). Twenty samples of polyether ether ketone (PEEK) copings (group A) and 20 of zirconia copings were fabricated (group B). The copings were scanned under a field emission scanning electron microscope and measurements were taken at four distinct points. The marginal adaptation over the buccal, lingual, mesial, and distal margins for both groups was evaluated. One-way analysis of variance (ANOVA) and independent t test were applied. Results Our findings indicate that PEEK showed better marginal adaptation than zirconia at all measurement points. The mean marginal gap value of the PEEK group was 33.99 ± 8.81 μm and of the zirconia group was 56.21 ± 15.07 μm. On comparing marginal adaptation among the mesial, distal, buccal, and lingual aspects, PEEK showed better adaptation on all four margins, with the best adaptation on the buccal margin that had the lowest mean gap value of 29.27 ± 6.07 μm. The zirconia group adapted best at the distal margin, with a lowest mean gap value of 53.58 ± 15.25 μm (P ≤ 0.05). Conclusion PEEK copings had better marginal adaptation and fit compared to zirconia copings. It may have applications as a restorative material in fixed prostheses.
Collapse
|
|
2 |
|
21
|
Alamri MA, Alafnan AD, Afzal O, Alabbas AB, Alqahtani SM. Structure prediction of SPAK C-terminal domain and analysis of its binding to RFXV/I motifs by homology modelling, docking, and molecular dynamics simulation studies. Curr Comput Aided Drug Des 2020; 17:666-675. [PMID: 32652921 DOI: 10.2174/1573409916666200712140941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/20/2020] [Accepted: 06/22/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The STE20/SPS1-related proline/alanine-rich kinase (SPAK) is a component of WNKSPAK/OSR1 signaling pathway that plays an essential role in blood pressure regulation. The function of SPAK is mediated by its highly conserved C-terminal domain (CTD) that interacts with RFXV/I motifs of upstream activators, WNK kinases, and downstream substrate, cation-chloride cotransporters. OBJECTIVE To determine and validate the three-dimensional structure of the CTD of SPAK and to study and analyze its interaction with the RFXV/I motifs. METHODS A homology model of SPAK CTD was generated and validated through multiple approaches. The model was based on utilizing the OSR1 protein kinase as a template. This model was subjected to 100 ns molecular dynamic (MD) simulation to evaluate its dynamic stability. The final equilibrated model was used to dock the RFQV-peptide derived from WNK4 into the primary pocket that was determined based on the homology sequence between human SPAK and OSR1 CTDs. The mechanism of interaction, conformational rearrangement and dynamic stability of the binding of RFQV-peptide to SPAK CTD were characterized by molecular docking and molecular dynamic simulation. RESULTS The MD simulation suggested that the binding of RFQV induces a large conformational change due to the distribution of salt bridge within the loop regions. These results may help in understanding the relation between the structure and function of SPAK CTD and to support drug design of potential SPAK kinase inhibitors as antihypertensive agents. CONCLUSION This study provides deep insight into SPAK CTD structure and function relationship.
Collapse
|
Journal Article |
5 |
|
22
|
Alqahtani SM, Altharawi A, Alrobaian M, Almalki WH, Alabbas AB, Ullah SNMN, Singh T, Thajudeen KY, Khan G, Rub RA, Barkat MA, Beg S, Rahman M. UPLC-MS/MS Method Development for Simultaneous Estimation of Diclofenac and Resveratrol-Loaded Liposomal Gel Formulation in Mice Skin Model: Application to Dermatokinetic Study. J Chromatogr Sci 2023; 61:329-338. [PMID: 36644892 DOI: 10.1093/chromsci/bmac109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/19/2022] [Accepted: 12/23/2022] [Indexed: 01/17/2023]
Abstract
The current research work describes the development of a simple, fast, sensitive and efficient bioanalytical UPLC/MS-MS method for the simultaneous estimation of diclofenac and resveratrol in mice skin samples. Quetiapine was used as an internal standard (IS). Analytical separation was performed on ACQUITY UPLC C18 Column (2.1 × 100 mm; 1.7 μm) using ammonium acetate (5 mM) in water and methanol (B) with isocratic elution at ratio of (50, 50 v/v) and flow rate of 0.4 mL/min. The duration of separation was maintained for 3 min. Electrospray ionization mass spectrometry in a positive and negative ionization mode was used for detection. Selective ion mode monitoring was used for the quantification of m/z 296.025> 249.93 for diclofenac, m/z 229.09 > 143.03 for resveratrol and MRM/ES+ve mode applied in m/z 384.25> 253.189 for IS transitions from parent to daughter ion. The lower detection and quantification limits were accomplished, and precision (repeatability and intermediate precision) with a coefficient of variation below 10% produced satisfactory results. The developed bioanalytical method was found to be useful for its suitability for the dermatokinetic evaluation of treatments through rat skin. Improvement in AUC (1.58-fold for diclofenac and 1.60-fold for resveratrol) and t1/2 in the dermis (2.13 for diclofenac and 2.21-fold for resveratrol) followed by epidermis was observed for diclofenac and resveratrol-loaded liposomal gel formulation over the conventional gel. Overall, the developed method for the dermatokinetic studies of the above-mentioned dual drugs-loaded liposome gel was found to be reproducible and effective for bioanalytical.
Collapse
|
|
2 |
|
23
|
Alabbas AB, Alqahtani SM, Panda SS, Alrobaian M, Altharawi A, Almalki WH, Barkat MA, Rub RA, Rahman M, Mir Najib Ullah SN, Beg S. Development of a Validated UPLC-MS/MS Method for Simultaneous Estimation of Neratinib and Curcumin in Human Plasma: Application to Greenness Assessment and Routine Quantification. J Chromatogr Sci 2024; 62:168-174. [PMID: 35989674 DOI: 10.1093/chromsci/bmac067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Indexed: 11/14/2022]
Abstract
A validated ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed for the first-ever simultaneous analysis of neratinib, curcumin and internal standard (imatinib) using acetonitrile as the liquid-liquid extraction medium. On a BEH C18 (100 mm × 2.1 mm, 1.7 μm) column, the analytes were separated isocratically using acetonitrile (0.1% formic acid):0.002M ammonium acetate. The flow rate was set at 0.5 mL.min-1. The authors utilized multiple reaction monitoring-based transitions for the precursor-to-product ion with m/z 557.099 → 111.928 for neratinib, m/z 369.231 → 176.969 curcumin and m/z 494.526 → 394.141 for imatinib during the study. Validation of the method as per United States Food and Drug Administration requirements for linearity (5-40 ng mL-1), accuracy and precision, stability, matrix effect, etc. were investigated and were observed to be acceptable. Afterward, we evaluated the method for establishing its greenness profile by using two greenness assessment tools and found it green. Overall, a reliable green UPLC-MS/MS method was devised and used to estimate neratinib and curcumin in human plasma simultaneously.
Collapse
|
|
1 |
|
24
|
Altharawi A, Alqahtani SM, Aldakhil T, Ahmad I. Microwave-assisted synthesis of novel Ti/BTB-MOFs as porous anticancer and antibacterial agents. Front Chem 2024; 12:1386311. [PMID: 38803382 PMCID: PMC11128661 DOI: 10.3389/fchem.2024.1386311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
Nano compounds, especially metal-organic frameworks (MOFs), have significant properties. Among the most important properties of these compounds, which depend on their specific surface area and porosity, are biological properties, such as anticancer and antibacterial properties. In this study, a new titanium/BTB metal-organic framework (Ti/BTB-MOF) was synthesized by using titanium nitrate and 1,3,5-Tris(4-carboxyphenyl)benzene (BTB) under microwave radiation. The structure of the synthesized Ti/BTB-MOF was characterized and confirmed using X-ray diffraction (XRD) patterns, X-ray photoelectron spectroscopy (XPS) analysis, Fourier transform infrared (FT-IR) spectra, energy-dispersive X-ray (EDAX) analysis mapping, scanning electron microscope (SEM) images, thermogravimetric analysis (TGA) curves, and Brunauer-Emmett-Teller (BET) analysis. The in vitro anticancer properties of Ti/BTB-MOF were evaluated using the MTT method against MG-63/bone cancer cells and A-431/skin cancer cells. The in vitro antibacterial activity was tested using the Clinical and Laboratory Standards Institute (CLSI) guidelines. In the anticancer activity, IC50 (half-maximal inhibitory concentration) values of 152 μg/mL and 201 μg/mL for MG-63/bone cancer cells and A-431/skin cancer cells, respectively, were observed. In the antibacterial activity, minimum inhibitory concentrations (MICs) of 2-64 μg/mL were observed against studied pathogenic strains. The antimicrobial activity of Ti/BTB-MOF was higher than that of penicillin and gentamicin. Therefore, the synthesized Ti/BTB-MOF could be introduced as a suitable bioactive candidate.
Collapse
|
research-article |
1 |
|
25
|
Abbas A, Anwar F, Alqahtani SM, Ahmad N, Al-Mijalli SH, Shahid M, Iqbal M. Hydro-Distilled and Supercritical Fluid Extraction of Eucalyptus camaldulensis Essential Oil: Characterization of Bioactives Along With Antioxidant, Antimicrobial and Antibiofilm Activities. Dose Response 2022; 20:15593258221125477. [PMID: 36106059 PMCID: PMC9465602 DOI: 10.1177/15593258221125477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/24/2022] [Indexed: 11/23/2022] Open
Abstract
Present research work evaluates variation in volatile chemicals profile and
biological activities of essential oil (EO) obtained from the leaves of
eucalyptus (Eucalyptus camaldulensis Dehnh.) using
hydro-distillation (HD) and supercritical fluid extraction (SFE). The yield
(1.32%) of volatile oil by HD was higher than the yield (.52%) of the SFE method
(P < .05). The results of physical factors like density,
color, refractive index, and solubility of the EOs produced by both the methods
showed insignificant variations. Gas chromatography - mass spectrometry (GC-MS)
compositional analysis showed that eucalyptol (31.10% and 30.43%) and
α-pinene (11.02% and 10.35%) were the main constituents
detected in SFE and HD extracted Eucalyptus camaldulensis EO,
respectively. Antioxidant activity-related parameters, such as reducing ability
and DPPH free radical scavenging capability exhibited by EO obtained via SFE
were noted to be better than hydro-distilled EO. Supercritical fluid extracted
and hydro-distilled essential oils demonstrated a considerable but variable
antimicrobial potential against selected bacterial and fungal strains.
Interestingly, oil extracted by SFE showed relatively higher hemolytic activity
and biofilm inhibition potential. The variation in biological activities of
tested EOs can be linked to the difference in the volatile bioactives
composition due to different isolation techniques. In conclusion, the EO
obtained from Eucalyptus leaves by the SFE method can be
explored as a potential antioxidant and antimicrobial agent in the functional
food and nutra-pharmaceutical sector.
Collapse
|
|
3 |
|